JP4291629B2 - Battery device - Google Patents

Battery device Download PDF

Info

Publication number
JP4291629B2
JP4291629B2 JP2003176125A JP2003176125A JP4291629B2 JP 4291629 B2 JP4291629 B2 JP 4291629B2 JP 2003176125 A JP2003176125 A JP 2003176125A JP 2003176125 A JP2003176125 A JP 2003176125A JP 4291629 B2 JP4291629 B2 JP 4291629B2
Authority
JP
Japan
Prior art keywords
battery
voltage
circuit
switch
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003176125A
Other languages
Japanese (ja)
Other versions
JP2005012958A (en
Inventor
利之 木村
康弘 清水
敏夫 郷内
裕之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003176125A priority Critical patent/JP4291629B2/en
Publication of JP2005012958A publication Critical patent/JP2005012958A/en
Application granted granted Critical
Publication of JP4291629B2 publication Critical patent/JP4291629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリを充電しないときには、過電圧保護回路を切り離すことで消費電力を削減する回路を有したバッテリ装置に関するものである。
【0002】
【従来の技術】
従来のバッテリセル用過電圧保護回路はリチウムイオンバッテリのセル充電電圧が寿命のパラメータの一つとなっており、多段直列構成されたセルの何れかが高い充電電圧に偏った場合、セル容量の劣化を伴うという問題を回避することを目的として、各セルには過電圧保護回路が接続されている。直列に接続された各セルには共通の充電電流が流れ、同じ電流時間積で充電管理されるため、各セル間のばらつきにより充電電圧の上昇が早いセルについては過電圧保護回路に充電電流が分流することで充電電圧の上限が制限されている(例えば、非特許文献1参照)。
【0003】
しかしながら、過電圧保護回路は非充電時に自身で電力を消費することから、宇宙空間の軌道運用中では補充電のためのトリクル充電を運用条件に加える必要があり、複雑な運用条件が必要となる。また、地上保管、輸送時には、バッテリは過電圧保護回路による電力消費のため放電され、長期放置しているとバッテリ電圧が低下する。このときバッテリの種類によっては(例えばリチウムイオンバッテリ等)、バッテリ電圧が規定電圧の最小値以下となり破損するため、バッテリ電圧を規定電圧範囲内に管理し、維持することが要求される。
【0004】
【非特許文献1】
岡村敏男、他2名、”宇宙機搭載用リチウムイオンバッテリシステムの開発―リチウムイオンバッテリを用いた宇宙用バッテリシステムの検討結果報告―”、平成12年2月17日、電子情報通信学会技術研究報告Vol.99 No.624,625
【0005】
【発明が解決しようとする課題】
本発明は上記課題を解決し、バッテリを充電する時以外はバッテリセルと過電圧保護回路との間を遮断するスイッチを備えることで、非充電時に消費する電力を削減するバッテリ装置に関するものである。
【0006】
【課題を解決するための手段】
本発明にかかわるバッテリ装置は、直列接続された複数のバッテリセルから成り、電力を蓄えるバッテリと、前記バッテリを充電する電源と、前記電源の電圧を検出し、動作信号を出力する信号発生回路と、前記バッテリセル毎に並列に接続され、前記夫々のバッテリセルの過電圧を検出するとシャント素子の駆動により当該過電圧を検出したバッテリセルの充電をバイパスさせて、前記バッテリセルを夫々保護する複数の過電圧保護回路と、前記バッテリセル毎に並列に接続され、前記シャント素子を含む過電圧保護回路と前記バッテリセルの接続経路を、切り離して遮断するかもしくは導通させる複数のスイッチと、前記信号発生回路からの動作信号に基づいて、前記バッテリセル毎の各スイッチをそれぞれ個別に駆動する複数のスイッチ駆動回路と、を備え、前記それぞれのスイッチは、前記信号発生回路からの動作信号に基づいて前記それぞれのスイッチ駆動回路から発生される信号に基づき、前記電源の電圧が基準電圧よりも高い場合に前記シャント素子を含む過電圧保護回路と前記バッテリセルの接続経路を導通状態とし、前記電源の電圧が基準電圧よりも低い場合に前記シャント素子を含む過電圧保護回路と前記バッテリセルの接続経路を遮断状態とするものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下に本発明の具体例を詳細に説明する。図1は、この発明に係わる宇宙機電力システム用リチウムイオンバッテリ装置を示す構成図である。もちろん、宇宙機電力システム以外で利用しても良い。このバッテリ装置はスイッチ動作状態を決定する手段として太陽電池の出力電流を利用したものであり、バッテリセルと過電圧保護回路間を遮断/導通させるスイッチ及びスイッチ駆動回路をバッテリセル毎に備えた宇宙機電力システム用リチウムイオンバッテリ装置の1部である。宇宙機用電力システムは、日照時に電力発電する太陽電池1、太陽電池1で発電した電力を一定電圧に制御して電流を出力する定電圧制御回路2、定電圧制御回路2からの出力電流を監視、検出する出力電流検出回路3、太陽電池1等から供給される電力を消費する人工衛星や宇宙機を動作運用するための他装置(以後総称して負荷装置5と呼ぶ)、日陰時に負荷装置5に電力を供給することに備えて日照時に電力を蓄えるバッテリ7、日陰時にバッテリ7から定電圧制御回路2へ電流が逆流することを防止する逆流防止ダイオード4、日照時にバッテリ7を充電し日陰時にバッテリ7に蓄えられた電力を負荷装置5に放電するバッテリ充放電制御器6、バッテリ7を構成するバッテリセル8a〜8c及び並列に接続された過電圧保護回路10a〜10c、過電圧保護回路10a〜10cとバッテリセル8a〜8cを遮断/導通させるための装置としてリレー等の開閉装置を利用したスイッチ11a〜11c及びスイッチ11a〜11cをそれぞれ個別に駆動するスイッチ駆動回路9a〜9cから構成されている。
出力電流検出回路3は、太陽電池1からの出力電流を検出する電流検出用抵抗器15、抵抗器15に発生する電圧を使用してスイッチ駆動回路9a〜9cへ伝達する動作/停止信号を発生する信号発生回路16により構成される。過電圧保護回路10a〜10cは、バッテリセル8a〜8cと過電圧保護回路10a〜10cの接続を遮断/導通させるスイッチ11a〜11c、バッテリセル8a〜8c、各充電電流をバイパスするシャント素子12a〜12c、シャント素子12a〜12cの動作を制御する駆動回路13a〜13c、バッテリセル8a〜8cの各電圧を監視検出しているセル電圧検出回路14a〜14cから構成されている。
【0008】
この発明に係わる宇宙機電力システム用リチウムイオンバッテリ装置の動作について説明する。太陽光が太陽電池1に照射される日照時においては、太陽電池1は、定電流源として発電を開始し、太陽電池1の発電電力を変換して一定電圧を出力する定電圧制御回路2の出力電流が上昇すると、バッテリ7を一定電流/一定電圧で充電制御するバッテリ充放電制御器6と負荷装置5へ電力を供給する。また、日陰時から日照時へ移行し定電圧制御回路2の出力電流が上昇したとき、出力電流検出回路3は、出力電流検出回路3内部に備わる電流検出用抵抗器15にて電圧に変換し検出した電圧値を信号発生回路16へ出力する。信号発生回路16は抵抗器15からの電圧値を常に監視し、ツェナーダイオードなどにより設定された基準電圧と常に比較し、抵抗器15からの電圧が基準電圧値に到達したとき、信号発生回路16より動作信号(例えばHighレベルの信号)を生成し、スイッチ駆動回路9a〜9cへ送信する。動作信号を受信したスイッチ駆動回路9a〜9cはスイッチ11a〜11cをONさせるのに必要な駆動電圧/電流をドライブ信号としてスイッチ11a〜11cへ送信してスイッチ11a〜11cが導通状態となる。過電圧保護回路10a〜10cはスイッチ11a〜11cが導通状態となったことでバッテリセル8の電圧を常に監視できる状態となり、充電時の過電圧保護を可能にするスタンバイ状態となる。なお、信号発生回路16の信号によりスイッチ11a〜11cをONさせることができればスイッチ駆動回路9a〜9cは不要である。
【0009】
過電圧保護回路10a〜10cの動作について、過電圧保護回路10aを代表して説明する。過電圧保護回路10aのスタンバイ状態において、バッテリセル8aがさらに充電されバッテリセル8a電圧が上昇し、バッテリセル8aの仕様や運用条件により決定し規定した過電圧レベルに到達した場合、バッテリセル8a電圧をモニタしているセル電圧検出回路14a(例えばオペアンプまたはトランジスタ等の半導体素子で構成された回路)は駆動回路13a(例えばトランジスタ等の半導体素子で構成された回路)に駆動回路動作信号(例えばアナログ信号)を送信し、駆動回路動作信号を受信した駆動回路13aはシャント素子12a(例えばトランジスタ等の半導体素子)にドライブ信号(例えばアナログ信号)を送信してシャント素子12aを徐々にON動作させてバッテリセル8aの充電電流を徐々にバイパスする。
【0010】
一方、日照から日陰に移行すると太陽電池1は太陽光が照射されず、発電しないため、太陽電池1の発電電力が低下し一定電圧を出力する定電圧制御回路2の出力電流も低下しゼロとなり、太陽電池1から負荷装置5への電力供給が止まってしまう。しかし、負荷装置5への電力供給はバッテリ7に充電した電力がバッテリ充放電制御器6を経由して負荷装置5に供給されることで補われる。このとき逆流防止ダイオード4はバッテリ7からの電流が定電圧制御回路2側に逆流することを防止するために備えられている。また定電圧制御回路2の出力電流はゼロとなるため出力電流検出回路3内部に備わる電流検出用抵抗器15に発生する電圧値も低下し、その電圧がツェナーダイオードなどにより設定された基準電圧値以下になると、信号発生回路16より停止信号(例えばLowレベルの信号)が生成され、スイッチ駆動回路9a〜9cを介してスイッチ11a〜11cが遮断状態となり、過電圧保護回路10a〜10cはバッテリセル8a〜8cから切り離される。このことからスイッチ11a〜11cが遮断している時には、バッテリセル8a〜8cが常時負担していた過電圧保護回路10a〜10cに対する電力は削減される。
【0011】
図2に出力電流検出回路3とスイッチ駆動回路9a〜9cを代表してスイッチ駆動回路9aの動作の詳細を示し説明する。図2の構成例として信号発生回路16内部は入力低電圧を増幅する電圧差動増幅回路17、電圧差動増幅回路17の出力電圧と基準電圧を比較して動作信号を生成する比較回路18、基準電圧を生成するツェナーダイオード等の基準電圧発生回路19、動作信号生成のためのプルアップ電源20とプルアップ抵抗21からなり、スイッチ駆動回路9a内部は動作信号によりスイッチ11aにドライブ信号を送信するためのドライブ信号発生素子22aとプルアップ電源20aからなる。日陰時から日照時へ移行して定電圧制御回路2の出力電流が上昇すると、出力電流を電圧に変換する電流検出抵抗器15は出力電圧をゼロから増加させて信号発生回路16に出力する。負荷装置5やバッテリ7への電力供給を阻害しないために、抵抗器15は低抵抗値であり、よって出力電圧も低電圧となる。ここで、出力電圧は信号発生回路16内部の電圧差動増幅回路17にて増幅され、その電圧が比較回路18で基準電圧発生回路19により生成した基準電圧と比較される。出力電圧側が大きい場合に比較回路18は動作信号(例ではHighレベルの信号)を出力する。動作信号を入力したスイッチ駆動回路9aは内部のドライブ信号発生素子22aがON動作することでドライブ信号(例ではHighレベルの信号)を出力して、スイッチ11aをON動作することによって過電圧保護回路10aをスタンバイ状態にする。一方、日照時から日陰時へ移行して、定電圧制御回路2の出力電流が下降してゼロになると、抵抗器15の出力電圧はゼロとなり、即ち電圧差動増幅回路17の出力電圧もゼロとなる。比較回路18はその電圧が基準電圧発生回路19により発生した基準電圧と比較して、小さい場合に停止信号(例ではLowレベルの信号)を出力する。停止信号を入力したスイッチ駆動回路9aは内部のドライブ信号発生素子22aがOFF動作することで、ドライブ停止信号(例ではLowレベルの信号)を出力して、スイッチ11aをOFF動作して、過電圧保護回路10aをバッテリセル8aから切り離した状態とする。
【0012】
図3は、図2記載の電流検出用抵抗器15の代りに電流センサ24を備え、信号発生回路16に代えて電流センサ24の出力を検出する出力電流検出回路23を使用した実施例を示す。ここで、図1及び図2の具体例は充電開始時を検出する方法として、出力電流検出回路3内部の電流検出用抵抗器15にて発生する電圧降下を利用していたが、電流センサを備えて出力電流を電圧値として検出し、比較回路18を動作させる出力電流検出回路23に置き換えても同様に動作する。なお、電流センサ24は、非接触で電流を検出しても良い。これにより、電流検出用抵抗器15により消費される電力が抑えられるため、ロスが少なくなる。
【0013】
図4は、図2記載の電流検出用抵抗器15及び信号発生回路16に代えて、電圧を直接検出する出力電圧検出回路25を使用した実施例を示す。ここで、図1及び図2の具体例は充電開始時を検出する方法として、出力電流検出回路3内部の電流検出用抵抗器15にて発生する電圧降下を利用していたが、定電圧制御回路2の出力電圧を直接モニタし、比較回路18を動作させる出力電圧検出回路25に置き換えても同様に動作する。直接電圧を検出するため、前記に比べ精度が向上すると共に、部品点数が減り有利となる。
【0014】
図5は、図1記載のスイッチ11aに代えて、半導体スイッチ26aを使用した過電圧保護回路を使用した実施例を示す。バッテリセル8aと過電圧保護回路10aを遮断/導通するスイッチ11aはリレー等の開閉装置で構成されているが、半導体26aに置き換えても同様に動作する。前記のような機械的開閉装置よりも、半導体スイッチを用いた方が、故障確率が減りより長時間の運用に耐えられる。
【0015】
図6に日陰時から日照時、更に日照時から日陰時に移行する際の定電圧制御回路2が出力する電圧及び電流の推移を示す。日陰時から日照時に移行した時に定電圧制御回路2は出力電圧27、出力電流28共にゼロから上昇する。出力電流検出回路3の場合、出力電流検出回路3は出力電流28が基準電流値30を越えた時にスイッチ駆動回路9a〜9cに動作信号を送信する。出力電圧検出回路25の場合、出力電圧検出回路25は出力電圧27が基準電圧値29を越えた時にスイッチ駆動回路9a〜9cに動作信号を送信する。次に、日照時から日陰時に移行した時に定電圧制御回路2は出力電圧27、出力電流28共にゼロまで下降する。出力電流検出回路3の場合、出力電流検出回路3は出力電流28が基準電流値30を下回った時にスイッチ駆動回路9a〜9cに停止信号を送信する。出力電圧検出回路25の場合、出力電圧検出回路25は出力電圧27が基準電圧値29を下回った時にスイッチ駆動回路9a〜9cに停止信号を送信する。
【0016】
また、本発明は図1において太陽電池1の出力を利用したバッテリ装置の一例を示したが、太陽電池1の代りに発電機や電源装置等に置き換えても同様に動作する電力システム用バッテリ装置を構成する。
【0017】
以上から、本発明は過電圧保護回路10a〜10cのスタンバイ状態時に消費していた電力が削減されたことにより、宇宙空間における軌道運用時には消費電力を補うためのトリクル充電が不要となり、運用条件の単純化を計ることができ、地上保管、輸送時にはバッテリ7電圧低下を防止し、バッテリ装置の管理を簡素化することができる。
【0018】
電力を蓄えるバッテリと、バッテリを充電する電源と、電源の電圧を検出し、電圧が基準電圧よりも高い場合に動作信号を出力する信号発生回路と、バッテリに並列に接続され、バッテリの過電圧を保護する過電圧保護回路と、を備え、過電圧保護回路に備えられる前記過電圧保護回路をオン/オフするスイッチは、信号発生回路からの動作信号により駆動するバッテリ装置により、宇宙空間における軌道運用時には消費した電力を補充するためのトリクル充電を不要とし、運用条件の単純化を図り、地上保管、輸送時にはバッテリ電圧低下を防止することでバッテリ装置の管理を簡素化することができる。
【0019】
また、前記電源電圧の検出を電流検出用抵抗で行うことで、簡易な構成とすることができる。
【0020】
電源電圧の検出を電流センサで行うことで、電流検出用抵抗器により消費される電力が抑えられるため、ロスが少なくなる。
【0021】
電源電圧を直接電圧として検出することで、高い精度で電圧を検出でき、部品点数が減り有利となる。
【0022】
スイッチがリレースイッチであることで、簡易な構成とすることができる。
【0023】
スイッチが半導体スイッチであることで、故障確率が減りより長時間の運用に耐えられる。
【0024】
電源が太陽電池であることで、宇宙空間における軌道運用時には消費した電力を補充するためのトリクル充電を不要とし、運用条件の単純化を図る事ができる。
【0025】
【発明の効果】
本発明は非充電時に過電圧保護回路がスタンバイ状態時に消費していた電力を削減することが可能となる。
【図面の簡単な説明】
【図1】 充電時の検出手段として太陽電池の出力電流を利用し、直列に接続したバッテリセルと各バッテリセルに並列に接続した過電圧保護回路間を遮断/導通させるスイッチ及びスイッチ駆動回路を有する過電圧保護回路を備えたバッテリ装置。
【図2】 充電時の検出手段とスイッチ駆動回路の詳細動作を示したバッテリ装置の具体例の一部。
【図3】 電流センサにより太陽電池の出力電流を検出するバッテリ装置の具体例の一部。
【図4】 定電圧制御回路の出力電圧を直接モニタすることによってスイッチ駆動回路を動作させるバッテリ装置の具体例の一部。
【図5】 スイッチを半導体スイッチとしたバッテリ装置の具体例の一部。
【図6】 日陰時から日照時、更に日照時から日陰時に移行する際に定電圧制御回路が出力する電圧及び電流の推移図の一例。
【符号の説明】
1 太陽電池
2 定電圧制御回路
3 出力電流検出回路
4 逆流防止ダイオード
5 負荷装置
6 バッテリ充放電制御器
7 バッテリ
8 バッテリセル
9 スイッチ駆動回路
10 過電圧保護回路
11 スイッチ
12 シャント素子
13 駆動回路
14 セル電圧検出回路
15 電流検出用抵抗器
16 信号発生回路
17 電圧差動増幅回路
18 比較回路
19 基準電圧発生回路
20 プルアップ電源
21 プルアップ抵抗
22 ドライブ信号発生素子
23 出力電流検出回路
24 電流センサ
25 出力電圧検出回路
26 半導体スイッチ
27 出力電圧
28 出力電流
29 基準電圧値
30 基準電流値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery device having a circuit that reduces power consumption by disconnecting an overvoltage protection circuit when the battery is not charged.
[0002]
[Prior art]
In the conventional overvoltage protection circuit for battery cells, the cell charging voltage of a lithium ion battery is one of the parameters of life, and if any of the cells in a multistage series is biased to a high charging voltage, the cell capacity will be degraded. An overvoltage protection circuit is connected to each cell for the purpose of avoiding this problem. A common charging current flows in each cell connected in series, and charging is managed with the same current-time product. Therefore, charging current is shunted to the overvoltage protection circuit for cells whose charging voltage rises quickly due to variations among cells. As a result, the upper limit of the charging voltage is limited (see, for example, Non-Patent Document 1).
[0003]
However, since the overvoltage protection circuit consumes its own power when it is not charged, trickle charging for supplementary charging needs to be added to the operating conditions during orbital operation in outer space, and complicated operating conditions are required. In addition, during storage and transportation on the ground, the battery is discharged due to power consumption by the overvoltage protection circuit, and the battery voltage decreases when left for a long time. At this time, depending on the type of the battery (for example, a lithium ion battery), the battery voltage falls below the minimum value of the specified voltage and is damaged. Therefore, it is required to manage and maintain the battery voltage within the specified voltage range.
[0004]
[Non-Patent Document 1]
Toshio Okamura and two others, “Development of Lithium-ion Battery System for Spacecraft-Report of Examination Results of Space Battery System Using Lithium-ion Battery-”, February 17, 2000, IEICE Technical Research Report Vol. 99 No. 624,625
[0005]
[Problems to be solved by the invention]
The present invention solves the above-described problems and relates to a battery device that includes a switch that cuts off between a battery cell and an overvoltage protection circuit except when charging a battery, thereby reducing power consumed during non-charging.
[0006]
[Means for Solving the Problems]
A battery device according to the present invention includes a plurality of battery cells connected in series, stores a battery, a power source that charges the battery, a signal generation circuit that detects a voltage of the power source and outputs an operation signal. A plurality of overvoltages connected in parallel for each of the battery cells, and detecting the overvoltage of each of the battery cells, bypassing charging of the battery cell that has detected the overvoltage by driving a shunt element, and protecting each of the battery cells A protection circuit, a plurality of switches connected in parallel for each of the battery cells, and including a shunt element and a plurality of switches for cutting off or conducting a connection path between the battery cells, and from the signal generation circuit Based on the operation signal, a plurality of switches for individually driving the respective switches for each of the battery cells. Comprising a driving circuit, wherein the respective switch, based on a signal generated from the respective switch driving circuit based on the operation signal from the signal generating circuit, when the voltage of the power source is higher than the reference voltage The connection path between the overvoltage protection circuit including the shunt element and the battery cell is in a conductive state, and the connection path between the overvoltage protection circuit including the shunt element and the battery cell is cut off when the voltage of the power supply is lower than a reference voltage. It is what.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Specific examples of the present invention will be described in detail below. FIG. 1 is a block diagram showing a lithium ion battery device for a spacecraft power system according to the present invention. Of course, it may be used other than the spacecraft power system. This battery device uses the output current of a solar cell as means for determining the switch operating state, and is a spacecraft provided with a switch and a switch driving circuit for each battery cell that cuts off / conducts between the battery cell and the overvoltage protection circuit. It is a part of the lithium ion battery device for electric power systems. The space system power system includes a solar cell 1 that generates power during sunshine, a constant voltage control circuit 2 that outputs a current by controlling the power generated by the solar cell 1 to a constant voltage, and an output current from the constant voltage control circuit 2 Other devices for operating and operating satellites and spacecraft that consume power supplied from the output current detection circuit 3 for monitoring and detection, the solar cell 1, etc. (hereinafter collectively referred to as the load device 5), loads in the shade In preparation for supplying power to the device 5, a battery 7 that stores power during sunshine, a backflow prevention diode 4 that prevents current from flowing back from the battery 7 to the constant voltage control circuit 2 during shade, and a battery 7 that is charged during sunshine are charged. A battery charge / discharge controller 6 that discharges the power stored in the battery 7 to the load device 5 in the shade, battery cells 8a to 8c constituting the battery 7, and an overvoltage protection circuit 1 connected in parallel. Switch driving for individually driving the switches 11a to 11c and the switches 11a to 11c using switching devices such as relays as devices for shutting off / conducting the overvoltage protection circuits 10a to 10c and the battery cells 8a to 8c The circuit 9a-9c is comprised.
The output current detection circuit 3 generates a current detection resistor 15 that detects an output current from the solar cell 1 and an operation / stop signal that is transmitted to the switch drive circuits 9a to 9c using the voltage generated in the resistor 15. The signal generation circuit 16 is configured. The overvoltage protection circuits 10a to 10c include switches 11a to 11c for cutting off / conducting connection between the battery cells 8a to 8c and the overvoltage protection circuits 10a to 10c, battery cells 8a to 8c, shunt elements 12a to 12c for bypassing each charging current, The circuit is composed of drive circuits 13a to 13c that control the operation of the shunt elements 12a to 12c and cell voltage detection circuits 14a to 14c that monitor and detect the voltages of the battery cells 8a to 8c.
[0008]
The operation of the lithium ion battery device for a spacecraft power system according to the present invention will be described. During sunlight when the solar cell 1 is irradiated with solar light, the solar cell 1 starts power generation as a constant current source, converts the generated power of the solar cell 1 and outputs a constant voltage to the constant voltage control circuit 2. When the output current rises, power is supplied to the battery charge / discharge controller 6 and the load device 5 that charge-control the battery 7 at a constant current / constant voltage. Further, when the output current of the constant voltage control circuit 2 rises from the shade time to the sunshine time, the output current detection circuit 3 converts the voltage into a voltage by the current detection resistor 15 provided in the output current detection circuit 3. The detected voltage value is output to the signal generation circuit 16. The signal generation circuit 16 constantly monitors the voltage value from the resistor 15 and constantly compares it with a reference voltage set by a Zener diode or the like. When the voltage from the resistor 15 reaches the reference voltage value, the signal generation circuit 16 Thus, an operation signal (for example, a high level signal) is generated and transmitted to the switch drive circuits 9a to 9c. The switch drive circuits 9a to 9c that have received the operation signal transmit the drive voltage / current necessary for turning on the switches 11a to 11c to the switches 11a to 11c as drive signals, so that the switches 11a to 11c become conductive. The overvoltage protection circuits 10a to 10c are in a state where the voltage of the battery cell 8 can be constantly monitored because the switches 11a to 11c are in a conductive state, and are in a standby state enabling overvoltage protection during charging. If the switches 11a to 11c can be turned on by a signal from the signal generation circuit 16, the switch drive circuits 9a to 9c are unnecessary.
[0009]
The operation of the overvoltage protection circuits 10a to 10c will be described on behalf of the overvoltage protection circuit 10a. In the standby state of the overvoltage protection circuit 10a, when the battery cell 8a is further charged and the voltage of the battery cell 8a rises and reaches the overvoltage level determined and defined by the specifications and operating conditions of the battery cell 8a, the battery cell 8a voltage is monitored. The cell voltage detection circuit 14a (for example, a circuit configured by a semiconductor element such as an operational amplifier or a transistor) is connected to a driving circuit 13a (for example, a circuit configured by a semiconductor element such as a transistor) and a driving circuit operation signal (for example, an analog signal). The drive circuit 13a that has received the drive circuit operation signal transmits a drive signal (for example, an analog signal) to the shunt element 12a (for example, a semiconductor element such as a transistor), and gradually turns on the shunt element 12a to turn on the battery cell. The charging current of 8a is gradually bypassed.
[0010]
On the other hand, when shifting from sunshine to shade, the solar cell 1 is not irradiated with sunlight and does not generate power, so the generated power of the solar cell 1 decreases and the output current of the constant voltage control circuit 2 that outputs a constant voltage also decreases to zero. The power supply from the solar cell 1 to the load device 5 is stopped. However, the power supply to the load device 5 is supplemented by supplying the power charged in the battery 7 to the load device 5 via the battery charge / discharge controller 6. At this time, the backflow prevention diode 4 is provided to prevent the current from the battery 7 from flowing back to the constant voltage control circuit 2 side. Further, since the output current of the constant voltage control circuit 2 becomes zero, the voltage value generated in the current detection resistor 15 provided in the output current detection circuit 3 is also reduced, and the reference voltage value set by a zener diode or the like is set. In the following, a stop signal (for example, a low level signal) is generated from the signal generation circuit 16, the switches 11a to 11c are cut off via the switch drive circuits 9a to 9c, and the overvoltage protection circuits 10a to 10c are connected to the battery cell 8a. Separated from ~ 8c. From this, when the switches 11a to 11c are cut off, the power to the overvoltage protection circuits 10a to 10c that has been always borne by the battery cells 8a to 8c is reduced.
[0011]
FIG. 2 shows details of the operation of the switch drive circuit 9a on behalf of the output current detection circuit 3 and the switch drive circuits 9a to 9c. As an example of the configuration of FIG. 2, the signal generation circuit 16 includes a voltage differential amplifier circuit 17 that amplifies an input low voltage, a comparison circuit 18 that generates an operation signal by comparing the output voltage of the voltage differential amplifier circuit 17 and a reference voltage, A reference voltage generation circuit 19 such as a Zener diode for generating a reference voltage, a pull-up power source 20 for generating an operation signal, and a pull-up resistor 21 are included. The switch drive circuit 9a transmits a drive signal to the switch 11a by an operation signal. Drive signal generating element 22a and pull-up power supply 20a. When the output current of the constant voltage control circuit 2 rises from the shade time to the sunshine time, the current detection resistor 15 that converts the output current into a voltage increases the output voltage from zero and outputs it to the signal generation circuit 16. The resistor 15 has a low resistance value so that power supply to the load device 5 and the battery 7 is not hindered, and thus the output voltage is also low. Here, the output voltage is amplified by the voltage differential amplifier circuit 17 in the signal generation circuit 16, and the voltage is compared with the reference voltage generated by the reference voltage generation circuit 19 by the comparison circuit 18. When the output voltage side is large, the comparison circuit 18 outputs an operation signal (in the example, a high level signal). The switch drive circuit 9a to which the operation signal is input outputs a drive signal (in the example, a high level signal) when the internal drive signal generating element 22a is turned on, and the switch 11a is turned on, thereby overvoltage protection circuit 10a. Set to standby. On the other hand, when shifting from daylight to shade, when the output current of the constant voltage control circuit 2 drops to zero, the output voltage of the resistor 15 becomes zero, that is, the output voltage of the voltage differential amplifier circuit 17 is also zero. It becomes. The comparison circuit 18 outputs a stop signal (in this example, a low level signal) when the voltage is smaller than the reference voltage generated by the reference voltage generation circuit 19. The switch drive circuit 9a receiving the stop signal outputs a drive stop signal (in this example, a low level signal) by turning off the internal drive signal generating element 22a, and turns off the switch 11a to protect against overvoltage. The circuit 10a is separated from the battery cell 8a.
[0012]
FIG. 3 shows an embodiment in which a current sensor 24 is provided instead of the current detection resistor 15 shown in FIG. 2 and an output current detection circuit 23 for detecting the output of the current sensor 24 is used in place of the signal generation circuit 16. . Here, the specific examples of FIGS. 1 and 2 use the voltage drop generated in the current detection resistor 15 in the output current detection circuit 3 as a method of detecting the start of charging. Even if the output current is detected as a voltage value and replaced with the output current detection circuit 23 that operates the comparison circuit 18, the same operation is performed. The current sensor 24 may detect the current in a non-contact manner. As a result, the power consumed by the current detection resistor 15 is suppressed, and the loss is reduced.
[0013]
FIG. 4 shows an embodiment in which an output voltage detection circuit 25 that directly detects a voltage is used in place of the current detection resistor 15 and the signal generation circuit 16 shown in FIG. Here, the specific examples in FIGS. 1 and 2 use the voltage drop generated in the current detection resistor 15 in the output current detection circuit 3 as a method for detecting the start of charging. Even if the output voltage of the circuit 2 is directly monitored and replaced with the output voltage detection circuit 25 for operating the comparison circuit 18, the same operation is performed. Since the voltage is directly detected, the accuracy is improved as compared with the above, and the number of parts is reduced, which is advantageous.
[0014]
FIG. 5 shows an embodiment in which an overvoltage protection circuit using a semiconductor switch 26a is used instead of the switch 11a shown in FIG. The switch 11a that cuts off / conducts the battery cell 8a and the overvoltage protection circuit 10a is configured by a switching device such as a relay, but operates in the same manner even if it is replaced with the semiconductor 26a. The use of a semiconductor switch reduces the failure probability and can withstand a longer operation than the mechanical switchgear as described above.
[0015]
FIG. 6 shows changes in voltage and current output by the constant voltage control circuit 2 when shifting from shade to sunlight, and further from sunlight to shade. The constant voltage control circuit 2 rises from zero for both the output voltage 27 and the output current 28 when shifting from shade to sunshine. In the case of the output current detection circuit 3, the output current detection circuit 3 transmits an operation signal to the switch drive circuits 9a to 9c when the output current 28 exceeds the reference current value 30. In the case of the output voltage detection circuit 25, the output voltage detection circuit 25 transmits an operation signal to the switch drive circuits 9a to 9c when the output voltage 27 exceeds the reference voltage value 29. Next, when the time shifts from daylight to shade, the constant voltage control circuit 2 decreases both the output voltage 27 and the output current 28 to zero. In the case of the output current detection circuit 3, the output current detection circuit 3 transmits a stop signal to the switch drive circuits 9a to 9c when the output current 28 falls below the reference current value 30. In the case of the output voltage detection circuit 25, the output voltage detection circuit 25 transmits a stop signal to the switch drive circuits 9a to 9c when the output voltage 27 falls below the reference voltage value 29.
[0016]
Further, the present invention shows an example of a battery device using the output of the solar cell 1 in FIG. 1, but the power system battery device that operates in the same manner even if it is replaced with a generator or a power supply device instead of the solar cell 1 Configure.
[0017]
As described above, according to the present invention, since the power consumed during the standby state of the overvoltage protection circuits 10a to 10c is reduced, trickle charging for supplementing the power consumption becomes unnecessary during orbital operation in outer space, and the operating conditions are simplified. The battery 7 can be prevented from being lowered during storage and transportation, and the management of the battery device can be simplified.
[0018]
A battery for storing power, a power supply for charging the battery, a signal generation circuit for detecting the voltage of the power supply and outputting an operation signal when the voltage is higher than the reference voltage, and a battery connected in parallel to detect the overvoltage of the battery A switch for turning on / off the overvoltage protection circuit provided in the overvoltage protection circuit is consumed during orbital operation in outer space by a battery device driven by an operation signal from the signal generation circuit. Trickle charging for replenishing electric power is unnecessary, simplification of operating conditions, and battery voltage management can be simplified by preventing battery voltage drop during ground storage and transportation.
[0019]
Moreover, a simple configuration can be achieved by detecting the power supply voltage with a current detection resistor.
[0020]
By detecting the power supply voltage with the current sensor, the power consumed by the current detection resistor can be suppressed, so that the loss is reduced.
[0021]
By directly detecting the power supply voltage as a voltage, the voltage can be detected with high accuracy, and the number of parts is reduced, which is advantageous.
[0022]
Since the switch is a relay switch, a simple configuration can be achieved.
[0023]
Since the switch is a semiconductor switch, the probability of failure is reduced and it can withstand long-term operation.
[0024]
Since the power source is a solar cell, trickle charging for replenishing consumed power during orbital operation in outer space is unnecessary, and the operating conditions can be simplified.
[0025]
【The invention's effect】
According to the present invention, it is possible to reduce the power consumed by the overvoltage protection circuit in the standby state during non-charging.
[Brief description of the drawings]
FIG. 1 includes a switch and a switch driving circuit that use an output current of a solar cell as a detection means during charging, and that cuts off / conducts between a battery cell connected in series and an overvoltage protection circuit connected in parallel to each battery cell. A battery device provided with an overvoltage protection circuit.
FIG. 2 is a part of a specific example of a battery device showing detailed operations of a detection means and a switch drive circuit during charging.
FIG. 3 is a part of a specific example of a battery device that detects an output current of a solar cell by a current sensor.
FIG. 4 is a part of a specific example of a battery device that operates a switch drive circuit by directly monitoring an output voltage of a constant voltage control circuit.
FIG. 5 is a part of a specific example of a battery device in which a switch is a semiconductor switch.
FIG. 6 is an example of a transition diagram of the voltage and current output by the constant voltage control circuit when shifting from shade to sunlight and from sunlight to shade.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Constant voltage control circuit 3 Output current detection circuit 4 Backflow prevention diode 5 Load apparatus 6 Battery charge / discharge controller 7 Battery 8 Battery cell 9 Switch drive circuit 10 Overvoltage protection circuit 11 Switch 12 Shunt element 13 Drive circuit 14 Cell voltage Detection circuit 15 Current detection resistor 16 Signal generation circuit 17 Voltage differential amplification circuit 18 Comparison circuit 19 Reference voltage generation circuit 20 Pull-up power supply 21 Pull-up resistor 22 Drive signal generation element 23 Output current detection circuit 24 Current sensor 25 Output voltage Detection circuit 26 Semiconductor switch 27 Output voltage 28 Output current 29 Reference voltage value 30 Reference current value

Claims (7)

直列接続された複数のバッテリセルから成り、電力を蓄えるバッテリと、
前記バッテリを充電する電源と、
前記電源の電圧を検出し、動作信号を出力する信号発生回路と、
前記バッテリセル毎に並列に接続され、前記夫々のバッテリセルの過電圧を検出するとシャント素子の駆動により当該過電圧を検出したバッテリセルの充電をバイパスさせて、前記バッテリセルを夫々保護する複数の過電圧保護回路と、
前記バッテリセル毎に並列に接続され、前記シャント素子を含む過電圧保護回路と前記バッテリセルの接続経路を、切り離して遮断するかもしくは導通させる複数のスイッチと、
前記信号発生回路からの動作信号に基づいて、前記バッテリセル毎の各スイッチをそれぞれ個別に駆動する複数のスイッチ駆動回路と、
を備え、
前記それぞれのスイッチは、前記信号発生回路からの動作信号に基づいて前記それぞれのスイッチ駆動回路から発生される信号に基づき、前記電源の電圧が基準電圧よりも高い場合に前記シャント素子を含む過電圧保護回路と前記バッテリセルの接続経路を導通状態とし、前記電源の電圧が基準電圧よりも低い場合に前記シャント素子を含む過電圧保護回路と前記バッテリセルの接続経路を遮断状態とするバッテリ装置。
A battery composed of a plurality of battery cells connected in series and storing electric power;
A power source for charging the battery;
A signal generation circuit for detecting a voltage of the power supply and outputting an operation signal;
A plurality of overvoltage protections that are connected in parallel for each of the battery cells, and when the overvoltage of each of the battery cells is detected, charging of the battery cell that has detected the overvoltage is bypassed by driving a shunt element, thereby protecting the battery cells. Circuit,
A plurality of switches that are connected in parallel for each battery cell and that disconnect or cut off or connect the connection path between the overvoltage protection circuit including the shunt element and the battery cell;
A plurality of switch driving circuits for individually driving each switch for each of the battery cells based on an operation signal from the signal generating circuit;
With
Each of the switches includes the shunt element when the voltage of the power source is higher than a reference voltage based on a signal generated from the switch driving circuit based on an operation signal from the signal generation circuit. A battery device in which a connection path between a circuit and the battery cell is in a conductive state, and a connection path between the overvoltage protection circuit including the shunt element and the battery cell is cut off when a voltage of the power source is lower than a reference voltage.
前記電源電圧の検出を電流検出用抵抗で行う請求項1に記載のバッテリ装置。  The battery device according to claim 1, wherein the power supply voltage is detected by a current detection resistor. 前記電源電圧の検出を電流センサで行う請求項1に記載のバッテリ装置。  The battery device according to claim 1, wherein the power supply voltage is detected by a current sensor. 前記電源電圧を直接電圧として検出する請求項1に記載のバッテリ装置。  The battery device according to claim 1, wherein the power supply voltage is directly detected as a voltage. 前記スイッチがリレースイッチである請求項1から請求項4の何れかに記載のバッテリ装置。The battery device according to any one of claims 1 to 4 , wherein the switch is a relay switch. 前記スイッチが半導体スイッチである請求項1から請求項4の何れかに記載のバッテリ装置。The battery device according to any one of claims 1 to 4 wherein the switch is a semiconductor switch. 前記電源が太陽電池である請求項1から請求項6の何れかに記載のバッテリ装置。The battery device according to any one of claims 1 to 6 , wherein the power source is a solar battery.
JP2003176125A 2003-06-20 2003-06-20 Battery device Expired - Fee Related JP4291629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176125A JP4291629B2 (en) 2003-06-20 2003-06-20 Battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176125A JP4291629B2 (en) 2003-06-20 2003-06-20 Battery device

Publications (2)

Publication Number Publication Date
JP2005012958A JP2005012958A (en) 2005-01-13
JP4291629B2 true JP4291629B2 (en) 2009-07-08

Family

ID=34099089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176125A Expired - Fee Related JP4291629B2 (en) 2003-06-20 2003-06-20 Battery device

Country Status (1)

Country Link
JP (1) JP4291629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112182A (en) * 2014-06-30 2014-10-22 国家电网公司 Method for charging electric bus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211762A (en) * 2005-01-26 2006-08-10 Sharp Corp Regulator and electronic apparatus with same
JP2008148369A (en) * 2006-12-06 2008-06-26 Nec Tokin Corp Secondary battery pack with simple overcharge protective function
JP2008178202A (en) * 2007-01-17 2008-07-31 Omron Corp Capacitor charge control circuit
US8159191B2 (en) * 2007-04-17 2012-04-17 Tsun-Yu Chang Advanced rechargeable battery system
JP5428589B2 (en) * 2009-07-03 2014-02-26 株式会社明電舎 Lithium-ion capacitor cell charge / discharge device
CN101976824A (en) * 2010-11-08 2011-02-16 创扬科技股份有限公司 Automatic battery safety protection system
JP5712357B2 (en) * 2010-12-13 2015-05-07 パナソニックIpマネジメント株式会社 Battery pack
JP5708021B2 (en) * 2011-02-24 2015-04-30 セイコーエプソン株式会社 Secondary battery protection circuit, device using secondary battery
US10538344B2 (en) * 2017-09-18 2020-01-21 Solaero Technologies Corp. Power management system for space photovoltaic arrays
JP7351626B2 (en) * 2019-03-15 2023-09-27 パナソニックエナジー株式会社 power supply
WO2023225917A1 (en) * 2022-05-25 2023-11-30 宁德时代新能源科技股份有限公司 Battery system and control method therefor, and electric apparatus and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112182A (en) * 2014-06-30 2014-10-22 国家电网公司 Method for charging electric bus

Also Published As

Publication number Publication date
JP2005012958A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP5449840B2 (en) Charge / discharge control circuit and power supply device
US5786682A (en) Battery charging circuit including a current limiter which compares a reference current to a charging current to ensure operation of a load
KR101687212B1 (en) System for preventing deep battery discharge
KR101906886B1 (en) Energy storage device
US6646418B1 (en) Method and apparatus for fuel cell protection
US6441583B1 (en) Method, arrangement and interface system to enable electrical batteries of different kinds to be charged by means of the same charger device
JP4291629B2 (en) Battery device
US10199844B2 (en) Power-supplying device
US20140354232A1 (en) Accumulator battery protected against internal short circuits
JP5334531B2 (en) Pack battery
US20160056646A1 (en) Overcharge protection apparatus with minimized power consumption
US11979111B2 (en) DC-DC converter for solar-related energy storage system, and control method thereof
JP2008271690A (en) Secondary battery pack
JP2006223050A (en) Power supply system
JP3872057B2 (en) Battery device overvoltage protection circuit
JP2017225345A (en) Power supply device
JP3871221B1 (en) Capacitor charge monitoring and control device
CN113410894A (en) Battery protection circuit and method
KR101436019B1 (en) Method for controlling photovoltaic power generating system with dual inverters
CN115066837A (en) Method and apparatus for ultra-portable battery system protection and energy conservation
JP4811181B2 (en) Secondary battery protection device
US11936337B2 (en) DC-DC converter for solar-related energy storage system, and control method thereof
CN111095719A (en) Accumulator device
JP2009044923A (en) Power supply system
JP3894377B2 (en) BATTERY PACK AND BATTERY PACK CONTROL METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070514

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees