JP4140169B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP4140169B2
JP4140169B2 JP2000124565A JP2000124565A JP4140169B2 JP 4140169 B2 JP4140169 B2 JP 4140169B2 JP 2000124565 A JP2000124565 A JP 2000124565A JP 2000124565 A JP2000124565 A JP 2000124565A JP 4140169 B2 JP4140169 B2 JP 4140169B2
Authority
JP
Japan
Prior art keywords
drive signal
current
synchronous rectification
rectification
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000124565A
Other languages
Japanese (ja)
Other versions
JP2001309580A (en
Inventor
元治 武藤
秀明 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000124565A priority Critical patent/JP4140169B2/en
Publication of JP2001309580A publication Critical patent/JP2001309580A/en
Application granted granted Critical
Publication of JP4140169B2 publication Critical patent/JP4140169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非接触電力伝達装置に関するものである。
【0002】
【従来の技術】
非接触電力技術を応用して実用化されている例は、シェーバーや電動歯ブラシ等の充電用途であり、数W程度の低出力に限られていた。そして、2次側回路の整流方式としては、ダイオード整流方式が用いられてきた。
【0003】
【発明が解決しようとする課題】
分離着脱式トランスによる磁気誘導を利用した非接触・無接点の電力伝送技術は、その金属接点レスという特徴により感電の根本的対策を施せることから、水まわりの電源としての用途が注目されつつある。安全で安心できる電源として使用するために、出力電圧が低電圧であるとともに機器の効率も低下せず、車用において既に実績のある12V程度の電源でなおかつ、いろいろな機器が使用できるよう50W以上の高出力化が必要となった。しかし、低電圧で高出力化を行うに従い出力電流も大きくなり、従来非接触給電装置の2次側回路で使用されているダイオード整流方式では整流損失が大きくなりダイオード等の放熱板のサイズも大きくなり実用的なサイズに収められないという問題が発生した。
【0004】
そこで従来から出力電圧が5V以下のスイッチング電源の整流部の損失低減に使用されている同期整流技術を非接触電力伝達装置に適用することを検討した。同期整流技術とは、同期整流用スイッチング素子としてFETのスイッチング素子とFETの寄生ダイオードを使い、整流するサイクルに応じてFETのスイッチング素子をスイッチングさせてFETのスイッチング素子を介して整流電流を流すことで、FETの低いオン抵抗を利用して整流部の損失を低減させる技術である。勿論、寄生ダイオードを内蔵しているFETの代わりに、スイッチング素子とスイッチング素子に並列に逆方向のダイオードを接続しても同じ動作をする。
【0005】
非接触電力伝達装置は、直流電源を供給する電源部と、直流電源を高周波電源に変換するインバータ部と、インバータ部から高周波電力を供給される1次コイルと1次コイルから受電した電力を出力する2次コイルとが分離可能な分離着脱式トランスの1次コイルとで構成される1次側回路と、2次コイルと、2次コイルに並列に接続される負荷整合用コンデンサ及び2次コイルの出力電圧を整流する整流部とで構成される2次側回路とからなっている。この時2次側に取り出せる有効電力を最大にして回路全体の効率を上げ、分離着脱式トランスの小型化を図るために、分離着脱式トランスの1次コイルと2次コイルとの間の漏れ磁束による漏れインダクタンスと2次コイルに並列に接続する負荷整合用コンデンサとにより回路全体の力率を改善している。
【0006】
ところが、前記負荷整合用コンデンサによる負荷整合を行うと、前記2次コイルの出力波形はスイッチング電源の2次コイル出力波形とは異なり、正弦波状あるいはさらに歪んだ波形となる、そのために、巻線間電圧あるいは補助巻線を利用した従来の同期整流用スイッチング素子の駆動信号生成方式では同期整流用スイッチング素子のオン時間が短いため整流効率が悪く、ダイオード整流方式より効率を上げることができなかった。
【0007】
本発明は、上記事由に鑑みてなされたものであり、その目的は、2次側回路の整流効率を上げた非接触電力伝達装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明は、直流電源を供給する電源部と、前記直流電源を高周波電源に変換するインバータ部と、前記インバータ部から高周波電力を供給される1次コイルと1次コイルから受電した電力を出力する2次コイルとが分離可能なトランスの前記1次コイルとで構成される1次側回路と、前記2次コイルと、前記2次コイルに並列に接続される負荷整合用コンデンサ及び前記2次コイルの出力電圧を整流する整流部とで構成される2次側回路とを有する非接触電力伝達装置において、前記トランスの2次コイルはセンタータップを備え、スイッチング素子及び前記スイッチング素子に並列に逆接続されたダイオードとからなる第1,第2の同期整流要素を具備して、前記トランスの2次コイルのセンタータップではない両出力端に直列に且つ互いに逆方向に接続する前記第1,第2の同期整流要素の前記トランスの2次コイルに接続していない各他端同士を接続して全波整流部を構成した前記整流部と、前記第1,第2の同期整流要素に流れる電流を検出する電流検知部と、先に導通し整流を終了しつつある前記第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき前記第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻に、前記第1の同期整流要素のスイッチング素子をオフにする駆動信号を出力する第1の駆動信号生成部と、前記第2の同期整流要素のスイッチング素子をオンにする駆動信号を出力する第2の駆動信号生成部とを有することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができる。また、全波整流することで半波整流よりも損失が少なく効率の良い整流を行える。さらに、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができる。
【0009】
請求項2の発明は、請求項1の発明において、一つの前記電流検知部の検出信号より前記第1の同期整流要素のスイッチング素子の駆動信号を生成し、前記第2の同期整流要素のスイッチング素子の駆動信号は前記第1の同期整流要素のスイッチング素子の駆動信号の反転信号とすることを特徴とし、駆動信号生成部の簡素化を図ることができ、低コスト化、小型化ができる。
【0010】
請求項3の発明は、請求項1または2の発明において、前記電流検知部は、前記同期整流要素に直列に接続した電流検出用抵抗からなり、前記電流検出用抵抗の両端に発生する電圧に基づいて前記駆動信号生成部にて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、簡単な回路構成で電流検知部を構成できる。
【0011】
請求項4の発明は、請求項3の発明において、前記電流検出用抵抗の抵抗値は、前記電流検出用抵抗に流れる電流に対して発生する前記電流検出用抵抗の両端の電圧が前記駆動信号生成部にて前記同期整流要素のスイッチング素子を駆動できる電圧にまで増幅できる最小の電圧になる抵抗値であることを特徴とし、電流検知部での損失を減らすことができる。
【0012】
請求項5の発明は、請求項1または2の発明において、前記電流検知部は、前記同期整流要素に直列に接続した1次コイル及び2次コイルとからなるカレントトランスと、前記カレントトランスの2次コイルの両端に並列に接続した抵抗と、前記抵抗の両端間の電圧を整流するために前記カレントトランスの2次コイルに直列に接続した整流ダイオードとから構成され、前記整流ダイオードから出力される前記電流検知部の出力に基づいて駆動信号生成部にて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、2次側回路の整流損失を減らすことができる。
【0013】
請求項6の発明は、請求項1乃至5いづれかの発明において、前記駆動信号生成部は、前記電流検知部の出力と基準電圧とを比較し、前記比較結果に基づいて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができる。
【0014】
請求項7の発明は、請求項1乃至6いづれかの発明において、前記第1及び第2の駆動信号生成部は、先に導通し整流を終了しつつある第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻における前記電流検知部の出力電圧と同じ電圧である基準電圧と、前記電流検知部の検出信号とを比較し、前記比較結果に基づいて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができる。
【0015】
請求項8の発明は、請求項1乃至6いづれかにおいて、前記第2の駆動信号生成部は、先に導通し整流を終了しつつある第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻に、前記第2の同期整流要素のスイッチング素子をオンにできる電圧にまで増幅した駆動信号を出力することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができる。
【0016】
請求項9の発明は、請求項1乃至8いづれか記載の発明において、前記インバータ部は、スイッチング素子を有するハーフブリッジのインバータからなり、前記スイッチング素子はゼロボルトスイッチングを行うことを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0018】
参考例1
図1は参考例1の回路構成を示す。電源部Aとインバータ部BとトランスT1の1次コイルL1とで1次側回路G1を構成し、トランスT1の2次コイルL2と負荷整合用コンデンサC1と同期整流要素を構成するFETQ1と電流検知部H1と駆動信号生成部E1と平滑部Fとで2次回路G2を構成する。
【0019】
電源部Aは直流電力をインバータ部Bに供給し、インバータ部Bで高周波電力に変換され、前記高周波電力はトランスT1の1次コイルL1に供給される。トランスT1の2次コイルL2は、電磁結合により1次コイルL1より電力を受電し、2次コイルL2両端の電圧はFETQ1で半波整流され、半波整流された電圧は平滑部Fで平滑されて直流電圧を出力する。
【0020】
トランスT1の1次コイルL1と2次コイルL2とはお互いに絶縁物により所定のギャップ長だけ離間し、分離脱着できる構成になっている。
【0021】
2次コイルL2に並列に接続されるコンデンサC1は負荷整合用であり、2次側回路G2で取り出せる有効電力を最大にして1次側回路G1から2次側回路G2への電力伝達の効率を上げている。
【0022】
次に本参考例の同期整流動作について説明する。
【0023】
FETQ1は、FET素子P1とFET素子P1に並列に逆方向に接続された寄生ダイオードD1とからなっている。FETQ1に直列に接続された電流検知部H1はFETQ1に流れる電流を検出し、前記検出信号を駆動信号生成部E1に出力する。駆動信号生成部E1は、電流検知部H1からの検出信号が所定のしきい値以上であればFET素子P1をオンにする駆動信号を出力し、電流検知部H1からの信号が所定のしきい値以下であればFET素子P1をオフにする駆動信号を出力する。
【0024】
電磁誘導によって1次コイルL1から2次コイルL2に誘導された起電力の極性が、FETQ1の寄生ダイオードD1の順方向と合致した時に寄生ダイオードD1には順方向電流が流れ、前記順方向電流を電流検知部H1で検出し、駆動信号生成部E1は電流検知部H1からの検出信号が前記しきい値を超えるとFET素子P1にオン信号を出力してFET素子P1はオンする。
【0025】
FET素子P1がオンすると当初寄生ダイオードD1を流れていた電流は寄生ダイオードD1に比べてFET素子P1のほうが抵抗が小さいので、FET素子P1のオン抵抗を介してFETQ1のソースからドレイン方向に流れる。この時、FETQ1に整流電流が流れるサイクル中にFET素子のオン時間をできるだけ長くしたほうが、FETQ1での損失を小さくでき、整流損失を減らすことができる。
【0026】
電磁誘導によって1次コイルL1から2次コイルL2に誘導される起電力が変化して2次コイルL2に誘導される起電力が小さくなると電流検知部H1から出力される検出信号も小さくなり、駆動信号生成部E1は電流検知部H1からの検出信号が前記しきい値より下がるとFET素子P1にオフ信号を出力してFET素子P1はオフする。
【0027】
さらに、2次コイルL2に誘導される起電力の極性が反転するとFET素子P1の寄生ダイオードD1には逆方向の電圧がかかるため、再び2次コイルL2に誘導された起電力の極性が反転するまでは寄生ダイオードD1には電流は流れず、平滑部Fの入力は半波整流波形となる。半波整流出力は平滑部Fで平滑される。
【0028】
図2は、本参考例のFETQ1に流れる電流波形S1を示し、前記電流波形S1はなだらかに立ち上がり歪んだ波形となる。
【0029】
この同期整流時の損失は、前記電流波形S1がFET素子P1のオンしきい値Kを超えてFET素子P1がオフからオンになる時間をt1、前記電流波形S1がFET素子P1のオンしきい値Kより下がりFET素子P1がオンからオフになる時間をt2、前記電流波形S1が0になる時間をt3、前記同期整流時のFET素子P1のオン抵抗をRon、FETQ1を流れる電流をI、寄生ダイオードD1の順方向電圧をVfとすると、一周期での総損失Wは、下記数1のように表される。
【0030】
【数1】

Figure 0004140169
【0031】
このように、FETQ1に流れる電流を検出し、前記検出信号に同期した信号でFET素子P1を駆動すれば、FETQ1の寄生ダイオードD1に電流が流れる時間を短くすることができ、FETQ1での損失を低減できる。その結果、放熱板のサイズを小さくできるため、2次側回路G2を小型化できる。
【0032】
参考例2
図3は参考例2の回路構成を示す。電源部A、インバータ部B、トランスT1の1次コイルL1からなる1次側回路G1の構成、動作は参考例1と同様なので省略する。
【0033】
トランスT1の2次コイルL2は出力端子が3つあるセンタータップ方式となっており、2次コイルL2両端の端子1及び3とセンタータップ端子2の3つの端子を有し、2次コイルL2の端子1−端子3間に並列に負荷整合用のコンデンサC1を接続する。2次コイルL2の端子1に直列に電流検知部H1を介して同期整流要素を構成するFETQ1のドレインを接続し、2次コイルL2の端子3に直列に電流検知部H3を介して同期整流要素を構成するFETQ2のドレインを接続する。FETQ1、Q2の各ソースは互いに接続し、平滑コンデンサC8の負極側に接続し、2次コイルL2の端子3は、チョークコイルL3を介して平滑コンデンサC8の正極側に接続する。
【0034】
次に、本参考例の動作について説明する。FETQ1は、FET素子P1とFET素子P1に並列に逆方向の接続された寄生ダイオードD1とからなっている。FETQ1に直列に接続された電流検知部H1はFETQ1に流れる電流を検出し、前記検出信号を駆動信号生成部E1に出力する。駆動信号生成部E1は、電流検知部H1からの検出信号が所定のしきい値以上であればFET素子P1をオンにする駆動信号を出力し、電流検知部H1からの信号が所定のしきい値以下であればFET素子P1をオフにする駆動信号を出力する。
【0035】
同様にFETQ2は、FET素子P2とFET素子P2に並列に逆方向の接続れた寄生ダイオードD2とからなっている。FETQ2に直列に接続された電流検知部H2はFETQ2に流れる電流を検出し、前記検出信号を駆動信号生成部E2に出力する。駆動信号生成部E2は、電流検知部H2からの検出信号が所定のしきい値以上であればFET素子P2をオンにする駆動信号を出力し、電流検知部H2からの信号が所定のしきい値以下であればFET素子P2をオフにする駆動信号を出力する。
【0036】
電磁誘導によって1次コイルL1から2次コイルL2の端子2−1間に誘導される起電力の極性が、FETQ1の寄生ダイオードD1の順方向と合致した時に寄生ダイオードD1に順方向電流が流れ、前記順方向電流を電流検知部H1にて検出し、駆動信号生成部E1は電流検知部H1の検出信号が前記しきい値を超えるとFET素子P1にオン信号を出力してFET素子P1はオンする。
FET素子P1がオンすると当初寄生ダイオードD1を流れていた電流は寄生ダイオードD1に比べてFET素子P1のほうが抵抗が小さいので、FET素子P1のオン抵抗を介してFETQ1のソースからドレイン方向に流れる。この時、参考例1同様、FETQ1に整流電流が流れるサイクル中にFET素子のオン時間をできるだけ長くしたほうが、FETQ1での損失を小さくでき、整流損失を減らすことができる。
【0037】
電磁誘導によって1次コイルL1から2次コイルL2に誘導される起電力が変化して2次コイルL2に誘導される起電力が小さくなると電流検知部H1から出力される検出信号も小さくなり、駆動信号生成部E1は電流検知部H1からの検出信号が前記しきい値より下がるとFET素子P1にオフ信号を出力してFET素子P1はオフする。
【0038】
さらに、2次コイルL2に誘導された起電力の極性が反転するとFET素子P1の寄生ダイオードD1には逆方向の電圧がかかるため、再び2次コイルL2に誘導された起電力の極性が反転するまで寄生ダイオードD1には電流は流れない。
【0039】
一方この時、電磁誘導によって1次コイルL1から2次コイルL2の端子2−3間に誘導された起電力の極性は、FETQ2の寄生ダイオードD2の順方向と合致しているため、寄生ダイオードD2に順方向電流が流れ、FETQ2、FET素子P2、寄生ダイオードD2、電流検知部H2、駆動信号生成部E2は前記FETQ1、FET素子P1、寄生ダイオードD1、電流検知部H1、駆動信号生成部E1と同様の前記動作を行う。
【0040】
前記動作を繰り返して、FETQ1、Q2のソースと2次コイルL2の端子2間の電圧には全波整流された電圧が生じ、チョークコイルL3と平滑コンデンサC8とで平滑される。
【0041】
図4は、2次コイルL2の端子1−3間の誘導起電力波形S2と、2次コイルL2を流れる電流波形S3と、FETQ1、Q2のオンしきい値Kとを示している。負荷整合用のコンデンサC1の影響で、2次コイルL2の電流波形S3は歪んだ波形になり、2次コイルL2の端子1−3間に誘起する電圧波形S2は一定区間0Vである区間を挟んで正負に振動した波形となる。そのため、従来の補助巻線や2次コイル間電圧を利用したFETの駆動方式ではFETQ1、Q2のオンしきい値Kと前記電圧波形S2とを比較すると、FETの駆動信号は波形S4のようになり、FETQ1及びQ2をオンする時間が短いため整流効率が上がらない。
【0042】
しかし、図5に示す様にFETQ1を流れる電流波形S5とFETQ1、Q2のオンしきい値Kとを比較し、またFETQ2を流れる電流波形S6とFETQ1、Q2のオンしきい値Kとを比較することで、FETQ1、Q2の駆動信号は各々波形S7、S8のようになり、図4の波形S4に比べてFETQ1、Q2のFET素子P1、P2のオン時間が長くなる。したがって、FET素子P1、P2に整流電流が流れる時間が長くなり、整流効率が上がる。
【0043】
また本参考例に示す2次コイルがセンタータップ方式であるトランスT1を用いた全波整流回路と参考例1に示す半波整流回路とを比較すると、同じ出力電流を流す場合、全波整流回路は半波整流回路に比べてFETに流す電流の最大値を小さくできる。FET素子P1,P2がオンした時の損失は電流の2乗に比例するので、本参考例では、FET素子P1,P2に流す電流を半波整流回路に比べて小さくでき、損失を減らすことができる。
【0044】
なお、図6に示す回路構成の様に、負荷整合用のコンデンサC1を2次コイルL2の端子1−端子2間に並列に接続し、負荷整合用のコンデンサC9を2次コイルL2の端子2−端子3間に並列に接続した場合も図4の負荷整合用のコンデンサC1と同様の効果が得られる。さらに、前記コンデンサC1をFETQ1に並列に接続し、前記コンデンサC9をFETQ2並列に接続しても同様の効果が得られる。
【0045】
なお、図1において負荷整合用コンデンサC1をFETQ1に並列に接続しても同様の効果が得られる。
【0046】
参考例3
図7は参考例3の回路構成を示し、交流電源を直流電源に変換する電源部Aと電源部Aからの直流入力を高周波電源に変換するインバータ部Bと、インバータ部Bの制御回路Jと、インバータ部Bから高周波電源を供給されるトランスT1の1次コイルL1とから1次側回路G1は構成され、トランスT1のセンタータップ式の2次コイルL2と、負荷整合用コンデンサC1と、電流検知部H1,H2と、駆動信号生成部E1,E2と、FETQ1,Q2とチョークコイルL3と、平滑コンデンサC8とで構成される2次側回路G2とからなっている。
【0047】
2次側回路G2の構成、動作は参考例2の図3と同様なので説明は省略する。
【0048】
1次側回路G1の構成、動作について説明する。電源部Aは、交流電源Vsと交流電源Vsを全波整流する整流器D3とから構成され、インバータ部Bは整流器D3の出力端に並列に接続されたコンデンサC2、C3の直列回路と、整流器D3の出力端に並列に接続されたスイッチング素子Q3、Q4の直列回路と、スイッチング素子Q3、Q4に各々並列に接続されたコンデンサC4,C5とからなるハーフブリッジインバータ回路で構成され、制御回路Jはスイッチング素子Q3,Q4のスイッチング動作を制御するための電子回路から構成され、トランスT1の1次コイルL1の一端はコンデンサC1、C2の中点に接続され、他端はスイッチング素子Q1、Q2の中点に接続される。
【0049】
整流器D3で全波整流された電圧はコンデンサC2、C3で分圧され、スイッチング素子Q3,Q4は制御回路Jからの一定のデッドタイムを持った駆動信号により交互にオン・オフして1次コイルL1に高周波電圧を印加する。
【0050】
また、スイッチング素子Q3、Q4に並列に接続されたコンデンサC4,C5により、スイッチング素子Q3,Q4のスイッチング動作をゼロ電圧スイッチング動作とすることができ、スイッチング素子Q3、Q4でのスイッチング損失を減少させることができる。
【0051】
またスイッチング素子Q3、Q4の駆動信号は一定のデッドタイムを持っているので、トランスT1の2次コイルL2の端子1−端子3間の電圧は図4の波形S2のようになるため、参考例2と同様に電流検出回路H1、H2の検出信号から生成した駆動信号でFETQ1、Q2による同期整流を行えば、参考例2同様に2次側回路G2の整流損失も減少できる。
【0052】
また、図8に示す回路構成のようにトランスT1の1次コイルL1に並列にコンデンサC4を接続した場合も、図7の回路同様にゼロ電圧スイッチングを行える。前記以外の図8の回路の構成、動作は図7の回路の構成、動作と同様なので説明は省略する。
【0053】
このように本参考例によれば、2次側回路G2だけでなく、1次側回路G1での損失を減らして、回路全体の効率を上げて回路全体の小型化ができる。
【0054】
参考例4
図9は参考例4の回路構成を示す。基本的な回路構成、動作は参考例3の図7と同様で、FET素子P1の駆動信号生成部E1の駆動信号を反転器INV1を介して反転させた信号をFET素子P2の駆動信号とした点が図7に示す回路構成と異なる。前記以外の回路構成、動作については参考例3の図7と同様なので省略する。
【0055】
図9に示す回路構成図のように、トランスT1の2次コイルL2にセンタータップ方式を用いた同期整流回路では、FETQ1、Q2に交互に電流が流れるようにFETQ1、Q2の駆動信号を制御するため、FETQ1、Q2の各駆動信号は、一方の駆動信号の反転信号となる。そこで、FETQ1の駆動信号生成部E1の駆動信号を反転器INV1を介して反転させた信号をFETQ2の駆動信号としてFETQ2を駆動することで、FETQ2の駆動回路の簡素化を図ることができ、低コスト化、小型化ができる。
【0056】
なお、2次側回路G2の整流回路として、同期整流を用いたフォワード方式を採用した場合にも、2つの整流及び転流用スイッチング素子にたいしても同様に応用できる。
【0057】
参考例5
図10は参考例5の回路構成図を示す。基本的な回路構成、動作は参考例3の図7とほぼ同様で、図10では、図7の電流検知部H1、H2を、各々FETQ1、Q2に直列に接続した抵抗R1、R2からなる電流検知部H3、H4に置き換えた点が異なる。前記以外の回路構成、動作については参考例3の図7と同様なので省略する。
【0058】
参考例では、FETQ1、Q2に各々直列に接続された抵抗R1、R2の両端には各々FETQ1、Q2に流れる電流に比例した電圧が発生する。前記抵抗R1、R2の各両端電圧を駆動信号生成部E1、E2に各々入力し、駆動信号生成部E1、E2は、抵抗R1、R2の各両端電圧が所定のしきい値以上であればFET素子P1、P2を各々オンにする駆動信号を出力し、抵抗R1、R2の各両端電圧が所定のしきい値以下であればFET素子P1、P2を各々オフにする駆動信号を出力する。
【0059】
このように本参考例によれば、簡単な方法でFETQ1、Q2の電流を検出でき、前記検出信号を用いてFETQ1、Q2の駆動信号を生成することで参考例2同様にFETQ1、Q2に電流が流れる各整流サイクル中にできるだけ長い間FET素子P1、P2をオンにして、整流損失を減らすことができる。
【0060】
参考例6
図11は本参考例6の回路構成図を示し、基本的な回路構成、動作は参考例5の図10と同様で、図11では、図10の抵抗R1、R2を各々微小な抵抗値(例えば10mΩ)を有する抵抗R3、R4からなる電流検出部H5、H6に置き換え、駆動信号生成部E1、E2を各々オペアンプOP1、OP2からなる駆動信号生成部E3、E4に置き換えた点が異なる。前記以外の回路構成、動作については参考例5の図10と同様なので省略する。
【0061】
参考例では、FETQ1、Q2に各々直列に接続された抵抗R3、R4の抵抗値を微小な抵抗値(例えば10mΩ)とすることで、参考例5に比べて抵抗R3、R4での損失を減らしている。しかし抵抗R3、R4の抵抗値を小さくしたことで抵抗R3、R4両端の電圧も小さくなるため、抵抗R3、R4両端の電圧を各々オペアンプOP1、OP2の反転入力端子と非反転入力端子とに入力し、オペアンプOP1、OP2で抵抗R3、R4の各両端電圧を、FETQ1、Q2を十分駆動できる電圧にまで差動増幅し、前記差動増幅したオペアンプOP1、OP2の出力をFET素子P1、P2の駆動信号とする。
【0062】
このように本参考例では、電流検知部H5、H6での損失を下げることができる。
【0063】
参考例7
図12は参考例7の回路構成図を示す。基本的な回路構成、動作は参考例3の図7とほぼ同様で、図12では図7の電流検知部H1、H2を各々、1次コイルL4、L5と2次コイルL6、L7からなるカレントトランスCT1、CT2の2次コイルL6、L7に並列に抵抗R5、R6を各々接続し、前記2次コイルL6、L7に直列にダイオードD3、D4を各々接続し、ダイオードD3、D4を介して抵抗R5、R6に並列にコンデンサC6、C7、抵抗R7、R8及び定電圧ダイオードZD1、ZD2を各々接続した電流検知部H7、H8に置き換えた点と、図7の駆動信号生成部E1、E2を各々ダイオードD3、D4に直列に接続した増幅器AMP1、AMP2からなる駆動信号生成部E5、E6に置き換えた点とが異なる。前記以外の回路構成、動作については参考例3の図7と同様なので省略する。
【0064】
カレントトランスCT1、CT2の各1次コイルL4、L5に流れる電流をカレントトランスCT1、CT2の各2次コイルL6、L7で検出し、抵抗R5、R6の両端に各々電圧を発生させ、前記電圧はダイオードD3、D4で各々半波整流される。コンデンサC6、C7はノイズカット用であり、抵抗R7、R8はコンデンサC6、C7に蓄積された電荷を放出してAMP1、2の入力信号の立下りを急峻にする。また、定電圧ダイオードZD1、ZD2は増幅器AMP1、2の入力に増幅器AMP1、2の定格電圧を超えた電圧が入力されないように半波整流した電圧を一定電圧でクランプする。
【0065】
そして、カレントトランスCT1、CT2の2次コイルL6、L7の出力電流は小さいためにFET素子P1、P2を駆動できないので、増幅器AMP1、AMP2で増幅し、前記増幅した駆動信号でFETQ1、Q2を駆動する。
【0066】
このように本参考例によれば、FETQ1、Q2を流れる電流を検出でき、前記検出信号を用いてFETQ1、Q2の駆動信号を生成することで参考例2同様にFETQ1、Q2に電流が流れる各整流サイクル中にできるだけ長い間FET素子P1、P2をオンにして、整流損失を減らすことができる。
【0067】
参考例8
図13の回路構成図を用いて参考例8を説明する。基本的な回路構成、動作は参考例7の図12とほぼ同様で、図13では、図12の増幅器AMP1、AMP2を、比較器CP1、CP2と比較器CP1、CP2の反転入力端子に基準電圧源E1、E2を各々接続した比較回路に置き換えた点が異なる。前記以外の回路構成、動作については参考例7の図12と同様なので省略する。
【0068】
本参考例では、ダイオードD3、D4で半波整流されたカレントトランスCT1、CT2の各2次コイルL6、L7の出力を各々比較器CP1、CP2の非反転入力端子に接続し、基準電圧源E1、E2を各々比較器CP1、CP2の反転入力端子に接続して、基準電圧源E1、E2の基準電圧を適切に設定することで、FETQ1、Q2に電流が流れる各整流サイクル中にできるだけ長い間FET素子P1、P2をオンにして、整流損失を減らすことができる。
【0069】
図14は、本参考例におけるFETQ1を流れる電流波形S9と、基準電圧源E1の基準電圧M1と、比較器CP1の出力波形S10を示しており、前記波形S9が前記基準電圧M1を超えると前記波形S10はHレベルとなり、前記波形S9が前記基準電圧M1より下がると前記波形S10はLレベルとなる。したがって、基準電圧M1を適切に設定することで比較器CP1の出力波形S10がHレベルの区間を広くできる。FETQ2についても同様である。
【0070】
即ちFETQ1、Q2に電流が流れる各整流サイクル中にできるだけ長い間FET素子P1、P2をオンにして、整流損失を減らすことができる。
【0071】
実施形態1
図13の回路構成図を用いて実施形態1を説明する。基本的な回路構成、動作については参考例8と同様なので省略する。
【0072】
同期整流を行うためにオンしていたFET素子P1を有するFETQ1の電流は、負荷整合用コンデンサC6のために2次コイルL2に発生する誘導起電力に応じてなめらかに電流値が減少していく。また次の半サイクルの同期整流を行うためにオンするFET素子P2を有するFETQ2も同様にコンデンサC6のために、FETQ1に流れる電流がゼロになる前に寄生ダイオードD2を介して電流が流れ始める。そのため、FET素子P1、P2が同時にオンする可能性があり、整流が行われなくなる可能性がある。
【0073】
そこで本実施形態では、FETQ1、Q2に流れる各電流が等しくなった時にそれまでオンしていたFET素子P1をオフにする駆動信号を比較器CP1から出力し、それまでオフしていたFET素子P2をオンにする駆動信号を比較器CP2から出力する。また、逆の半サイクルも同様にFETQ1、Q2に流れる各電流が等しくなった時にそれまでオンしていたFET素子P2をオフにする駆動信号を比較器CP2から出力し、それまでオフしていたFET素子P1をオンにする駆動信号を比較器CP1から出力する。
【0074】
このように、本実施形態によれば、FET素子P1、P2が同時にオンすることがなくなり、整流損失を減らせて放熱板を含む2次側回路G2を小型化できる。
【0075】
実施形態2
図13の回路構成図を用いて実施形態2を説明する。基本的な回路構成、動作については実施形態1と同様なので省略する。
【0076】
実施形態1で説明したように、FETQ1、Q2に流れる各電流が等しくなった時にそれまでオンしていたFET素子P1をオフにする駆動信号を比較器CP1から出力し、それまでオフしていたFET素子P2をオンにする駆動信号を比較器CP2から出力する。また、逆の半サイクルも同様にFETQ1、Q2に流れる各電流が等しくなった時にそれまでオンしていたFET素子P2をオフにする駆動信号を比較器CP2から出力し、それまでオフしていたFET素子P1をオンにする駆動信号を比較器CP1から出力すれば、FET素子P1、P2が同時にオンすることなくなり、整流損失を減らせる。
【0077】
そこで、本実施形態では図13の回路構成においてカレントトランスCT1、CT2で検出した各検出信号をダイオードD3、D4で半波整流した出力電圧、即ち定電圧ダイオードZD1、ZD2の各出力電圧を比較器CP1、CP2の非反転入力端子に入力し、FETQ1、Q2に流れる各電流が等しくなった時の定電圧ダイオードZD1、ZD2の各出力電圧を基準電圧とする基準電圧源E1、E2を比較器CP1、CP2の反転入力端子に入力に各々接続して、比較器CP1、CP2の出力をFET素子P1、P2の各駆動信号とすることで、FET素子P1、P2が同時にオンすることがなくなり、整流損失を減らせて放熱板を含む2次側回路G2を小型化できる。
【0078】
図15は、本実施形態におけるFETQ1を流れる電流波形S11、基準電圧源E1の基準電圧M2、比較器CP1の出力波形S12と、FETQ2を流れる電流波形S13、基準電圧源E2の基準電圧M3、比較器CP2の出力波形S14とを示す。FETQ1を流れる電流波形S11の大きさとFETQ2を流れる電流波形S13の大きさとが等しくなる時間t4において比較器CP1の出力をLにしてFET素子P1をオフにし、比較器CP2の出力をHにしてFET素子P2をオンにすることでFET素子P1、P2が同時にオンすることがなくなり、整流損失を減らせて放熱板を含む2次側回路G2を小型化できる。
【0079】
実施形態3
図12の回路構成図を用いて実施形態3を説明する。基本的な回路構成、動作については参考例7と同様なので省略する。
【0080】
実施形態1で説明したように、FETQ1、Q2に流れる各電流が等しくなった時にそれまでオンしていたFETQ1をオフにする駆動信号を比較器CP1から出力し、それまでオフしていたFETQ2をオンにする駆動信号を比較器CP2から出力する。また、逆の半サイクルも同様にFETQ1、Q2に流れる各電流が等しくなった時にそれまでオンしていたFETQ2をオフにする駆動信号を比較器CP2から出力し、それまでオフしていたFETQ1をオンにする駆動信号を比較器CP1から出力すれば、FETQ1、Q2が同時にオンすることがなくなり、整流損失を減らせる。
【0081】
そこで、本実施形態では図12の回路構成においてFETQ1、Q2に流れる電流が等しくなるときに、カレントトランスCT1、CT2で検出した各検出信号をダイオードD3、D4で半波整流した出力電圧、即ち定電圧ダイオードZD1、ZD2の各出力電圧を増幅器AMP1、2で各々増幅したFET素子P1、P2の各駆動信号が、FET素子P1、P2を十分オンできる電圧になるように、カレントトランスCT1の1次コイルL4と2次コイルL6との巻線比及び、カレントトランスCT2の1次コイルL5と2次コイルL7との巻線比を設定する。
【0082】
図16は、本実施形態におけるFET素子P1の駆動信号波形S15、FETQ1を流れる電流波形S16、定電圧ダイオードZD1のクランプ電圧N1と、FET素子P2の駆動信号波形S17、FETQ2を流れる電流波形S18、定電圧ダイオードZD2のクランプ電圧N2と、FET素子P1、P2を十分オンできる電圧Kとを示している。FETQ1を流れる電流波形S16の大きさとFETQ2を流れる電流波形S18の大きさとが等しくなる時間t5において、FET素子P1の駆動信号波形S15がFET素子P1、P2を十分オンできる電圧Kより下がってFET素子P1はオフになり、FET素子P2の駆動信号波形S17がFET素子P1、P2を十分オンできる電圧Kを超えてFET素子P2はオンになることでFET素子P1、P2が同時にオンすることがなくなり、整流損失を減らせて放熱板を含む2次側回路G2を小型化できる。
【0083】
なお、前記波形S15、S17は定電圧電圧ダイオードZD1、ZD2のクランプ電圧N1、N2にクランプされる。
【0084】
参考例9
図1に示す回路構成図のように、1つの同期整流用FETQ1を用いて半波整流を行う場合、FETQ1での整流損失を小さくするためにはFETQ1に電流が流れる整流サイクル中にできるだけ長い間FETQ1のFET素子P1をオンにする必要がある。
【0085】
図1の電流検出部H1と駆動信号生成部E1とを、図13の電流検出部H9と駆動信号生成部E7に各々置き換えて、駆動信号生成部E7の比較器CP1の反転入力端子に接続している基準電圧源E1の基準電圧を0V付近にすることで、比較器CP1は前記整流サイクル中にできるだけ長い間FET素子P1をオンにする駆動信号を出力して、FETQ1での整流損失を減らせて放熱板を含む2次側回路G2を小型化できる。
【0086】
上記以外の回路構成、動作については、参考例1及び8で説明しているので省略する。
【0087】
参考例10
図1に示す回路構成図のように、1つの同期整流用FETQ1を用いて半波整流を行う場合、FETQ1での整流損失を小さくするためにはFETQ1に電流が流れる整流サイクル中にできるだけ長い間FETQ1のFET素子P1をオンにする必要がある。
【0088】
図1の電流検出部H1と駆動信号生成部E1とを、図12の電流検出部H7と駆動信号生成部E5に各々置き換えて、電流検出部H7のカレントトランスCT1の1次コイルL4と2次コイルL5の巻数比を大きくすることで、カレントトランスCT1の1次コイルL4に流れる電流が小さい時でも2次コイルL5の誘起電圧が大きくなり、FETQ1のFET素子P1をオンできる駆動信号が増幅器AMP1から出力される。したがって、整流素子P1は前記整流サイクル中にできるだけ長い間オンになり、FETQ1での整流損失を減らせて放熱板を含む2次側回路G2を小型化できる。
【0089】
上記以外の回路構成、動作については、参考例1及び7で説明しているので省略する。
【0090】
【発明の効果】
請求項1の発明は、直流電源を供給する電源部と、前記直流電源を高周波電源に変換するインバータ部と、前記インバータ部から高周波電力を供給される1次コイルと1次コイルから受電した電力を出力する2次コイルとが分離可能なトランスの前記1次コイルとで構成される1次側回路と、前記2次コイルと、前記2次コイルに並列に接続される負荷整合用コンデンサ及び前記2次コイルの出力電圧を整流する整流部とで構成される2次側回路とを有する非接触電力伝達装置において、前記トランスの2次コイルはセンタータップを備え、スイッチング素子及び前記スイッチング素子に並列に逆接続されたダイオードとからなる第1,第2の同期整流要素を具備して、前記トランスの2次コイルのセンタータップではない両出力端に直列に且つ互いに逆方向に接続する前記第1,第2の同期整流要素の前記トランスの2次コイルに接続していない各他端同士を接続して全波整流部を構成した前記整流部と、前記第1,第2の同期整流要素に流れる電流を検出する電流検知部と、先に導通し整流を終了しつつある前記第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき前記第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻に、前記第1の同期整流要素のスイッチング素子をオフにする駆動信号を出力する第1の駆動信号生成部と、前記第2の同期整流要素のスイッチング素子をオンにする駆動信号を出力する第2の駆動信号生成部とを有することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができるという効果がある。また、全波整流することで半波整流よりも損失が少なく効率の良い整流を行えるという効果がある。さらに、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができるという効果がある。
【0091】
請求項2の発明は、請求項1の発明において、一つの前記電流検知部の検出信号より前記第1の同期整流要素のスイッチング素子の駆動信号を生成し、前記第2の同期整流要素のスイッチング素子の駆動信号は前記第1の同期整流要素のスイッチング素子の駆動信号の反転信号とすることを特徴とし、駆動信号生成部の簡素化を図ることができ、低コスト化、小型化ができるという効果がある。
【0092】
請求項3の発明は、請求項1または2の発明において、前記電流検知部は、前記同期整流要素に直列に接続した電流検出用抵抗からなり、前記電流検出用抵抗の両端に発生する電圧に基づいて前記駆動信号生成部にて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、簡単な回路構成で電流検知部を構成できるという効果がある。
【0093】
請求項4の発明は、請求項3の発明において、前記電流検出用抵抗の抵抗値は、前記電流検出用抵抗に流れる電流に対して発生する前記電流検出用抵抗の両端の電圧が前記駆動信号生成部にて前記同期整流要素のスイッチング素子を駆動できる電圧にまで増幅できる最小の電圧になる抵抗値であることを特徴とし、電流検知部での損失を減らすことができるという効果がある。
【0094】
請求項5の発明は、請求項1または2の発明において、前記電流検知部は、前記同期整流要素に直列に接続した1次コイル及び2次コイルとからなるカレントトランスと、前記カレントトランスの2次コイルの両端に並列に接続した抵抗と、前記抵抗の両端間の電圧を整流するために前記カレントトランスの2次コイルに直列に接続した整流ダイオードとから構成され、前記整流ダイオードから出力される前記電流検知部の出力に基づいて駆動信号生成部にて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、2次側回路の整流損失を減らすことができるという効果がある。
【0095】
請求項6の発明は、請求項1乃至5いづれかの発明において、前記駆動信号生成部は、前記電流検知部の出力と基準電圧とを比較し、前記比較結果に基づいて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができるという効果がある。
【0096】
請求項7の発明は、請求項1乃至6いづれか記載の発明において、前記第1及び第2の駆動信号生成部は、先に導通し整流を終了しつつある第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻における前記電流検知部の出力電圧と同じ電圧である基準電圧と、前記電流検知部の検出信号とを比較し、前記比較結果に基づいて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができるという効果がある。
【0097】
請求項8の発明は、請求項1乃至6いづれか記載の発明において、前記第2の駆動信号生成部は、先に導通し整流を終了しつつある第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻に、前記第2の同期整流要素のスイッチング素子をオンにできる電圧にまで増幅した駆動信号を出力することを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができるという効果がある。
【0098】
請求項9の発明は、請求項1乃至8いづれか記載の発明において、前記インバータ部は、スイッチング素子を有するハーフブリッジのインバータからなり、前記スイッチング素子はゼロボルトスイッチングを行うことを特徴とし、2次側回路の整流損失を減らして、整流部の放熱板のサイズを小さくでき、回路全体の効率を上げることができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の参考例1,9,10の回路構成を示す図である。
【図2】 本発明の参考例1のFETに流れる電流波形を示す図である。
【図3】 本発明の参考例2の回路構成を示す図である。
【図4】 本発明の参考例2の回路動作を示す図である。
【図5】 本発明の参考例2のFET素子のスイッチング動作を示す図である。
【図6】 本発明の参考例2の回路構成を示す図である。
【図7】 本発明の参考例3の回路構成を示す図である。
【図8】 本発明の参考例3の回路構成を示す図である。
【図9】 本発明の参考例4の回路構成を示す図である。
【図10】 本発明の参考例5の回路構成を示す図である。
【図11】 本発明の参考例6の回路構成を示す図である。
【図12】 本発明の実施形態3、参考例7の回路構成を示す図である。
【図13】 本発明の実施形態1,2、参考例8の回路構成を示す図である。
【図14】 本発明の参考例8のスイッチング動作を示す図である。
【図15】 本発明の実施形態2のスイッチング動作を示す図である。
【図16】 本発明の実施形態3のスイッチング動作を示す図である。
【符号の説明】
A 電源部
B インバータ部
C1 コンデンサ
D1 寄生ダイオード
E1 駆動信号生成部
F 平滑部
G1 1次側回路
G2 2次側回路
H1 電流検知部
L1 1次コイル
L2 2次コイル
P1 FET素子
Q1 FET
T1 トランス[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a non-contact power transmission device.
[0002]
[Prior art]
  Examples that have been put into practical use by applying non-contact power technology are charging applications such as shavers and electric toothbrushes, and are limited to low outputs of about several watts. A diode rectification method has been used as a rectification method for the secondary circuit.
[0003]
[Problems to be solved by the invention]
  Non-contact / contactless power transmission technology using magnetic induction with a separate detachable transformer can take a fundamental measure of electric shock due to its feature of no metal contact, so its use as a power source around water is drawing attention. . In order to use it as a safe and reliable power supply, the output voltage is low and the efficiency of the equipment does not decrease. The power supply of about 12V, which has already been proven in automobiles, and more than 50W can be used. Higher output is required. However, as the output is increased at a lower voltage, the output current increases, and the diode rectification method used in the secondary side circuit of the conventional contactless power supply device increases the rectification loss and increases the size of the heat sink such as a diode. As a result, there was a problem that it could not fit in a practical size.
[0004]
  Therefore, the application of the synchronous rectification technique, which has been conventionally used for reducing the loss of the rectification unit of the switching power supply whose output voltage is 5 V or less, to the non-contact power transmission device was examined. Synchronous rectification technology uses FET switching elements and FET parasitic diodes as switching elements for synchronous rectification, switches the FET switching elements according to the rectification cycle, and allows the rectified current to flow through the FET switching elements. In this technique, the loss of the rectification unit is reduced by utilizing the low on-resistance of the FET. Of course, the same operation is performed even if a diode in the reverse direction is connected in parallel to the switching element instead of the FET incorporating the parasitic diode.
[0005]
  The non-contact power transmission device outputs power received from a power source that supplies DC power, an inverter that converts DC power to high frequency power, a primary coil that is supplied with high frequency power from the inverter, and a primary coil Primary circuit composed of a primary coil of a separate detachable transformer that can be separated from the secondary coil to be separated, a secondary coil, a load matching capacitor connected in parallel to the secondary coil, and a secondary coil And a secondary side circuit composed of a rectifying unit for rectifying the output voltage of the output. At this time, in order to maximize the effective power that can be extracted to the secondary side to increase the efficiency of the entire circuit and to reduce the size of the separation / removable transformer, the leakage magnetic flux between the primary coil and the secondary coil of the separation / removable transformer The power factor of the entire circuit is improved by the leakage inductance caused by the above and the load matching capacitor connected in parallel to the secondary coil.
[0006]
  However, when load matching is performed by the load matching capacitor, the output waveform of the secondary coil is different from the output waveform of the secondary coil of the switching power supply and becomes a sine wave shape or a more distorted waveform. In the conventional drive signal generation method for the synchronous rectification switching element using the voltage or the auxiliary winding, since the on-time of the synchronous rectification switching element is short, the rectification efficiency is poor, and the efficiency cannot be increased as compared with the diode rectification method.
[0007]
  This invention is made | formed in view of the said reason, The objective is to provide the non-contact electric power transmission apparatus which raised the rectification efficiency of the secondary side circuit.
[0008]
[Means for Solving the Problems]
  The invention according to claim 1 is a power supply section that supplies a DC power supply, an inverter section that converts the DC power supply to a high-frequency power supply, a primary coil that is supplied with high-frequency power from the inverter section, and power that is received from the primary coil A secondary side circuit configured to be separable from the primary coil of the transformer, the secondary coil, a load matching capacitor connected in parallel to the secondary coil, and the Non-contact power having a secondary side circuit composed of a rectifying unit that rectifies the output voltage of the secondary coilTransmissionIn the deviceThe secondary coil of the transformer includes a center tap, and includes first and second synchronous rectification elements including a switching element and a diode reversely connected in parallel to the switching element, and the secondary coil of the transformer Full-wave rectification by connecting each other end not connected to the secondary coil of the transformer of the first and second synchronous rectification elements connected in series and in opposite directions to both output ends which are not center taps The current flowing through the first synchronous rectification element that has been conducted earlier and has finished rectification, and the rectification section that constitutes a section, a current detection section that detects a current flowing through the first and second synchronous rectification elements The switching element of the first synchronous rectification element is turned off at a time when the value and the current value starting to flow through the diode of the second synchronous rectification element to be conducted for the next rectification become equal to each other That has a first drive signal generator for outputting a driving signal, and a second drive signal generator for outputting a driving signal to turn on the switching elements of the second synchronous rectifierThe rectification loss of the secondary side circuit can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.Further, full-wave rectification enables efficient rectification with less loss than half-wave rectification. Furthermore, the rectification loss of the secondary circuit can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.
[0009]
  The invention of claim 2 is the invention of claim 1,A drive signal for the switching element of the first synchronous rectification element is generated from a detection signal of the one current detection unit, and the drive signal for the switching element of the second synchronous rectification element is the switching signal of the first synchronous rectification element. It is characterized in that it is an inverted signal of the drive signal of the element, and the drive signal generation unit can be simplified, and the cost and size can be reduced.
[0010]
  The invention of claim 3 is the invention of claim 1 or 2,The current detection unit includes a current detection resistor connected in series to the synchronous rectification element, and the drive signal generation unit switches the switching element of the synchronous rectification element based on a voltage generated at both ends of the current detection resistor. The current detection unit can be configured with a simple circuit configuration.
[0011]
  The invention of claim 4 is the invention of claim 3,The resistance value of the current detection resistor is such that the voltage across the current detection resistor generated with respect to the current flowing through the current detection resistor can drive the switching element of the synchronous rectification element in the drive signal generation unit The resistance value is a minimum voltage that can be amplified to a voltage, and loss in the current detection unit can be reduced.
[0012]
  The invention of claim 5 is the invention of claim 1 or 2, whereinThe current detection unit includes a current transformer including a primary coil and a secondary coil connected in series to the synchronous rectification element, a resistor connected in parallel to both ends of the secondary coil of the current transformer, and both ends of the resistor A rectifier diode connected in series with a secondary coil of the current transformer to rectify the voltage between the current transformer and the drive signal generator based on the output of the current detector output from the rectifier diode. A drive signal for the switching element of the synchronous rectification element is generated, and the rectification loss of the secondary side circuit can be reduced.
[0013]
  The invention of claim 6 is the invention according to any one of claims 1 to 5,The drive signal generation unit compares the output of the current detection unit with a reference voltage, and generates a drive signal of the switching element of the synchronous rectification element based on the comparison result. The rectification loss can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.
[0014]
  The invention of claim 7 is the invention according to any one of claims 1 to 6,The first and second drive signal generation units include a current value flowing through the first synchronous rectification element that has been turned on and has finished rectification, and a second synchronous rectification that should be turned on for the next rectification. A reference voltage that is the same voltage as the output voltage of the current detection unit at a time when current values that start to flow through the element diodes are equal to each other, and a detection signal of the current detection unit are compared, and based on the comparison result, A drive signal for the switching element of the synchronous rectification element is generated, and the rectification loss of the secondary circuit can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.
[0015]
  The invention according to claim 8 is the invention according to any one of claims 1 to 6,The second drive signal generation unit includes a current value flowing through the first synchronous rectification element that has been turned on and finished rectification, and a diode of the second synchronous rectification element that should be turned on for the next rectification. And output a drive signal amplified to a voltage that can turn on the switching element of the second synchronous rectification element at a time when the current value starting to flow is equal to each other. By reducing the size, the size of the heat sink of the rectifying unit can be reduced, and the efficiency of the entire circuit can be increased.
[0016]
  The invention of claim 9 is the invention according to any one of claims 1 to 8,The inverter part is composed of a half-bridge inverter having a switching element, and the switching element performs zero volt switching, and the rectification loss of the secondary side circuit can be reduced and the size of the heat sink of the rectification part can be reduced. The efficiency of the entire circuit can be increased.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
    (Reference example 1)
  Figure 1Reference example 1The circuit configuration of is shown. The power supply unit A, the inverter unit B, and the primary coil L1 of the transformer T1 constitute a primary side circuit G1, and the secondary coil L2 of the transformer T1, the load matching capacitor C1, and the FET Q1 constituting a synchronous rectification element and current detection The part H1, the drive signal generation part E1, and the smoothing part F constitute a secondary circuit G2.
[0019]
  The power supply unit A supplies DC power to the inverter unit B and is converted into high-frequency power by the inverter unit B, and the high-frequency power is supplied to the primary coil L1 of the transformer T1. The secondary coil L2 of the transformer T1 receives power from the primary coil L1 by electromagnetic coupling. The voltage across the secondary coil L2 is half-wave rectified by the FET Q1, and the half-wave rectified voltage is smoothed by the smoothing unit F. Output a DC voltage.
[0020]
  The primary coil L1 and the secondary coil L2 of the transformer T1 are separated from each other by a predetermined gap length by an insulator, and can be separated and detached.
[0021]
  The capacitor C1 connected in parallel with the secondary coil L2 is for load matching, and maximizes the effective power that can be extracted by the secondary side circuit G2 to increase the efficiency of power transmission from the primary side circuit G1 to the secondary side circuit G2. Raised.
[0022]
  Next bookReference exampleThe synchronous rectification operation will be described.
[0023]
  The FET Q1 includes an FET element P1 and a parasitic diode D1 connected in parallel to the FET element P1 in the reverse direction. The current detection unit H1 connected in series with the FET Q1 detects the current flowing through the FET Q1, and outputs the detection signal to the drive signal generation unit E1. The drive signal generation unit E1 outputs a drive signal for turning on the FET element P1 if the detection signal from the current detection unit H1 is equal to or greater than a predetermined threshold, and the signal from the current detection unit H1 is a predetermined threshold. If the value is less than the value, a drive signal for turning off the FET element P1 is output.
[0024]
  When the polarity of the electromotive force induced from the primary coil L1 to the secondary coil L2 by electromagnetic induction matches the forward direction of the parasitic diode D1 of the FET Q1, a forward current flows through the parasitic diode D1, and the forward current is When detected by the current detection unit H1, the drive signal generation unit E1 outputs an ON signal to the FET element P1 when the detection signal from the current detection unit H1 exceeds the threshold value, and the FET element P1 is turned on.
[0025]
  When the FET element P1 is turned on, the current initially flowing through the parasitic diode D1 flows in the direction from the source of the FET Q1 to the drain via the ON resistance of the FET element P1 because the resistance of the FET element P1 is smaller than that of the parasitic diode D1. At this time, if the ON time of the FET element is made as long as possible during the cycle in which the rectified current flows in the FET Q1, the loss in the FET Q1 can be reduced and the rectified loss can be reduced.
[0026]
  When the electromotive force induced from the primary coil L1 to the secondary coil L2 is changed by electromagnetic induction and the electromotive force induced in the secondary coil L2 is reduced, the detection signal output from the current detection unit H1 is also reduced. When the detection signal from the current detection unit H1 falls below the threshold value, the signal generation unit E1 outputs an off signal to the FET element P1, and the FET element P1 is turned off.
[0027]
  Further, when the polarity of the electromotive force induced in the secondary coil L2 is inverted, a reverse voltage is applied to the parasitic diode D1 of the FET element P1, so that the polarity of the electromotive force induced in the secondary coil L2 is inverted again. Until this time, no current flows through the parasitic diode D1, and the input of the smoothing section F has a half-wave rectified waveform. The half-wave rectified output is smoothed by the smoothing unit F.
[0028]
  Figure 2 shows the bookReference exampleA current waveform S1 flowing through the FET Q1 is shown, and the current waveform S1 has a gently rising and distorted waveform.
[0029]
  The loss at the time of synchronous rectification is the time t1 when the current waveform S1 exceeds the ON threshold value K of the FET element P1 and the FET element P1 is turned on, and the current waveform S1 is the ON threshold of the FET element P1. The time when the FET element P1 falls below the value K is t2 is OFF, the time when the current waveform S1 is 0 is t3, the ON resistance of the FET element P1 during the synchronous rectification is Ron, and the current flowing through the FET Q1 is I, Assuming that the forward voltage of the parasitic diode D1 is Vf, the total loss W in one cycle is expressed by the following formula 1.
[0030]
[Expression 1]
Figure 0004140169
[0031]
  Thus, if the current flowing through the FET Q1 is detected and the FET element P1 is driven by a signal synchronized with the detection signal, the time during which the current flows through the parasitic diode D1 of the FET Q1 can be shortened, and the loss in the FET Q1 is reduced. Can be reduced. As a result, since the size of the heat sink can be reduced, the secondary circuit G2 can be reduced in size.
[0032]
    (Reference example 2)
  Figure 3Reference example 2The circuit configuration of is shown. The configuration and operation of the primary side circuit G1 including the power source A, the inverter B, and the primary coil L1 of the transformer T1 are as follows.Reference example 1Since it is the same as that, it is omitted.
[0033]
  The secondary coil L2 of the transformer T1 has a center tap system with three output terminals, and has three terminals, terminals 1 and 3 at both ends of the secondary coil L2 and a center tap terminal 2, and the secondary coil L2. A load matching capacitor C1 is connected between the terminal 1 and the terminal 3 in parallel. The drain of the FET Q1 constituting the synchronous rectification element is connected in series to the terminal 1 of the secondary coil L2 via the current detection unit H1, and the synchronous rectification element is connected in series to the terminal 3 of the secondary coil L2 via the current detection unit H3. Is connected to the drain of the FET Q2. The sources of the FETs Q1 and Q2 are connected to each other and connected to the negative side of the smoothing capacitor C8, and the terminal 3 of the secondary coil L2 is connected to the positive side of the smoothing capacitor C8 via the choke coil L3.
[0034]
  Then bookReference exampleWill be described. The FET Q1 includes an FET element P1 and a parasitic diode D1 connected in parallel to the FET element P1 in the reverse direction. The current detection unit H1 connected in series with the FET Q1 detects the current flowing through the FET Q1, and outputs the detection signal to the drive signal generation unit E1. The drive signal generation unit E1 outputs a drive signal for turning on the FET element P1 if the detection signal from the current detection unit H1 is equal to or greater than a predetermined threshold, and the signal from the current detection unit H1 is a predetermined threshold. If the value is less than the value, a drive signal for turning off the FET element P1 is output.
[0035]
  Similarly, the FET Q2 includes an FET element P2 and a parasitic diode D2 connected in parallel to the FET element P2 in the reverse direction. The current detection unit H2 connected in series to the FET Q2 detects the current flowing through the FET Q2, and outputs the detection signal to the drive signal generation unit E2. The drive signal generation unit E2 outputs a drive signal for turning on the FET element P2 if the detection signal from the current detection unit H2 is equal to or greater than a predetermined threshold, and the signal from the current detection unit H2 is a predetermined threshold. If it is less than the value, a drive signal for turning off the FET element P2 is output.
[0036]
  When the polarity of the electromotive force induced between the primary coil L1 and the terminal 2-1 of the secondary coil L2 by electromagnetic induction matches the forward direction of the parasitic diode D1 of the FET Q1, a forward current flows through the parasitic diode D1, The forward current is detected by the current detection unit H1, and the drive signal generation unit E1 outputs an ON signal to the FET element P1 when the detection signal of the current detection unit H1 exceeds the threshold value, and the FET element P1 is turned on. To do.
When the FET element P1 is turned on, the current initially flowing through the parasitic diode D1 flows in the direction from the source of the FET Q1 to the drain via the on-resistance of the FET element P1 because the resistance of the FET element P1 is smaller than that of the parasitic diode D1. At this time,Reference example 1Similarly, the loss in the FET Q1 can be reduced and the rectification loss can be reduced by increasing the ON time of the FET element as much as possible during the cycle in which the rectification current flows in the FET Q1.
[0037]
  When the electromotive force induced from the primary coil L1 to the secondary coil L2 is changed by electromagnetic induction and the electromotive force induced in the secondary coil L2 is reduced, the detection signal output from the current detection unit H1 is also reduced. When the detection signal from the current detection unit H1 falls below the threshold value, the signal generation unit E1 outputs an off signal to the FET element P1, and the FET element P1 is turned off.
[0038]
  Further, when the polarity of the electromotive force induced in the secondary coil L2 is reversed, a reverse voltage is applied to the parasitic diode D1 of the FET element P1, so that the polarity of the electromotive force induced in the secondary coil L2 is reversed again. No current flows through the parasitic diode D1.
[0039]
  On the other hand, since the polarity of the electromotive force induced between the primary coil L1 and the terminal 2-3 of the secondary coil L2 by electromagnetic induction coincides with the forward direction of the parasitic diode D2 of the FET Q2, the parasitic diode D2 A forward current flows through the FET Q2, the FET element P2, the parasitic diode D2, the current detection unit H2, and the drive signal generation unit E2. The FET Q1, the FET element P1, the parasitic diode D1, the current detection unit H1, and the drive signal generation unit E1 The same operation is performed.
[0040]
  By repeating the above operation, a full-wave rectified voltage is generated between the sources of the FETs Q1 and Q2 and the terminal 2 of the secondary coil L2, and is smoothed by the choke coil L3 and the smoothing capacitor C8.
[0041]
  FIG. 4 shows an induced electromotive force waveform S2 between the terminals 1-3 of the secondary coil L2, a current waveform S3 flowing through the secondary coil L2, and an ON threshold value K of the FETs Q1 and Q2. Due to the influence of the load matching capacitor C1, the current waveform S3 of the secondary coil L2 becomes a distorted waveform, and the voltage waveform S2 induced between the terminals 1-3 of the secondary coil L2 sandwiches a section where the constant section is 0V. The waveform vibrates positively and negatively. For this reason, in the conventional FET driving method using the auxiliary winding or the voltage between the secondary coils, when the on threshold value K of the FETs Q1 and Q2 is compared with the voltage waveform S2, the driving signal of the FET is as shown by the waveform S4. Therefore, the rectification efficiency does not increase because the time for turning on the FETs Q1 and Q2 is short.
[0042]
  However, as shown in FIG. 5, the current waveform S5 flowing through the FET Q1 is compared with the ON threshold value K of the FETs Q1 and Q2, and the current waveform S6 flowing through the FET Q2 is compared with the ON threshold value K of the FETs Q1 and Q2. Thus, the drive signals of the FETs Q1 and Q2 have waveforms S7 and S8, respectively, and the on-time of the FET elements P1 and P2 of the FETs Q1 and Q2 becomes longer than the waveform S4 of FIG. Therefore, the time during which the rectified current flows through the FET elements P1 and P2 becomes longer, and the rectification efficiency increases.
[0043]
  Also bookReference exampleA full-wave rectifier circuit using a transformer T1 in which the secondary coil shown in FIG.Reference example 1When the same output current is passed, the full-wave rectifier circuit can reduce the maximum value of the current passed through the FET as compared with the half-wave rectifier circuit. Since the loss when the FET elements P1 and P2 are turned on is proportional to the square of the current,Reference exampleThen, the current flowing through the FET elements P1 and P2 can be made smaller than that of the half-wave rectifier circuit, and the loss can be reduced.
[0044]
  As in the circuit configuration shown in FIG. 6, the load matching capacitor C1 is connected in parallel between the terminal 1 and the terminal 2 of the secondary coil L2, and the load matching capacitor C9 is connected to the terminal 2 of the secondary coil L2. The same effect as the load matching capacitor C1 of FIG. Further, the same effect can be obtained by connecting the capacitor C1 in parallel to the FET Q1 and connecting the capacitor C9 in parallel to the FET Q2.
[0045]
  In FIG. 1, the same effect can be obtained by connecting the load matching capacitor C1 in parallel to the FET Q1.
[0046]
    (Reference example 3)
  FIG.Reference example 3The power supply unit A that converts the AC power source to the DC power source, the inverter unit B that converts the DC input from the power source unit A to the high frequency power source, the control circuit J of the inverter unit B, and the inverter unit B The primary side circuit G1 is composed of the primary coil L1 of the transformer T1 to which power is supplied, a center tap type secondary coil L2 of the transformer T1, a load matching capacitor C1, current detection units H1 and H2, The drive signal generators E1 and E2, a secondary circuit G2 including FETs Q1 and Q2, a choke coil L3, and a smoothing capacitor C8.
[0047]
  The configuration and operation of the secondary side circuit G2 are as follows:Reference example 2Since it is the same as that of FIG. 3, description is abbreviate | omitted.
[0048]
  The configuration and operation of the primary side circuit G1 will be described. The power supply unit A is composed of an AC power supply Vs and a rectifier D3 for full-wave rectification of the AC power supply Vs, and the inverter unit B is a series circuit of capacitors C2 and C3 connected in parallel to the output terminal of the rectifier D3, and a rectifier D3. And a half-bridge inverter circuit comprising a series circuit of switching elements Q3 and Q4 connected in parallel to the output terminals of the capacitors and capacitors C4 and C5 connected in parallel to the switching elements Q3 and Q4, respectively. An electronic circuit for controlling the switching operation of the switching elements Q3 and Q4 is configured. One end of the primary coil L1 of the transformer T1 is connected to the midpoint of the capacitors C1 and C2, and the other end is connected to the switching elements Q1 and Q2. Connected to a point.
[0049]
  The voltage that has been full-wave rectified by the rectifier D3 is divided by the capacitors C2 and C3, and the switching elements Q3 and Q4 are alternately turned on and off by a drive signal having a certain dead time from the control circuit J to turn on and off the primary coil. A high frequency voltage is applied to L1.
[0050]
  Further, the capacitors C4 and C5 connected in parallel to the switching elements Q3 and Q4 can make the switching operation of the switching elements Q3 and Q4 a zero voltage switching operation, thereby reducing the switching loss in the switching elements Q3 and Q4. be able to.
[0051]
  Further, since the drive signals of the switching elements Q3 and Q4 have a certain dead time, the voltage between the terminal 1 and the terminal 3 of the secondary coil L2 of the transformer T1 is as shown by the waveform S2 in FIG.Reference example 2As in the case of synchronous rectification by FETs Q1 and Q2 with the drive signal generated from the detection signals of the current detection circuits H1 and H2,Reference example 2Similarly, the rectification loss of the secondary side circuit G2 can be reduced.
[0052]
  Further, when the capacitor C4 is connected in parallel to the primary coil L1 of the transformer T1 as in the circuit configuration shown in FIG. 8, zero voltage switching can be performed as in the circuit of FIG. Except for the above, the configuration and operation of the circuit of FIG. 8 are the same as the configuration and operation of the circuit of FIG.
[0053]
  Book like thisReference exampleAccording to this, it is possible to reduce the loss not only in the secondary side circuit G2 but also in the primary side circuit G1, increase the efficiency of the entire circuit, and reduce the size of the entire circuit.
[0054]
    (Reference example 4)
  Figure 9Reference example 4The circuit configuration of is shown. Basic circuit configuration and operationReference example 37 differs from the circuit configuration shown in FIG. 7 in that a signal obtained by inverting the drive signal of the drive signal generation unit E1 of the FET element P1 through the inverter INV1 is used as the drive signal of the FET element P2. For circuit configurations and operations other than those described aboveReference example 3Since this is the same as FIG.
[0055]
  As shown in the circuit configuration diagram of FIG. 9, in the synchronous rectifier circuit using the center tap method for the secondary coil L2 of the transformer T1, the drive signals of the FETs Q1 and Q2 are controlled so that current flows alternately to the FETs Q1 and Q2. Therefore, each drive signal of the FETs Q1 and Q2 is an inverted signal of one drive signal. Therefore, by driving the FET Q2 using the signal obtained by inverting the drive signal of the drive signal generation unit E1 of the FET Q1 via the inverter INV1 as the drive signal of the FET Q2, the drive circuit of the FET Q2 can be simplified. Cost and size can be reduced.
[0056]
  In addition, even when a forward method using synchronous rectification is adopted as the rectifier circuit of the secondary side circuit G2, the present invention can be similarly applied to two rectifier and commutation switching elements.
[0057]
    (Reference Example 5)
  FIG.Reference Example 5The circuit block diagram of is shown. Basic circuit configuration and operationReference example 3FIG. 10 differs from FIG. 7 in that the current detection units H1 and H2 in FIG. 7 are replaced with current detection units H3 and H4 including resistors R1 and R2 connected in series to the FETs Q1 and Q2, respectively. . For circuit configurations and operations other than those described aboveReference example 3Since this is the same as FIG.
[0058]
  BookReference exampleThen, voltages proportional to the currents flowing through the FETs Q1 and Q2 are generated at both ends of the resistors R1 and R2 respectively connected in series to the FETs Q1 and Q2. The voltages at both ends of the resistors R1 and R2 are input to drive signal generators E1 and E2, respectively. The drive signal generators E1 and E2 are FETs if the voltages at both ends of the resistors R1 and R2 are equal to or higher than a predetermined threshold value. A drive signal for turning on the elements P1 and P2 is output, and a drive signal for turning off the FET elements P1 and P2 is output if the voltage across the resistors R1 and R2 is equal to or lower than a predetermined threshold value.
[0059]
  Book like thisReference exampleCan detect the currents of the FETs Q1 and Q2 by a simple method and generate the drive signals of the FETs Q1 and Q2 using the detection signal.Reference example 2Similarly, the rectification loss can be reduced by turning on the FET elements P1 and P2 for as long as possible during each rectification cycle in which current flows in the FETs Q1 and Q2.
[0060]
    (Reference Example 6)
  Figure 11 is a bookReference Example 6Shows the circuit configuration diagram of the basic circuit configuration and operationReference Example 5In FIG. 11, the resistors R1 and R2 in FIG. 10 are replaced with current detectors H5 and H6 each having resistors R3 and R4 each having a minute resistance value (for example, 10 mΩ), and the drive signal generator E1 is replaced. , E2 is replaced with drive signal generation units E3, E4 each composed of operational amplifiers OP1, OP2. For circuit configurations and operations other than those described aboveReference Example 5Since this is the same as FIG.
[0061]
  BookReference exampleThen, by setting the resistance values of the resistors R3 and R4 connected in series to the FETs Q1 and Q2 to be very small (for example, 10 mΩ),Reference Example 5Compared to the above, the loss at the resistors R3 and R4 is reduced. However, by reducing the resistance values of the resistors R3 and R4, the voltages at both ends of the resistors R3 and R4 are also reduced. Therefore, the voltages at both ends of the resistors R3 and R4 are input to the inverting input terminal and the non-inverting input terminal of the operational amplifiers OP1 and OP2, respectively. Then, the operational amplifiers OP1 and OP2 differentially amplify the voltages at both ends of the resistors R3 and R4 to voltages that can sufficiently drive the FETs Q1 and Q2, and the outputs of the differentially amplified operational amplifiers OP1 and OP2 are applied to the FET elements P1 and P2. Let it be a drive signal.
[0062]
  Book like thisReference exampleThen, the loss in the current detection units H5 and H6 can be reduced.
[0063]
    (Reference Example 7)
  FIG.Reference Example 7The circuit block diagram of is shown. Basic circuit configuration and operationReference example 37 is substantially the same as FIG. 7, and in FIG. 12, the current detection units H1 and H2 of FIG. 7 are replaced with primary coils L4 and L5 and secondary coils L6 and L7, and current transformers CT1 and CT2 secondary coils L6 and L7. Resistors R5 and R6 are respectively connected in parallel, diodes D3 and D4 are respectively connected in series to the secondary coils L6 and L7, and capacitors C6 and C7 are connected in parallel to the resistors R5 and R6 via the diodes D3 and D4. Resistors R7 and R8 and constant voltage diodes ZD1 and ZD2 are replaced with current detection units H7 and H8, respectively, and drive signal generation units E1 and E2 of FIG. 7 are connected in series with diodes D3 and D4, respectively. The difference is that the drive signal generators E5 and E6 are made of AMP2. For circuit configurations and operations other than those described aboveReference example 3Since this is the same as FIG.
[0064]
  Currents flowing through the primary coils L4 and L5 of the current transformers CT1 and CT2 are detected by the secondary coils L6 and L7 of the current transformers CT1 and CT2, respectively, and voltages are generated at both ends of the resistors R5 and R6. Half-wave rectification is performed by diodes D3 and D4. Capacitors C6 and C7 are for noise cut. Resistors R7 and R8 discharge charges accumulated in the capacitors C6 and C7 to make the fall of the input signals of AMP1 and AMP2 steep. The constant voltage diodes ZD1 and ZD2 clamp the half-wave rectified voltage at a constant voltage so that a voltage exceeding the rated voltage of the amplifiers AMP1 and AMP2 is not input to the inputs of the amplifiers AMP1 and AMP2.
[0065]
  Since the FET coils P1 and P2 cannot be driven because the output currents of the secondary coils L6 and L7 of the current transformers CT1 and CT2 are small, they are amplified by the amplifiers AMP1 and AMP2, and the FETs Q1 and Q2 are driven by the amplified drive signals. To do.
[0066]
  Book like thisReference exampleCan detect the currents flowing through the FETs Q1 and Q2, and generate the drive signals for the FETs Q1 and Q2 using the detection signal.Reference example 2Similarly, the rectification loss can be reduced by turning on the FET elements P1 and P2 for as long as possible during each rectification cycle in which current flows in the FETs Q1 and Q2.
[0067]
    (Reference Example 8)
  Using the circuit configuration diagram of FIG.Reference Example 8Will be explained. Basic circuit configuration and operationReference Example 712. In FIG. 13, the amplifiers AMP1 and AMP2 of FIG. 12 are connected to comparators CP1 and CP2 and comparators CP1 and CP2 with reference voltage sources E1 and E2 connected to the inverting input terminals, respectively. The point of replacement is different. For circuit configurations and operations other than those described aboveReference Example 7Since this is the same as FIG.
[0068]
  In this reference example, the outputs of the secondary coils L6 and L7 of the current transformers CT1 and CT2 half-wave rectified by the diodes D3 and D4 are connected to the non-inverting input terminals of the comparators CP1 and CP2, respectively, and the reference voltage source E1 , E2 to the inverting input terminals of the comparators CP1 and CP2, respectively, and by appropriately setting the reference voltages of the reference voltage sources E1 and E2, as long as possible during each rectification cycle in which current flows in the FETs Q1 and Q2. The FET elements P1 and P2 can be turned on to reduce rectification loss.
[0069]
  Figure 14 shows the bookReference exampleShows the current waveform S9 flowing through the FET Q1, the reference voltage M1 of the reference voltage source E1, and the output waveform S10 of the comparator CP1. When the waveform S9 exceeds the reference voltage M1, the waveform S10 becomes H level, When the waveform S9 falls below the reference voltage M1, the waveform S10 becomes L level. Therefore, by appropriately setting the reference voltage M1, the section where the output waveform S10 of the comparator CP1 is at the H level can be widened. The same applies to the FET Q2.
[0070]
  That is, the rectification loss can be reduced by turning on the FET elements P1 and P2 for as long as possible during each rectification cycle in which current flows in the FETs Q1 and Q2.
[0071]
    (Embodiment 1)
  Using the circuit configuration diagram of FIG.Embodiment 1Will be explained. For basic circuit configuration and operationReference Example 8Since it is the same as that, it is omitted.
[0072]
  The current of the FET Q1 having the FET element P1 that has been turned on to perform synchronous rectification smoothly decreases in accordance with the induced electromotive force generated in the secondary coil L2 due to the load matching capacitor C6. . Similarly, the FET Q2 having the FET element P2 that is turned on to perform the next half-cycle synchronous rectification similarly starts to flow through the parasitic diode D2 before the current flowing through the FET Q1 becomes zero because of the capacitor C6. Therefore, the FET elements P1 and P2 may be turned on at the same time, and rectification may not be performed.
[0073]
  So this embodimentIn stateOutputs a drive signal from the comparator CP1 to turn off the FET element P1 that has been turned on until each current flowing through the FETs Q1 and Q2 becomes equal, and turns on the FET element P2 that has been turned off until then. A drive signal is output from the comparator CP2. Similarly, in the reverse half cycle, when the currents flowing through the FETs Q1 and Q2 become equal, a driving signal for turning off the FET element P2 that has been turned on is output from the comparator CP2, and has been turned off until then. A drive signal for turning on the FET element P1 is output from the comparator CP1.
[0074]
  In this way, this embodimentStateAccordingly, the FET elements P1 and P2 are not turned on at the same time, and the secondary side circuit G2 including the heat sink can be reduced in size by reducing the rectification loss.
[0075]
    (Embodiment 2)
  Using the circuit configuration diagram of FIG.Embodiment 2Will be explained. For basic circuit configuration and operationEmbodiment 1Since it is the same as that, it is omitted.
[0076]
  Embodiment 1As described above, when the currents flowing through the FETs Q1 and Q2 become equal, the comparator CP1 outputs a drive signal for turning off the FET element P1 that has been turned on, and the FET element P2 that has been turned off until then. A drive signal for turning on is output from the comparator CP2. Similarly, in the reverse half cycle, when the currents flowing through the FETs Q1 and Q2 become equal, a driving signal for turning off the FET element P2 that has been turned on is output from the comparator CP2, and has been turned off until then. If the driving signal for turning on the FET element P1 is output from the comparator CP1, the FET elements P1 and P2 are not turned on at the same time, and the rectification loss can be reduced.
[0077]
  Therefore, this embodimentIn state13 represents the output voltages obtained by half-wave rectifying the detection signals detected by the current transformers CT1 and CT2 with the diodes D3 and D4 in the circuit configuration of FIG. 13, that is, the output voltages of the constant voltage diodes ZD1 and ZD2, respectively. Reference voltage sources E1 and E2 having reference voltages as output voltages of constant voltage diodes ZD1 and ZD2 when input to the inverting input terminal and the currents flowing through the FETs Q1 and Q2 become equal are the inverting inputs of the comparators CP1 and CP2. By connecting each of the terminals to the input and using the outputs of the comparators CP1 and CP2 as drive signals for the FET elements P1 and P2, the FET elements P1 and P2 are not simultaneously turned on, reducing rectification loss and radiating heat. The secondary circuit G2 including the plate can be reduced in size.
[0078]
  FIG. 15 shows the present embodiment.StateCurrent waveform S11 flowing through FET Q1, reference voltage M2 of reference voltage source E1, output waveform S12 of comparator CP1, current waveform S13 flowing through FET Q2, reference voltage M3 of reference voltage source E2, output waveform S14 of comparator CP2 and Indicates. At time t4 when the magnitude of the current waveform S11 flowing through the FET Q1 is equal to the magnitude of the current waveform S13 flowing through the FET Q2, the output of the comparator CP1 is set to L, the FET element P1 is turned off, and the output of the comparator CP2 is set to H. By turning on the element P2, the FET elements P1 and P2 are not turned on at the same time, and the secondary side circuit G2 including the heat sink can be reduced in size by reducing the rectification loss.
[0079]
    (Embodiment 3)
  Using the circuit configuration diagram of FIG.Embodiment 3Will be explained. For basic circuit configuration and operationReference Example 7Since it is the same as that, it is omitted.
[0080]
  Embodiment 1As described in the above, when the currents flowing through the FETs Q1 and Q2 become equal, the driving signal for turning off the FET Q1 that has been turned on is output from the comparator CP1, and the FET Q2 that has been turned off is turned on. A drive signal is output from the comparator CP2. Similarly, in the reverse half cycle, when the currents flowing through the FETs Q1 and Q2 become equal, a driving signal for turning off the FET Q2 that has been turned on is output from the comparator CP2, and the FET Q1 that has been turned off until then is output. If the driving signal to be turned on is output from the comparator CP1, the FETs Q1 and Q2 are not turned on at the same time, and rectification loss can be reduced.
[0081]
  Therefore, this embodimentIn state12 is an output voltage obtained by half-wave rectifying the detection signals detected by the current transformers CT1 and CT2 with the diodes D3 and D4 when the currents flowing through the FETs Q1 and Q2 become equal in the circuit configuration of FIG. 12, that is, constant voltage diodes ZD1 and ZD2. The output voltages of the FETs P1 and P2 obtained by amplifying the output voltages of the amplifiers AMP1 and AMP2 respectively become voltages that can sufficiently turn on the FET elements P1 and P2, and the primary coil L4 and the secondary of the current transformer CT1. The winding ratio with the coil L6 and the winding ratio between the primary coil L5 and the secondary coil L7 of the current transformer CT2 are set.
[0082]
  FIG. 16 shows the present embodiment.StateDrive signal waveform S15 of FET element P1, current waveform S16 flowing through FET Q1, clamp voltage N1 of constant voltage diode ZD1, drive signal waveform S17 of FET element P2, current waveform S18 flowing through FET Q2, clamp voltage of constant voltage diode ZD2 N2 and a voltage K that can sufficiently turn on the FET elements P1 and P2. At time t5 when the magnitude of the current waveform S16 flowing through the FET Q1 is equal to the magnitude of the current waveform S18 flowing through the FET Q2, the drive signal waveform S15 of the FET element P1 drops below the voltage K that can sufficiently turn on the FET elements P1 and P2, and the FET element. P1 is turned off, and the drive signal waveform S17 of the FET element P2 exceeds the voltage K that can sufficiently turn on the FET elements P1 and P2, and the FET element P2 is turned on so that the FET elements P1 and P2 are not turned on at the same time. The secondary side circuit G2 including the heat sink can be reduced in size by reducing the rectification loss.
[0083]
  The waveforms S15 and S17 are clamped to the clamp voltages N1 and N2 of the constant voltage diodes ZD1 and ZD2.
[0084]
    (Reference Example 9)
  As shown in the circuit configuration diagram of FIG. 1, when half-wave rectification is performed using one synchronous rectification FET Q1, in order to reduce the rectification loss in FET Q1, as long as possible during the rectification cycle in which current flows in FET Q1. It is necessary to turn on the FET element P1 of the FET Q1.
[0085]
  The current detection unit H1 and the drive signal generation unit E1 in FIG. 1 are respectively replaced with the current detection unit H9 and the drive signal generation unit E7 in FIG. 13, and connected to the inverting input terminal of the comparator CP1 of the drive signal generation unit E7. By making the reference voltage of the reference voltage source E1 close to 0V, the comparator CP1 outputs a drive signal for turning on the FET element P1 for as long as possible during the rectification cycle, thereby reducing the rectification loss in the FET Q1. Thus, the secondary circuit G2 including the heat sink can be reduced in size.
[0086]
  For circuit configurations and operations other than the above,Reference Examples 1 and 8The explanation is omitted here.
[0087]
    (Reference Example 10)
  As shown in the circuit configuration diagram of FIG. 1, when half-wave rectification is performed using one synchronous rectification FET Q1, in order to reduce the rectification loss in FET Q1, as long as possible during the rectification cycle in which current flows in FET Q1. It is necessary to turn on the FET element P1 of the FET Q1.
[0088]
  The current detection unit H1 and the drive signal generation unit E1 in FIG. 1 are respectively replaced with the current detection unit H7 and the drive signal generation unit E5 in FIG. 12, and the primary coil L4 and the secondary coil of the current transformer CT1 of the current detection unit H7 are replaced. By increasing the turn ratio of the coil L5, even when the current flowing through the primary coil L4 of the current transformer CT1 is small, the induced voltage of the secondary coil L5 increases, and the drive signal that can turn on the FET element P1 of the FET Q1 is an amplifier AMP1. Is output from. Therefore, the rectifying element P1 is turned on as long as possible during the rectification cycle, and the secondary side circuit G2 including the heat sink can be reduced in size by reducing the rectification loss in the FET Q1.
[0089]
  For circuit configurations and operations other than the above,Reference Examples 1 and 7The explanation is omitted here.
[0090]
【The invention's effect】
  The invention according to claim 1 is a power supply section that supplies a DC power supply, an inverter section that converts the DC power supply to a high-frequency power supply, a primary coil that is supplied with high-frequency power from the inverter section, and power that is received from the primary coil A secondary side circuit configured to be separable from the primary coil of the transformer, the secondary coil, a load matching capacitor connected in parallel to the secondary coil, and the Non-contact power having a secondary side circuit composed of a rectifying unit that rectifies the output voltage of the secondary coilTransmissionIn the deviceThe secondary coil of the transformer includes a center tap, and includes first and second synchronous rectification elements including a switching element and a diode reversely connected in parallel to the switching element, and the secondary coil of the transformer Full-wave rectification by connecting each other end not connected to the secondary coil of the transformer of the first and second synchronous rectification elements connected in series and in opposite directions to both output ends which are not center taps The current flowing through the first synchronous rectification element that has been conducted earlier and has finished rectification, and the rectification section that constitutes a section, a current detection section that detects a current flowing through the first and second synchronous rectification elements The switching element of the first synchronous rectification element is turned off at a time when the value and the current value starting to flow through the diode of the second synchronous rectification element to be conducted for the next rectification become equal to each other That has a first drive signal generator for outputting a driving signal, and a second drive signal generator for outputting a driving signal to turn on the switching elements of the second synchronous rectifierThis is advantageous in that the rectification loss of the secondary circuit can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.In addition, full-wave rectification has an effect of performing efficient rectification with less loss than half-wave rectification. Furthermore, there is an effect that the rectification loss of the secondary circuit can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.
[0091]
  The invention of claim 2 is the invention of claim 1,A drive signal for the switching element of the first synchronous rectification element is generated from a detection signal of the one current detection unit, and the drive signal for the switching element of the second synchronous rectification element is the switching signal of the first synchronous rectification element. It is characterized in that it is an inverted signal of the drive signal of the element, and it is possible to simplify the drive signal generation unit, and there is an effect that the cost can be reduced and the size can be reduced.
[0092]
  The invention of claim 3 is the invention of claim 1 or 2,The current detection unit includes a current detection resistor connected in series to the synchronous rectification element, and the drive signal generation unit switches the switching element of the synchronous rectification element based on a voltage generated at both ends of the current detection resistor. The driving signal is generated, and the current detection unit can be configured with a simple circuit configuration.
[0093]
  The invention of claim 4 is the invention of claim 3,The resistance value of the current detection resistor is such that the voltage across the current detection resistor generated with respect to the current flowing through the current detection resistor can drive the switching element of the synchronous rectification element in the drive signal generation unit The resistance value is a minimum voltage that can be amplified to a voltage, and there is an effect that the loss in the current detection unit can be reduced.
[0094]
  The invention of claim 5 is the invention of claim 1 or 2, whereinThe current detection unit includes a current transformer including a primary coil and a secondary coil connected in series to the synchronous rectification element, a resistor connected in parallel to both ends of the secondary coil of the current transformer, and both ends of the resistor A rectifier diode connected in series with a secondary coil of the current transformer to rectify the voltage between the current transformer and the drive signal generator based on the output of the current detector output from the rectifier diode. A drive signal for the switching element of the synchronous rectification element is generated, and the rectification loss of the secondary side circuit can be reduced.
[0095]
  The invention of claim 6 is the invention according to any one of claims 1 to 5,The drive signal generation unit compares the output of the current detection unit with a reference voltage, and generates a drive signal of the switching element of the synchronous rectification element based on the comparison result. There is an effect that the rectification loss can be reduced, the size of the heat sink of the rectification unit can be reduced, and the efficiency of the entire circuit can be increased.
[0096]
  The invention of claim 7 is the invention according to any one of claims 1 to 6,The first and second drive signal generation units include a current value flowing through the first synchronous rectification element that has been turned on and has finished rectification, and a second synchronous rectification that should be turned on for the next rectification. A reference voltage that is the same voltage as the output voltage of the current detection unit at a time when the current values that start to flow through the element diodes are equal to each other, and a detection signal of the current detection unit are compared, and based on the comparison result, It is characterized in that it generates a drive signal for the switching element of the synchronous rectifying element, reduces the rectification loss of the secondary side circuit, reduces the size of the heat sink of the rectifying unit, and increases the efficiency of the entire circuit There is.
[0097]
  The invention of claim 8 is the invention according to any one of claims 1 to 6,The second drive signal generation unit includes a current value flowing through the first synchronous rectification element that has been turned on and finished rectification, and a diode of the second synchronous rectification element that should be turned on for the next rectification. And output a drive signal amplified to a voltage that can turn on the switching element of the second synchronous rectification element at a time when the current value starting to flow is equal to each other. This reduces the size of the radiating plate of the rectifying unit, and can increase the efficiency of the entire circuit.
[0098]
  The invention of claim 9 is the invention according to any one of claims 1 to 8,The inverter part is composed of a half-bridge inverter having a switching element, and the switching element performs zero volt switching, and the rectification loss of the secondary side circuit can be reduced and the size of the heat sink of the rectification part can be reduced. There is an effect that the efficiency of the entire circuit can be increased.
[Brief description of the drawings]
FIG. 1 of the present inventionReference examples 1, 9, 10FIG.
FIG. 2 of the present inventionReference example 1It is a figure which shows the current waveform which flows into FET of this.
FIG. 3 of the present inventionReference example 2FIG.
FIG. 4 of the present inventionReference example 2FIG.
FIG. 5 shows the present invention.Reference example 2It is a figure which shows the switching operation | movement of FET element.
FIG. 6 of the present inventionReference example 2FIG.
[Fig. 7] of the present invention.Reference example 3FIG.
[Fig. 8] of the present inventionReference example 3FIG.
FIG. 9 shows the present invention.Reference example 4FIG.
FIG. 10 shows the present invention.Reference Example 5FIG.
FIG. 11 shows the present invention.Reference Example 6FIG.
FIG. 12 shows the present invention.Embodiment 3, Reference Example 7FIG.
FIG. 13 shows the present invention.Embodiments 1 and 2, Reference Example 8FIG.
FIG. 14 shows the present invention.Reference Example 8It is a figure which shows the switching operation | movement of.
FIG. 15 shows the present invention.Embodiment 2It is a figure which shows the switching operation | movement of.
FIG. 16 shows the present invention.Embodiment 3It is a figure which shows no switching operation.
[Explanation of symbols]
  A Power supply
  B Inverter part
  C1 capacitor
  D1 Parasitic diode
  E1 Drive signal generator
  F Smoothing part
  G1 Primary side circuit
  G2 secondary circuit
  H1 Current detector
  L1 primary coil
  L2 secondary coil
  P1 FET element
  Q1 FET
  T1 transformer

Claims (9)

直流電源を供給する電源部と、前記直流電源を高周波電源に変換するインバータ部と、前記インバータ部から高周波電力を供給される1次コイルと1次コイルから受電した電力を出力する2次コイルとが分離可能なトランスの前記1次コイルとで構成される1次側回路と、前記2次コイルと、前記2次コイルに並列に接続される負荷整合用コンデンサ及び前記2次コイルの出力電圧を整流する整流部とで構成される2次側回路とを有する非接触電力伝達装置において、
前記トランスの2次コイルはセンタータップを備え、
スイッチング素子及び前記スイッチング素子に並列に逆接続されたダイオードとからなる第1,第2の同期整流要素を具備して、前記トランスの2次コイルのセンタータップではない両出力端に直列に且つ互いに逆方向に接続する前記第1,第2の同期整流要素の前記トランスの2次コイルに接続していない各他端同士を接続して全波整流部を構成した前記整流部と、
前記第1,第2の同期整流要素に流れる電流を検出する電流検知部と、
先に導通し整流を終了しつつある前記第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき前記第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻に、前記第1の同期整流要素のスイッチング素子をオフにする駆動信号を出力する第1の駆動信号生成部と、前記第2の同期整流要素のスイッチング素子をオンにする駆動信号を出力する第2の駆動信号生成部とを有する
ことを特徴とする非接触電力伝達装置。
A power supply unit that supplies a DC power supply, an inverter unit that converts the DC power supply to a high-frequency power source, a primary coil that is supplied with high-frequency power from the inverter unit, and a secondary coil that outputs the power received from the primary coil; A primary circuit composed of the primary coil of the separable transformer, the secondary coil, a load matching capacitor connected in parallel to the secondary coil, and an output voltage of the secondary coil. In a non-contact power transmission device having a secondary circuit composed of a rectifying unit that rectifies,
The secondary coil of the transformer includes a center tap,
The first and second synchronous rectifying elements, each of which includes a switching element and a diode reversely connected in parallel to the switching element, are connected in series to both output ends that are not center taps of the secondary coil of the transformer, and to each other. The rectification unit configured by connecting the other ends not connected to the secondary coil of the transformer of the first and second synchronous rectification elements connected in the reverse direction to form a full-wave rectification unit;
A current detection unit for detecting a current flowing through the first and second synchronous rectification elements;
The current value that flows through the first synchronous rectification element that has been turned on first and ends rectification, and the current value that starts to flow through the diode of the second synchronous rectification element that should be turned on for the next rectification A drive signal generating section for outputting a drive signal for turning off the switching element of the first synchronous rectification element, and a drive signal for turning on the switching element of the second synchronous rectification element at the same time; A non-contact power transmission device comprising: a second drive signal generation unit for outputting.
一つの前記電流検知部の検出信号より前記第1の同期整流要素のスイッチング素子の駆動信号を生成し、前記第2の同期整流要素のスイッチング素子の駆動信号は前記第1の同期整流要素のスイッチング素子の駆動信号の反転信号とすることを特徴とする請求項1記載の非接触電力伝達装置。A drive signal for the switching element of the first synchronous rectification element is generated from a detection signal of the one current detection unit, and the drive signal for the switching element of the second synchronous rectification element is the switching signal of the first synchronous rectification element. The non-contact power transmission device according to claim 1, wherein the non-contact power transmission device is an inverted signal of an element drive signal. 前記電流検知部は、前記同期整流要素に直列に接続した電流検出用抵抗からなり、前記電流検出用抵抗の両端に発生する電圧に基づいて前記駆動信号生成部にて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とする請求項1または2記載の非接触電力伝達装置。The current detection unit includes a current detection resistor connected in series to the synchronous rectification element, and the drive signal generation unit switches the switching element of the synchronous rectification element based on a voltage generated at both ends of the current detection resistor. The non-contact power transmission device according to claim 1, wherein the driving signal is generated. 前記電流検出用抵抗の抵抗値は、前記電流検出用抵抗に流れる電流に対して発生する前記電流検出用抵抗の両端の電圧が前記駆動信号生成部にて前記同期整流要素のスイッチング素子を駆動できる電圧にまで増幅できる最小の電圧になる抵抗値であることを特徴とする請求項3記載の非接触電力伝達装置。The resistance value of the current detection resistor is such that the voltage across the current detection resistor generated with respect to the current flowing through the current detection resistor can drive the switching element of the synchronous rectification element in the drive signal generation unit The non-contact power transmission device according to claim 3, wherein the resistance value is a minimum voltage that can be amplified to a voltage. 前記電流検知部は、前記同期整流要素に直列に接続した1次コイル及び2次コイルとからなるカレントトランスと、前記カレントトランスの2次コイルの両端に並列に接続した抵抗と、前記抵抗の両端間の電圧を整流するために前記カレントトランスの2次コイルに直列に接続した整流ダイオードとから構成され、前記整流ダイオードから出力される前記電流検知部の出力に基づいて駆動信号生成部にて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とする請求項1または2記載の非接触電力伝達装置。The current detection unit includes a current transformer including a primary coil and a secondary coil connected in series to the synchronous rectification element, a resistor connected in parallel to both ends of the secondary coil of the current transformer, and both ends of the resistor A rectifier diode connected in series with a secondary coil of the current transformer to rectify the voltage between the current transformer and the drive signal generator based on the output of the current detector output from the rectifier diode. The non-contact power transmission device according to claim 1, wherein a driving signal for the switching element of the synchronous rectification element is generated. 前記駆動信号生成部は、前記電流検知部の出力と基準電圧とを比較し、前記比較結果に基づいて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とする請求項1乃至5いづれか記載の非接触電力伝達装置。6. The drive signal generation unit compares the output of the current detection unit and a reference voltage, and generates a drive signal of a switching element of the synchronous rectification element based on the comparison result. The non-contact power transmission device described in any one. 前記第1及び第2の駆動信号生成部は、先に導通し整流を終了しつつある第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻における前記電流検知部の出力電圧と同じ電圧である基準電圧と、前記電流検知部の検出信号とを比較し、前記比較結果に基づいて前記同期整流要素のスイッチング素子の駆動信号を生成することを特徴とする請求項1乃至6いづれか記載の非接触電力伝達装置。The first and second drive signal generation units include a current value flowing through the first synchronous rectification element that has been turned on and has finished rectification, and a second synchronous rectification that should be turned on for the next rectification. A reference voltage that is the same voltage as the output voltage of the current detection unit at a time when current values that start to flow through the element diodes are equal to each other, and a detection signal of the current detection unit are compared, and based on the comparison result, 7. The non-contact power transmission device according to claim 1, wherein a drive signal for the switching element of the synchronous rectification element is generated. 前記第2の駆動信号生成部は、先に導通し整流を終了しつつある第1の同期整流要素を流れる電流値と、次の整流のために導通を行うべき第2の同期整流要素のダイオードに流れ始める電流値とが相等しくなる時刻に、前記第2の同期整流要素のスイッチング素子をオンにできる電圧にまで増幅した駆動信号を出力することを特徴とする請求項1乃至6いづれか記載の非接触電力伝達装置。The second drive signal generation unit includes a current value flowing through the first synchronous rectification element that has been turned on and finished rectification, and a diode of the second synchronous rectification element that should be turned on for the next rectification. 7. The drive signal amplified to a voltage at which the switching element of the second synchronous rectification element can be turned on is output at a time when the current value starting to flow is equal to each other. Non-contact power transmission device. 前記インバータ部は、スイッチング素子を有するハーフブリッジのインバータからなり、前記スイッチング素子はゼロボルトスイッチングを行うことを特徴とする請求項1乃至8いづれか記載の非接触電力伝達装置。The non-contact power transmission apparatus according to claim 1, wherein the inverter unit includes a half-bridge inverter having a switching element, and the switching element performs zero-volt switching.
JP2000124565A 2000-04-25 2000-04-25 Non-contact power transmission device Expired - Lifetime JP4140169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124565A JP4140169B2 (en) 2000-04-25 2000-04-25 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124565A JP4140169B2 (en) 2000-04-25 2000-04-25 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2001309580A JP2001309580A (en) 2001-11-02
JP4140169B2 true JP4140169B2 (en) 2008-08-27

Family

ID=18634677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124565A Expired - Lifetime JP4140169B2 (en) 2000-04-25 2000-04-25 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP4140169B2 (en)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234893A1 (en) 2002-07-26 2004-02-12 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Device with a stationary and a movable component and a device for the simultaneous transmission of electrical energy and information between these components
JP2005278270A (en) * 2004-03-24 2005-10-06 Shindengen Electric Mfg Co Ltd Rectifying device
JP4533654B2 (en) * 2004-04-02 2010-09-01 有限会社大分Tlo Power supply
KR100547289B1 (en) * 2005-05-18 2006-01-26 주식회사 피에스텍 Synchronous rectifier type series resonant converter for operating in intermittence mode
CN101258658B (en) 2005-07-12 2012-11-14 麻省理工学院 Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US8278784B2 (en) * 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
US8947041B2 (en) * 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
US8532724B2 (en) 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
CN102239633B (en) 2008-09-27 2017-01-18 韦特里西提公司 Wireless energy transfer systems
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
EP2345100B1 (en) 2008-10-01 2018-12-05 Massachusetts Institute of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP5577896B2 (en) * 2009-10-07 2014-08-27 Tdk株式会社 Wireless power supply apparatus and wireless power transmission system
US8878394B2 (en) 2010-02-25 2014-11-04 Qualcomm Incorporated Wireless power receiver
EP2421122A1 (en) * 2010-08-13 2012-02-22 Hochschule Für Angewandte Wissenschaften FH München Wireless energy transmission with weakly coupled resonators
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
WO2012049911A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Charge/discharge circuit
KR20120102316A (en) 2011-03-08 2012-09-18 삼성전자주식회사 System for wireless power transmission and reception
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
CN108418314A (en) * 2011-08-04 2018-08-17 韦特里西提公司 Tunable radio source framework
KR101880258B1 (en) 2011-09-09 2018-07-19 위트리시티 코포레이션 Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
AT512069B1 (en) * 2011-10-31 2016-01-15 Fronius Int Gmbh RESISTANCE WELDING DEVICE
JP2015502729A (en) 2011-11-04 2015-01-22 ワイトリシティ コーポレーションWitricity Corporation Wireless energy transfer modeling tool
EP2808979B1 (en) * 2012-01-26 2021-06-30 Pioneer Corporation Power transmitting apparatus and power transmitting method
JP2015508987A (en) 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation Wireless energy transmission with reduced field
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
KR102042020B1 (en) * 2012-11-26 2019-11-07 삼성전자주식회사 Wireless power receiver
JP2014112993A (en) * 2012-12-05 2014-06-19 Nec Lighting Ltd Rectifier circuit and rectification method
JP2016534698A (en) 2013-08-14 2016-11-04 ワイトリシティ コーポレーションWitricity Corporation Impedance tuning
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
WO2015161035A1 (en) 2014-04-17 2015-10-22 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
EP3140680B1 (en) 2014-05-07 2021-04-21 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
JP6518316B2 (en) 2014-07-08 2019-05-22 ワイトリシティ コーポレーションWitricity Corporation Resonator Balancing in Wireless Power Transfer Systems
JPWO2016006386A1 (en) * 2014-07-10 2017-04-27 三菱電機株式会社 Control device and control method for rotating electrical machine for vehicle
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
KR102428009B1 (en) * 2015-06-08 2022-08-02 주식회사 위츠 Wireless power transmitter
US10170937B2 (en) * 2015-07-24 2019-01-01 Qualcomm Incorporated Devices, systems, and methods for adjusting output power using synchronous rectifier control
WO2017062647A1 (en) 2015-10-06 2017-04-13 Witricity Corporation Rfid tag and transponder detection in wireless energy transfer systems
EP3362804B1 (en) 2015-10-14 2024-01-17 WiTricity Corporation Phase and amplitude detection in wireless energy transfer systems
WO2017070227A1 (en) 2015-10-19 2017-04-27 Witricity Corporation Foreign object detection in wireless energy transfer systems
WO2017070009A1 (en) 2015-10-22 2017-04-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
JP6519456B2 (en) * 2015-11-30 2019-05-29 株式会社デンソー Push-pull DC / DC converter
EP3462574B1 (en) 2016-02-02 2021-11-17 WiTricity Corporation Controlling wireless power transfer systems
KR102612384B1 (en) 2016-02-08 2023-12-12 위트리시티 코포레이션 PWM capacitor control
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
WO2021029018A1 (en) * 2019-08-13 2021-02-18 オムロン株式会社 Controller for dc-dc converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115766A (en) * 1993-10-15 1995-05-02 Shindengen Electric Mfg Co Ltd Rectifying circuit for switching power source
JPH0879976A (en) * 1994-09-07 1996-03-22 Tdk Corp Non-contact type charger
JPH08275518A (en) * 1995-03-28 1996-10-18 Fujitsu Ltd Synchronous rectifier circuit
JPH10164837A (en) * 1996-11-26 1998-06-19 Sony Corp Power supply
JPH1169802A (en) * 1997-08-06 1999-03-09 Fujitsu Denso Ltd Synchronous rectification circuit

Also Published As

Publication number Publication date
JP2001309580A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
JP4140169B2 (en) Non-contact power transmission device
US10574135B2 (en) Zero current detection circuit for bridgeless totem pole power factor correction converter and bridgeless totem pole power factor correction converter
TWI406491B (en) Vrms and rectified current sense full-bridge synchronous-rectification integrated with pfc
US5715155A (en) Resonant switching power supply circuit
US6751107B2 (en) DC power supply device with constant power output level
JP3906722B2 (en) Contactless power supply system
US7301785B2 (en) Switching power supply circuit
US9742264B2 (en) Boost inductor demagnetization detection for bridgeless boost PFC converter operating in boundary-conduction mode
JP6859034B2 (en) Circuits and methods for synchronous rectification in resonant transducers
TWI445297B (en) Power supply
JP2016540479A (en) Wireless transmission of line frequency and line voltage AC
JP3906708B2 (en) Non-contact power transmission device
CN104094514A (en) Controlled rectifier with b2 bridge and only one switching device
CN108023411B (en) Single-phase non-contact power supply system with power factor correction function
CN100413194C (en) Method for controlling DC-DC converter
EP1102387A2 (en) DC power supply apparatus
JP4103312B2 (en) Power supply
JP4258939B2 (en) Non-contact power transmission device
KR101843369B1 (en) Magnetic inductive power pick-up apparatus
Jadhav et al. Design and Implementation of Resonance based Wireless Power Transfer System
JP3757756B2 (en) Inverter device
JP2677738B2 (en) Switching regulator
JP3610842B2 (en) Power supply device
JPS628155Y2 (en)
JP3231498B2 (en) DC power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4140169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term