JP4021931B1 - High frequency step-up transformer for fluorescent tubes - Google Patents

High frequency step-up transformer for fluorescent tubes Download PDF

Info

Publication number
JP4021931B1
JP4021931B1 JP2007102870A JP2007102870A JP4021931B1 JP 4021931 B1 JP4021931 B1 JP 4021931B1 JP 2007102870 A JP2007102870 A JP 2007102870A JP 2007102870 A JP2007102870 A JP 2007102870A JP 4021931 B1 JP4021931 B1 JP 4021931B1
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
coil
transformer
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102870A
Other languages
Japanese (ja)
Other versions
JP2008262977A (en
Inventor
薫明 渡辺
Original Assignee
薫明 渡辺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 薫明 渡辺 filed Critical 薫明 渡辺
Priority to JP2007102870A priority Critical patent/JP4021931B1/en
Priority to PCT/JP2007/072367 priority patent/WO2008129714A1/en
Application granted granted Critical
Publication of JP4021931B1 publication Critical patent/JP4021931B1/en
Publication of JP2008262977A publication Critical patent/JP2008262977A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/08High-leakage transformers or inductances
    • H01F38/10Ballasts, e.g. for discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations

Abstract

【課題】 液晶表示パネルのバックライトとして用いられる並列配置された複数の蛍光管を点灯させるための蛍光管用高周波昇圧トランスを提供する。
【解決手段】
本発明は、ひとつの主磁気回路ループに入力用の一次コイル21と出力用の複数の二次コイル22を巻き回し、放電開始電圧にバラツキのある蛍光管40を並列点灯させ、さらには放電開始電圧と点灯電圧の電圧差を吸収するためにそれぞれの二次コイル22に分流用磁性体26、27,28を取り付けたことを特徴とする蛍光管用高周波昇圧トランス13である。この分流用磁性体26、27,28の付加により、等価的に各出力に直列に発生する分流磁束インダクタンスにより放電開始電圧と点灯電圧の差を吸収するとともに、簡素な構成で多数本の並列点灯、各出力間の電流バラツキの低減を実現するものである。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a high frequency step-up transformer for a fluorescent tube for lighting a plurality of fluorescent tubes arranged in parallel used as a backlight of a liquid crystal display panel.
[Solution]
In the present invention, a primary coil 21 for input and a plurality of secondary coils 22 for output are wound around one main magnetic circuit loop, the fluorescent tubes 40 having variations in the discharge start voltage are lit in parallel, and the discharge is started. This is a fluorescent tube high-frequency step-up transformer 13 characterized in that shunt magnetic bodies 26, 27, and 28 are attached to the respective secondary coils 22 in order to absorb the voltage difference between the voltage and the lighting voltage. With the addition of the magnetic materials for shunting 26, 27, and 28, the difference between the discharge start voltage and the lighting voltage is absorbed by the shunt magnetic flux inductance that is equivalently generated in series with each output, and a large number of parallel lighting is performed with a simple configuration. The current variation between the outputs is reduced.
[Selection] Figure 1

Description

この発明は液晶表示パネルのバックライトとして用いられる並列配置された複数の蛍光管を点灯させるための蛍光管用高周波昇圧トランスに関する。   The present invention relates to a fluorescent tube high-frequency step-up transformer for lighting a plurality of fluorescent tubes arranged in parallel used as a backlight of a liquid crystal display panel.

最近の大画面液晶表示パネルでは、バックライト用として多数の蛍光管がパネル背面に並列配置されている。これらの蛍光管を高周波、高電圧で点灯するための蛍光管用高周波昇圧トランスも複数個必要とされ、実装面積の増加、信頼性の低下、並列配置された蛍光管の電流バラツキによる輝度ムラの発生、あるいは電流バラツキを低減するためにバランス回路などを付け加えることによる点灯回路の複雑化などの問題を抱えている。   In recent large-screen liquid crystal display panels, a large number of fluorescent tubes are arranged in parallel on the back of the panel for backlighting. Multiple fluorescent tube high-frequency step-up transformers for lighting these fluorescent tubes at high frequency and high voltage are also required, resulting in increased mounting area, reduced reliability, and uneven brightness due to current variations in the fluorescent tubes arranged in parallel. Or, there is a problem such as complication of a lighting circuit by adding a balance circuit or the like in order to reduce current variation.

液晶表示パネルのバックライト用として用いられる蛍光管を放電、点灯させるためには、通常1500Vrmsから3000Vrmsの高周波の高電圧を印加し放電状態に持ち込む必要がある。蛍光管は放電開始後、管の電圧が放電開始電圧の1/2から1/3に低下し点灯状態に入る。複数の蛍光管を並列に接続し点灯させる場合、印加電圧を徐々に上げていくと、それぞれの蛍光管の放電開始電圧にバラツキがあるため、並列接続された複数の蛍光管のうち最も放電開始電圧が低い蛍光管が放電を開始し、点灯状態に入る。そのとき、並列接続された複数の蛍光管の接続点の電圧は、すでに点灯状態にある蛍光管の点灯電圧まで低下しているために、残りの蛍光管は放電を開始できず、点灯状態に入ることができない。すなわち、並列に接続された蛍光管の点灯においては、点灯電圧が一番低い蛍光管のみが点灯し、残りの蛍光管は点灯できないという現象が生じる。   In order to discharge and light a fluorescent tube used for a backlight of a liquid crystal display panel, it is necessary to apply a high voltage of high frequency of 1500 Vrms to 3000 Vrms and bring it into a discharge state. After the discharge starts, the fluorescent tube voltage is reduced from 1/2 to 1/3 of the discharge start voltage and enters a lighting state. When connecting multiple fluorescent tubes in parallel and lighting them, if the applied voltage is gradually increased, the discharge start voltage of each fluorescent tube will vary, so the discharge start is the most among the multiple fluorescent tubes connected in parallel. A fluorescent tube with a low voltage starts discharging and enters a lighting state. At that time, since the voltage at the connection point of the plurality of fluorescent tubes connected in parallel has decreased to the lighting voltage of the fluorescent tube already in the lighting state, the remaining fluorescent tubes cannot start discharging, and are in the lighting state. I can't enter. That is, when the fluorescent tubes connected in parallel are lit, only the fluorescent tube having the lowest lighting voltage is lit, and the remaining fluorescent tubes cannot be lit.

先ず、液晶表示パネルのバックライト蛍光管の並列点灯用に用いられる蛍光管用高周波昇圧トランスの概要について述べる。図10は従来の複数蛍光管点灯回路の一例を示す図である。図10において、直流入力電圧11Dを高周波、高電圧に変換するインバータ回路12に印加し、インバータ回路12の2次側の交流出力を蛍光管用高周波昇圧トランス13の一次側巻線21に印加し、蛍光管用高周波昇圧トランス13の2次側巻線22の出力電圧をインピーダンス14を介して複数の蛍光管40に印加する。以下に、この従来の複数蛍光管点灯回路について詳細に説明する。   First, an outline of a high-frequency step-up transformer for a fluorescent tube used for parallel lighting of backlight fluorescent tubes of a liquid crystal display panel will be described. FIG. 10 shows an example of a conventional multiple fluorescent tube lighting circuit. In FIG. 10, the DC input voltage 11D is applied to the inverter circuit 12 for converting the high frequency to the high voltage, the AC output on the secondary side of the inverter circuit 12 is applied to the primary side winding 21 of the fluorescent tube high frequency step-up transformer 13, The output voltage of the secondary winding 22 of the fluorescent tube high-frequency step-up transformer 13 is applied to the plurality of fluorescent tubes 40 via the impedance 14. The conventional multiple fluorescent tube lighting circuit will be described in detail below.

(1)電流制限インピーダンス
蛍光管の電流電圧特性の一例を図11に示す。図11において、蛍光管40に印加される電圧を徐々に上げてゆくと、放電開始電圧VMを超えたところで蛍光管が放電状態となり、電源との間に入った制限抵抗による負荷直線との交点Pを動作点として点灯状態となる。この放電開始電圧VMと点灯電圧Vの電圧差を吸収するために、蛍光管と電源の間に電流制限用インピーダンスを挿入する必要がある。この電流制限用インピーダンスには、電力損失を避けるため、通常、コンデンサあるいはインダクタなどのリアクタンス素子が用いられる。複数蛍光管点灯回路としては、リアクタンス素子としてコンデンサを用いたバラストコンデンサ方式と、リアクタンス素子として蛍光管用高周波昇圧トランスの一次コイル、二次コイル間の漏れ磁束を利用して、等価的に二次コイル出力に直列に現れる漏洩磁束インダクタンスを用いた漏洩磁束インダクタンス方式とがある。
(1) Current-limiting impedance FIG. 11 shows an example of current-voltage characteristics of a fluorescent tube. 11, when gradually increasing the voltage applied to the fluorescent tube 40, the fluorescent tube becomes a discharge state in beyond the discharge starting voltage V M, the load line by the limiting resistor that has entered between the power supply Lights up with the intersection P as the operating point. In order to absorb the voltage difference between the discharge start voltage V M and the lighting voltage V 0 , it is necessary to insert a current limiting impedance between the fluorescent tube and the power source. In order to avoid power loss, a reactance element such as a capacitor or an inductor is usually used as the current limiting impedance. As the multiple fluorescent tube lighting circuit, a secondary coil is equivalently obtained by using a ballast capacitor system using a capacitor as a reactance element and a leakage flux between a primary coil and a secondary coil of a high-frequency step-up transformer for a fluorescent tube as a reactance element. There is a leakage flux inductance method using a leakage flux inductance appearing in series with the output.

(2)放電開始電圧のバラツキ
蛍光管の放電開始電圧は管ごとにバラツキがあり、複数の蛍光管を並列に接続し電流制限インピーダンスを共通にして電圧を徐々に上げて行くと、先ず放電開始電圧Vの最も低い蛍光管が点灯する。そのときに蛍光管の並列接続点の電圧は点灯電圧Vまで低下するため、他の蛍光管は点灯状態に入ることが出来ない。従って、蛍光管の並列点灯のためには、図10に示すように、それぞれの蛍光管ごとに電流制限インピーダンスを入れる必要がある。
(2) Dispersion of discharge start voltage The discharge start voltage of the fluorescent tube varies from tube to tube. When a plurality of fluorescent tubes are connected in parallel and the voltage is gradually increased with a common current limiting impedance, the discharge starts first. the lowest fluorescent tube voltage V M is turned on. At that time, since the voltage at the parallel connection point of the fluorescent tubes is lowered to the lighting voltage V 0 , the other fluorescent tubes cannot enter the lighting state. Therefore, for the parallel lighting of the fluorescent tubes, it is necessary to put a current limiting impedance for each fluorescent tube as shown in FIG.

(3)並列配置された蛍光管の点灯電流バラツキ
並列配置された蛍光管ごとに電流のバラツキがあると、バックライトとして明暗の輝度ムラが生じるため、管に流れる電流バラツキを極力抑えなければならない。
(3) Variation in lighting current of fluorescent tubes arranged in parallel If there is a variation in current between fluorescent tubes arranged in parallel, brightness unevenness occurs as a backlight, so the variation in current flowing in the tube must be suppressed as much as possible. .

以下に、現在、主に用いられている液晶表示パネルのバックライト用蛍光管の並列点灯方式であるバラストコンデンサ方式および漏洩磁束インダクタンス方式について説明しそれらの問題に触れる。   Hereinafter, the ballast capacitor method and the leakage flux inductance method, which are the parallel lighting methods of the fluorescent tubes for backlights of liquid crystal display panels, which are currently used mainly, will be described and their problems will be described.

図12は、並列点灯用バラストコンデンサ方式の基本回路を示す図である。図12に示すように、この並列点灯用バラストコンデンサ方式は、直流入力電圧11Dを高周波、高電圧に変換するインバータ回路12、蛍光管用高周波昇圧トランス13、複数の蛍光管40、および蛍光管用高周波昇圧トランス13と各蛍光管40間に電流制限素子として挿入されたバラストコンデンサ15から構成される。蛍光管用高周波昇圧トランス13の出力電圧は蛍光管の放電開始電圧のバラツキの最大値よりも高い電圧に設定される。蛍光管の点灯状態における等価抵抗をRとすると、インバータ回路の出力正弦波電圧の周波数をf、コンデンサ容量をC、蛍光管用高周波昇圧トランスの出力電圧をVoとして蛍光管に流れる電流Iは
I=2πf・C・Vo/√{(2πf・C・R)2+1}
で与えられる。
FIG. 12 is a diagram showing a basic circuit of a parallel lighting ballast capacitor system. As shown in FIG. 12, this parallel lighting ballast capacitor system is an inverter circuit 12 that converts a DC input voltage 11D into a high frequency and a high voltage, a high frequency boost transformer for fluorescent tubes 13, a plurality of fluorescent tubes 40, and a high frequency boost for fluorescent tubes. The ballast capacitor 15 is inserted between the transformer 13 and each fluorescent tube 40 as a current limiting element. The output voltage of the fluorescent tube high-frequency step-up transformer 13 is set to a voltage higher than the maximum value of the variation in the discharge start voltage of the fluorescent tube. Assuming that the equivalent resistance in the lighting state of the fluorescent tube is R, the current I flowing through the fluorescent tube is I = I = the frequency of the output sine wave voltage of the inverter circuit is f, the capacitor capacity is C, and the output voltage of the high frequency boost transformer for fluorescent tube is Vo. 2πf · C · Vo / √ {(2πf · C · R) 2 +1}
Given in.

バラストコンデンサ容量15と蛍光管電流Iの関係をf=50KHz,R=50KΩ、
Vo=2000Vとして計算した結果を図13に示す。バラストコンデンサとして用いられる高耐圧のコンデンサの容量バラツキは通常±10%あるため、図13よりこの時の電流のバラツキとして約±10%が予測される。蛍光管の電力は電流の二乗に比例するため、蛍光管電力バラツキとしては約±20%となり、バックライトに輝度ムラが発生し実用上好ましくない。また、この方式では蛍光管用高周波昇圧トランスの出力電圧が、常に蛍光管の放電開始電圧よりも高い電圧を出力しているため、放電開始後蛍光管用高周波昇圧トランスの出力電圧が放電開始電圧の1/2から1/3となる点灯電圧まで低下する漏洩磁束インダクタンス方式、あるいは本発明による方式と比較して、耐電圧確保のため蛍光管用高周波昇圧トランスの小型化が難しいという問題もある。
The relationship between the ballast capacitor capacity 15 and the fluorescent tube current I is f = 50 KHz, R = 50 KΩ,
FIG. 13 shows the calculation result when Vo = 2000V. Since the capacitance variation of the high voltage capacitor used as the ballast capacitor is usually ± 10%, the current variation at this time is estimated to be about ± 10% from FIG. Since the power of the fluorescent tube is proportional to the square of the current, the variation in the fluorescent tube power is about ± 20%, and uneven brightness occurs in the backlight, which is not practically preferable. In this method, since the output voltage of the fluorescent tube high-frequency step-up transformer always outputs a voltage higher than the discharge start voltage of the fluorescent tube, the output voltage of the fluorescent tube high-frequency step-up transformer is 1 after the discharge start. There is also a problem that it is difficult to reduce the size of the high-frequency step-up transformer for a fluorescent tube in order to secure a withstand voltage, as compared with the leakage magnetic flux inductance method that lowers the lighting voltage to ½ to 3 or the method according to the present invention.

図14は、出力数がn個の場合の漏洩磁束インダクタンス方式を示す回路図である。図14に示すように、この漏洩磁束インダクタンス方式は、インバータ回路12、複数の二次コイル22の出力を有する漏洩磁束型昇圧トランス13、および複数の蛍光管40から構成される。このとき等価的に二次コイルに直列に発生する漏洩磁束インダクタンスを電流制限インピーダンスのリアクタンス素子として用いるものである。漏洩磁束インダクタンス方式には一次コイルの発生する磁束が複数の二次コイルに並列に供給される磁束並列結合型漏洩磁束インダクタンス方式と、直列に供給される磁束直列結合型漏洩磁束インダクタンス方式がある。磁束並列結合型漏洩磁束インダクタンス方式は従来より蛍光管用多出力高周波昇圧トランスとして使われているが、磁束直列結合型漏洩磁束インダクタンス方式は複数接続された蛍光管の起動点灯に問題があり、蛍光管用多出力高周波昇圧トランスとしての実績は無い。   FIG. 14 is a circuit diagram showing a leakage magnetic flux inductance method when the number of outputs is n. As shown in FIG. 14, the leakage magnetic flux inductance method includes an inverter circuit 12, a leakage magnetic flux type step-up transformer 13 having outputs of a plurality of secondary coils 22, and a plurality of fluorescent tubes 40. At this time, the leakage magnetic flux inductance that is equivalently generated in series with the secondary coil is used as the reactance element of the current limiting impedance. The leakage magnetic flux inductance method includes a magnetic flux parallel coupling type leakage magnetic flux inductance method in which a magnetic flux generated by a primary coil is supplied in parallel to a plurality of secondary coils, and a magnetic flux series coupling type leakage magnetic flux inductance method that is supplied in series. The magnetic flux parallel coupling type leakage flux inductance method has been used as a multi-output high-frequency step-up transformer for fluorescent tubes. However, the magnetic flux series coupling type leakage flux inductance method has a problem in starting and lighting multiple connected fluorescent tubes. There is no track record as a multi-output high-frequency step-up transformer.

図15は、出力数2個の磁束並列結合型漏洩磁束インダクタンス方式の蛍光管用高周波昇圧トランスの構造例を示す図である。一次コイル21に流れる電流I1により一次側磁性体23に発生する磁束Φ1は漏洩磁束を還流させる磁束還流用磁性体24によりその一部が二次コイル22と鎖交することなく一次側磁性体23に還流し、残りの磁束が複数の二次側磁性体25に流れ込み、それぞれの二次側磁磁性体25(25a、25b)に巻かれた二次コイル22に、各磁性体に分流する磁束に比例した誘導電圧を発生させる。   FIG. 15 is a diagram showing an example of the structure of a high-frequency step-up transformer for a fluorescent tube of a parallel-coupling-type leakage flux inductance method with two outputs. The magnetic flux Φ1 generated in the primary side magnetic body 23 by the current I1 flowing through the primary coil 21 is partly linked to the primary side magnetic body 23 without interlinking with the secondary coil 22 by the magnetic flux return magnetic body 24 that circulates the leakage magnetic flux. The remaining magnetic flux flows into the plurality of secondary-side magnetic bodies 25, and the magnetic flux is divided into each of the secondary coils 22 wound around each secondary-side magnetic body 25 (25a, 25b). An induced voltage proportional to is generated.

図16は、出力数n個の磁束並列結合型漏洩磁束インダクタンス方式の等価磁気回路を示す図である。この回路は、磁性体に流れる磁束を電流、磁気抵抗を電気抵抗とみなし、電気回路と同様に書き表したものである。図16でV1は入力電圧、I1は入力電流で
正弦波の周波数をf、時間をtとして
V1=Va・sin(2πf・t)
I1=Ia・sin(2πf・t−π/2)
とする。V2a、V2b、・・・V2nは出力電圧、I2a、I2b,・・・I2nは出力電流、N1は一次コイル21の巻き数、N2は二次コイル22の巻き数、Rはそれぞれ出力回路の負荷抵抗、Vm1は一次側コイルの起磁力であり、
Vm1=N1・I1
で与えられる。また、Vm2(Vm2a、Vm2b、…Vm2n)は出力コイルに出力電流が流れることによって二次側から一次側に向かう磁束を発生させる起磁力であり、
Vm2=N2・I2
で与えられる。
FIG. 16 is a diagram illustrating an equivalent magnetic circuit of a magnetic flux parallel coupling type leakage flux inductance method with n outputs. In this circuit, the magnetic flux flowing in the magnetic material is regarded as a current, and the magnetic resistance is regarded as an electric resistance, and is written in the same manner as the electric circuit. In FIG. 16, V1 is the input voltage, I1 is the input current, and the frequency of the sine wave is f and the time is t. V1 = Va · sin (2πf · t)
I1 = Ia · sin (2πf · t−π / 2)
And V2n is the output voltage, I2a, I2b,... I2n is the output current, N1 is the number of turns of the primary coil 21, N2 is the number of turns of the secondary coil 22, and R is the load of the output circuit. Resistance, Vm1 is the magnetomotive force of the primary coil,
Vm1 = N1 ・ I1
Given in. Vm2 (Vm2a, Vm2b,... Vm2n) is a magnetomotive force that generates a magnetic flux from the secondary side to the primary side when an output current flows through the output coil.
Vm2 = N2 ・ I2
Given in.

Rm2(Rm2a、Rm2b、…Rm2n)は二次側磁性体の各出力区間ごとの磁気抵抗、Rm3は磁束環流用磁性体の磁気抵抗、Φ1はVm1によって発生される磁束、Φ2(Φ2a、Φ2b、…Φ2n)は各Vm2によって発生される磁束である。また、一次コイルが発生する磁束Φ1のうち二次側磁性体に流れ込む磁束の割合を結合係数K1、逆に二次コイルの起磁力Vm2が発生する磁束Φ2のうち一次側磁性体に流れ込む磁束の割合を結合係数K2とする。   Rm2 (Rm2a, Rm2b,... Rm2n) is the magnetic resistance for each output section of the secondary side magnetic body, Rm3 is the magnetic resistance of the magnetic flux recirculation magnetic body, Φ1 is the magnetic flux generated by Vm1, ... Φ2n) is a magnetic flux generated by each Vm2. Further, the ratio of the magnetic flux flowing into the secondary magnetic body out of the magnetic flux Φ1 generated by the primary coil is the coupling coefficient K1, and conversely the magnetic flux flowing into the primary magnetic body out of the magnetic flux Φ2 generated by the magnetomotive force Vm2 of the secondary coil. Let the ratio be the coupling coefficient K2.

このとき、負荷抵抗Rが接続されていない場合の開放出力電圧Voを確保するために必要な入力電圧のピーク値Va、入力電流のピーク値Ia、磁気飽和を起こさないための一次側磁性体の断面積Sは、並列出力数をn個として以下のようになる。但し、Rm0は一次側コイルから見た全体の磁気抵抗、Bmは磁性体の飽和磁束密度とする。
Va=N1・Vo/K1・N2
Ia=Rm0・Va/2πf・N1
S=Vo/2πf・K1・N2・Bm
上式において、N1=20(ターン)、N2=1500(ターン)、Vo=2000V0-p、Rm0=2×10(1/ヘンリー)、Rm2=1×10(1/ヘンリー)、Rm3=10×10(1/ヘンリー)、f=50KHz、Bm=0.3(テスラ)として計算した出力数nと入力電圧のピーク値Vaの関係を図17に示し、出力数nと入力電流のピーク値Iaの関係を図18に示し、出力数nと所要断面積Sの関係を図19に示す。
At this time, the peak value Va of the input voltage, the peak value Ia of the input current necessary for securing the open output voltage Vo when the load resistor R is not connected, the peak value Ia of the primary current to prevent magnetic saturation. The cross-sectional area S is as follows when the number of parallel outputs is n. However, Rm0 is the total magnetic resistance viewed from the primary coil, and Bm is the saturation magnetic flux density of the magnetic material.
Va = N1 ・ Vo / K1 ・ N2
Ia = Rm0 · Va / 2πf · N1 2
S = Vo / 2πf, K1, N2, Bm
In the above formula, N1 = 20 (turn), N2 = 1500 (turn), Vo = 2000V0-p, Rm0 = 2 × 10 6 (1 / Henry), Rm2 = 1 × 10 6 (1 / Henry), Rm3 = FIG. 17 shows the relationship between the number of outputs n calculated as 10 × 10 6 (1 / Henry), f = 50 kHz, Bm = 0.3 (Tesla) and the peak value Va of the input voltage. The relationship of Ia is shown in FIG. 18, and the relationship between the output number n and the required cross-sectional area S is shown in FIG.

二次側の開放出力電圧Voを確保するためひとつの二次コイル出力に要する磁束は
Vo/2πf・N2
であり、出力数nの磁束並列結合型多出力方式ではこれのn倍を、一次側から二次側への結合係数K1で除した磁束量を一次側に必要とし、一次側磁性体に大きな磁束が集中することとなる。このため図17のように入力電圧の増加、および図18のように一次コイルの電流の増加、あるいは図19のような一次側磁性体断面積の増加となり、結果的に電流の二乗に比例する一次コイルの巻き線抵抗による導体損失の増加、磁束密度のほぼ二乗に比例する磁性体損失の増加、あるいは磁気飽和を抑えるために磁性体の断面積の拡大による形状の大型化などの致命的な欠陥が発生する。
The magnetic flux required for one secondary coil output to secure the secondary open circuit output voltage Vo is Vo / 2πf · N2.
In the magnetic flux parallel coupling type multi-output system with n outputs, the primary side needs a magnetic flux amount obtained by dividing n times this by the coupling coefficient K1 from the primary side to the secondary side. Magnetic flux will be concentrated. For this reason, the input voltage increases as shown in FIG. 17 and the primary coil current increases as shown in FIG. 18 or the primary magnetic cross-sectional area increases as shown in FIG. 19, resulting in a proportional to the square of the current. Fatal increase in conductor loss due to winding resistance of primary coil, increase in magnetic loss proportional to the square of magnetic flux density, or increase in size due to expansion of cross-sectional area of magnetic material to suppress magnetic saturation Defects occur.

上述のように、バックライト蛍光管並列点灯用の磁束並列結合型漏洩磁束インダクタンス方式蛍光管用高周波昇圧トランスは一次側の磁束が増大するためにさまざまな不具合点があった。これを改善するために、従来より汎用多出力のトランスとして用いられ、出力数が増えても磁束が一次側に集中しない特徴を有する磁束直列結合型の漏洩磁束インダクタンス方式を、蛍光管用高周波昇圧トランスとして応用する上での問題点について検討する。   As described above, the magnetic flux parallel-coupled leakage flux inductance type high-frequency step-up transformer for a fluorescent tube for parallel lighting of a backlight fluorescent tube has various problems because the primary magnetic flux increases. In order to improve this, a magnetic flux series coupled leakage flux inductance method, which has been used as a general-purpose multi-output transformer in the past and has the feature that the magnetic flux does not concentrate on the primary side even if the number of outputs increases, is used as a high-frequency step-up transformer for fluorescent tubes. The problem in application is examined.

図20に出力数がn個の場合の磁束直列結合型の漏洩磁束インダクタンス方式蛍光管用高周波昇圧トランスの構成例を示す。図20において、入力電圧V1により一次コイル21に流れる電流I1によって一次側磁性体23に磁束Φ1が発生する。この磁束Φ1が磁束還流用磁性体24に流れ、漏洩磁束インダクタンスを発生させるためその一部(1−K)・Φ1が一次側に還流し、磁束K・Φ1が二次側磁性体25に流入する。ここで、Kは一次コイルと二次コイルの間の結合係数である。磁束K・Φ1は、直列に巻かれた第1から第nまでの二次コイル22(22a、22b、・・22n)に結合し、それぞれの二次コイルの出力端に出力電圧V2(V2a、V2b、・・V2n)を発生する。出力端子に負荷抵抗が接続されていない無負荷時の各出力電圧V2のピーク値Voは、一次コイルの巻き数をN1、二次コイルの巻き数をN2とすると、
Vo=K・N2・V1/N1
となる。
FIG. 20 shows an example of the configuration of a high-frequency step-up transformer for a leakage flux inductance type fluorescent tube of the magnetic flux series connection type in the case where the number of outputs is n. In FIG. 20, a magnetic flux Φ1 is generated in the primary side magnetic body 23 by the current I1 flowing through the primary coil 21 by the input voltage V1. This magnetic flux Φ1 flows into the magnetic flux recirculation magnetic body 24, and in order to generate leakage magnetic flux inductance, a part (1-K) · Φ1 recirculates to the primary side, and the magnetic flux K · Φ1 flows into the secondary side magnetic body 25. To do. Here, K is a coupling coefficient between the primary coil and the secondary coil. The magnetic flux K · Φ1 is coupled to the first to nth secondary coils 22 (22a, 22b,... 22n) wound in series, and the output voltage V2 (V2a, V2b,... V2n) are generated. The peak value Vo of each output voltage V2 when no load resistance is connected to the output terminal is N1 for the number of turns of the primary coil and N2 for the number of turns of the secondary coil.
Vo = K ・ N2 ・ V1 / N1
It becomes.

また、第1の二次コイル22aの出力端子にのみ負荷抵抗Rが接続されている時は、接続された負荷抵抗Rに電流I2aが流れ、この電流が第1の二次コイルに流れることで一次コイル21からの磁束K・Φ1と逆の方向に磁束Φ2を発生させる。この逆方向の磁束Φ2は磁束還流用磁性体24により(1−K)・Φ2が二次側に還流し、残りのK・Φ2が一次側磁性体に流れ込み、一次側磁性体磁束をΦ1からΦ1−K・Φ2に減じる方向に動く。このとき、磁束Φと巻き数Nのコイル電圧Vとの基本的な関係式
Φ=(1/N)∫V・dt
より、NとVが一定であればΦも常に一定となるため、無負荷時の一次側磁性体磁束
Φ10と上記負荷時の一次側磁性体磁束Φ1−K・Φ2は等しく
Φ10=Φ1−K・Φ2=(1/N1)∫V1・dt
の関係が保たれる。
When the load resistor R is connected only to the output terminal of the first secondary coil 22a, the current I2a flows through the connected load resistor R, and this current flows through the first secondary coil. A magnetic flux Φ2 is generated in a direction opposite to the magnetic flux K · Φ1 from the primary coil 21. The magnetic flux Φ2 in the reverse direction is returned to the secondary side by (1−K) · Φ2 by the magnetic flux returning magnetic body 24, the remaining K · Φ2 flows into the primary side magnetic body, and the primary side magnetic body magnetic flux is transferred from Φ1. Move in the direction of decreasing to Φ1-K · Φ2. At this time, the basic relational expression of the magnetic flux Φ and the coil voltage V of the number N of turns Φ = (1 / N) ∫V · dt
Therefore, if N and V are constant, Φ is always constant, so that the primary magnetic flux Φ10 at no load and the primary magnetic flux Φ1-K · Φ2 at the same load are equal Φ10 = Φ1-K・ Φ2 = (1 / N1) ∫V1 ・ dt
Relationship is maintained.

従って、
Φ1=Φ10+K・Φ2
となり、無負荷時よりの増加分K・Φ2は一次コイルに流れる電流I1が増加ことにより補われる。この増加分K・Φ2は磁束還流用磁性体で(1−K)・K・Φ2が一次側に還流し、残りのK2・Φ2が二次側に流入する。この結果、二次側磁性体の磁束は負荷が接続されていない初期状態に対し(1−K2)・Φ2だけ減少する。この減少は出力端子に負荷抵抗が接続されていない第2以降の二次コイルでも同じであるから、無負荷出力端子の開放出力電圧も減少する。
Therefore,
Φ1 = Φ10 + K ・ Φ2
Thus, the increase K · Φ2 from the time of no load is compensated by the increase in the current I1 flowing through the primary coil. This increase K · Φ2 is a magnetic material for refluxing magnetic flux, and (1-K) · K · Φ2 returns to the primary side, and the remaining K 2 · Φ2 flows into the secondary side. As a result, the magnetic flux of the secondary side magnetic body decreases by (1−K 2 ) · Φ2 with respect to the initial state where no load is connected. Since this decrease is the same in the second and subsequent secondary coils in which no load resistance is connected to the output terminal, the open output voltage at the no-load output terminal also decreases.

一般的にn個の出力端子に負荷抵抗Rが接続されたときの出力電圧のピーク値Voは、
Vo=K・N2・R・Va/n・L2R・N1・√{(R/n・L2R)2 + (2πf)2
となる。ここで、周波数f、時間tとしてV1=Va・sin(2πft)、二次側の漏洩磁束インダクタンスをL2Rとする。図21に、Va=30V、f=50KHz,N1=20(ターン)、N2=1500(ターン)、K=0.75、R=50KΩ、L2R=225mHとしたとき、上式より負荷抵抗が接続された出力数nと出力電圧のピーク値Voの関係を計算した結果を示す。図21より全ての負荷が開放状態のとき1700Vある出力電圧が、ひとつの出力に負荷が接続されると1000Vまで低下することが分る。
Generally, the peak value Vo of the output voltage when the load resistance R is connected to n output terminals is
Vo = K · N2 · R · Va / n · L2R · N1 · √ {(R / n · L2R) 2 + (2πf) 2 }
It becomes. Here, it is assumed that the frequency f and time t are V1 = Va · sin (2πft), and the leakage flux inductance on the secondary side is L2R. In FIG. 21, when Va = 30V, f = 50KHz, N1 = 20 (turn), N2 = 1500 (turn), K = 0.75, R = 50KΩ, and L2R = 225mH, the load resistance is connected from the above equation. The result of having calculated the relationship between the output number n and the peak value Vo of the output voltage is shown. From FIG. 21, it can be seen that the output voltage of 1700 V when all the loads are open decreases to 1000 V when the load is connected to one output.

一方、近年、図22に示すような2つの側脚部分111,112の間に中央脚部分113を配置し、かつ、これら3つの脚部分を2つの連結部分115で挟んで磁気回路を形成するコア部101と、一方の側脚部分112に設けられた1次巻線102と、中央脚部分113に設けられた2次巻線103とを備え、各側脚部分111、112にそれぞれギャップ111A,112Aが形成され、1次巻線102の一方の端面112Aが一方の側脚部分の端に位置するように、かつ、中央脚部分113の長さ方向に対して、1次巻線102が2次巻線103と向かい合うように、1次巻線102および2次巻線103が配置された構造の漏洩磁束インダクタンス方式のトランスが開示されている(特許文献1)。この漏洩磁束インダクタンス方式のトランスによれば、コア部101に対して、1次巻線102と2次巻線103とを配置して、1次巻線102と2次巻線103との適切な漏洩磁束インダクタンスを得るための位置関係にした結果、バラストコンデンサを不要にし、かつ、良好なインバータ特性を得ることができるものである。
特開2004−111417号公報
On the other hand, in recent years, a central leg portion 113 is disposed between two side leg portions 111 and 112 as shown in FIG. 22 and these three leg portions are sandwiched between two connecting portions 115 to form a magnetic circuit. A core portion 101, a primary winding 102 provided on one side leg portion 112, and a secondary winding 103 provided on a central leg portion 113 are provided, and gaps 111A are provided in the side leg portions 111 and 112, respectively. 112A are formed so that one end face 112A of the primary winding 102 is positioned at the end of the one side leg portion and the length of the central leg portion 113 is set so that the primary winding 102 is A leakage flux inductance type transformer having a structure in which a primary winding 102 and a secondary winding 103 are arranged so as to face the secondary winding 103 is disclosed (Patent Document 1). According to this leakage flux inductance type transformer, the primary winding 102 and the secondary winding 103 are arranged with respect to the core portion 101, and the primary winding 102 and the secondary winding 103 are appropriately connected. As a result of the positional relationship for obtaining the leakage magnetic flux inductance, a ballast capacitor is not required and good inverter characteristics can be obtained.
JP 2004-111417 A

しかしながら、以上のバラストコンデンサ方式および漏洩磁束インダクタンス方式にはそれぞれ次のような問題がある。先ず、コンデンサが電流制限のリアクタンス素子としてひとつの出力端子と複数の蛍光管の間に入るバラストコンデンサ方式では、蛍光管用高周波昇圧トランスの出力端子の電圧はバラツキのある複数の蛍光管の放電開始電圧よりも高い電圧に設定され、各蛍光管が点灯した後も常時この電圧を出力している。一般的に、蛍光管の放電開始電圧は点灯電圧の2倍ないし3倍高く、蛍光管用高周波昇圧トランスは常時この高電圧を出力することとなり、耐電圧確保のため蛍光管用高周波昇圧トランスの小型化のうえで大きな制約を受けるとともに、高電圧による絶縁破壊の確率も高くなるため信頼性確保の点でも問題が多い。   However, the above ballast capacitor system and leakage flux inductance system have the following problems. First, in the ballast capacitor system in which a capacitor is placed between one output terminal and a plurality of fluorescent tubes as a current limiting reactance element, the voltage at the output terminal of the fluorescent tube high-frequency step-up transformer is the discharge start voltage of the plurality of fluorescent tubes having variations. The voltage is set to a higher voltage than that, and this voltage is always output even after each fluorescent tube is lit. In general, the discharge start voltage of a fluorescent tube is two to three times higher than the lighting voltage, and the high frequency boost transformer for fluorescent tubes always outputs this high voltage, and the high frequency boost transformer for fluorescent tubes is downsized to ensure withstand voltage. In addition, there are many problems in terms of ensuring reliability because there is a large restriction and the probability of dielectric breakdown due to high voltage increases.

また、各蛍光管に流れる電流は出力端子電圧をコンデンサと蛍光管の等価抵抗の直列インピーダンスで除算して求められるが、この用途に用いられる高耐圧コンデンサの容量値は通常±10%の誤差があるため、電流値のバラツキも大きくなり並列配置された蛍光管バックライトの輝度ムラが問題となる。   The current flowing through each fluorescent tube is obtained by dividing the output terminal voltage by the series impedance of the equivalent resistance of the capacitor and fluorescent tube. The capacitance value of the high voltage capacitor used in this application usually has an error of ± 10%. For this reason, the variation of the current value becomes large, and the luminance unevenness of the fluorescent tube backlights arranged in parallel becomes a problem.

次に、電流制限要素として漏洩磁束型トランスによる漏洩磁束インダクタンスを用いる漏洩磁束インダクタンス方式では、一次側コイルに流れる電流により一次側磁性体に発生した磁束は、複数の二次側コイルが巻き回され、一次側から流れ込む磁束の並列分流路を形成する複数の二次側磁性体に分流するが、二次側コイルに流れる出力電流値のバラツキを抑えるために、それぞれの二次側磁性体の磁気抵抗を等しくし、分流する磁束量を均一にしなければならない。このため、磁束の流れ難さの指標であり、磁性体の磁路長/断面積に比例する磁気抵抗を各出力磁気回路ごとに等しくする必要がある。平面形状が長方形で薄型に構成される場合の多い本用途の蛍光管用高周波昇圧トランスでは、それぞれの磁気抵抗を等しくして、多数の出力磁気回路を設けることは形状的に難しく、この方法では出力数の上限は4個程度に制限され、大型液晶表示パネルで通常必要とされる10本ないし30本の蛍光管を点灯させるには多くの蛍光管用高周波昇圧トランスを必要とする。   Next, in the leakage flux inductance method using the leakage flux inductance by the leakage flux type transformer as the current limiting element, a plurality of secondary coils are wound around the magnetic flux generated in the primary magnetic body due to the current flowing in the primary coil. In order to suppress variations in the output current value flowing in the secondary side coil, the magnetic field of each secondary side magnetic body is shunted to a plurality of secondary side magnetic bodies that form parallel shunt paths for magnetic flux flowing from the primary side. The resistance must be equal and the amount of magnetic flux to be shunted must be uniform. For this reason, it is necessary to make the magnetic resistance proportional to the magnetic path length / cross-sectional area of the magnetic body equal for each output magnetic circuit, which is an index of the difficulty of flowing the magnetic flux. In a high-frequency step-up transformer for fluorescent tubes of this application, which is often rectangular and thin, it is difficult to provide a large number of output magnetic circuits with the same magnetic resistance. The upper limit of the number is limited to about 4, and a large number of high-frequency step-up transformers for fluorescent tubes are required to light up 10 to 30 fluorescent tubes that are normally required in a large liquid crystal display panel.

また、磁束並列結合型漏洩磁束インダクタンス方式では二次コイルが巻かれた各出力磁気回路に流れる磁束の総和が一次コイルが巻かれた一次側磁性体に集中するため、出力数の増加に伴い一次コイルの駆動電圧を高くし発生磁束を増加させる必要がある。   In addition, in the magnetic flux parallel coupling type leakage flux inductance method, the sum of the magnetic flux flowing through each output magnetic circuit wound with the secondary coil is concentrated on the primary side magnetic body wound with the primary coil. It is necessary to increase the generated voltage by increasing the coil drive voltage.

さらに、大きい磁束が流れる一次側磁性体は磁気飽和対策として磁気回路断面積を大きくしなければならず、結果として蛍光管用高周波昇圧トランスの形状が大きくなる、あるいは磁束密度のほぼ二乗に比例する磁性体損失が極端に増加するという欠点もある。   Furthermore, the primary magnetic body through which a large magnetic flux flows must have a large magnetic circuit cross-sectional area as a countermeasure against magnetic saturation, resulting in an increase in the shape of the high-frequency step-up transformer for a fluorescent tube, or a magnetism proportional to almost the square of the magnetic flux density. There is also a disadvantage that body loss increases extremely.

また、磁束直列結合型漏洩磁束インダクタンス方式では、放電開始電圧にバラツキのある蛍光管を蛍光管用高周波昇圧トランスの各出力端子に接続し点灯する場合、最も放電開始電圧の低い蛍光管が点灯状態に入ると出力電圧が大きく低下するために、他の蛍光管は放電開始電圧を超えることが出来ず、点灯状態に入れないという致命的な欠陥をもっている。   In addition, in the magnetic flux series coupled leakage flux inductance method, when a fluorescent tube with a variation in the discharge start voltage is connected to each output terminal of the high-frequency step-up transformer for the fluorescent tube, the fluorescent tube with the lowest discharge start voltage is turned on. Since the output voltage is greatly reduced when entering, the other fluorescent tubes cannot exceed the discharge start voltage and have a fatal defect that they cannot enter the lighting state.

本発明は、上述の課題に鑑み、簡易な構造で多数本の蛍光管を並列に点灯することができ、出力電流のバラツキが少ない、点灯効率の高い、さらに軽量・小型形状などの優れた特性をもつ蛍光管用高周波昇圧トランスを提供することを目的とする。   In view of the above-mentioned problems, the present invention is capable of lighting a large number of fluorescent tubes in parallel with a simple structure, with less output current variation, high lighting efficiency, and excellent characteristics such as light weight and small shape. An object of the present invention is to provide a high-frequency voltage step-up transformer for a fluorescent tube.

以上の課題を解決するために、第1の発明の蛍光管用高周波昇圧トランスは、一次コイルが巻かれた一次側磁性体と、複数の二次コイルが巻かれ一次側磁性体と直列の閉磁束磁気回路を形成する二次側磁性体と、二次コイルの一部を覆い、その両端は二次側磁性体に接合するように形成される分流用磁性体とから構成され、複数の二次コイルはそれぞれ蛍光管に接続され、分流用磁性体によって二次側磁性体を通る磁束を分流することを特徴とする。 In order to solve the above-described problems, a high-frequency step-up transformer for a fluorescent tube according to a first aspect of the present invention includes a primary side magnetic body wound with a primary coil and a closed magnetic flux in series with a plurality of secondary coils and the primary side magnetic body. and the secondary side magnetic member forming a magnetic circuit, covers a portion of the secondary coil, both ends are composed of a partial diversion magnetic body formed so as to come into contact with the secondary magnetic member, a plurality of secondary Each of the coils is connected to a fluorescent tube, and the magnetic flux passing through the secondary side magnetic body is shunted by the shunting magnetic body.

第2の発明は、第1の発明において、二次側磁性体はコの字型に形成され、その両端は一次側磁性体に接合するように形成され、一次側磁性体と二次側磁性体によって直列の閉磁束磁気回路を形成することを特徴とする。 According to a second invention, in the first invention, the secondary side magnetic body is formed in a U shape, and both ends thereof are formed so as to be joined to the primary side magnetic body, and the primary side magnetic body and the secondary side magnetic body are formed. characterized that you form a closed magnetic flux magnetic circuit in series by the body.

第3の発明は、第1の発明において、二次側磁性体は、棒状に形成される2つのコイル用二次側磁性体と、棒状に形成された閉磁路形成用磁性体から構成され、各コイル用二次側磁性体の一端は一次側磁性体に接合し、閉磁路形成用磁性体はその両端がコイル用二次側磁性体の各他端に接合することを特徴とする。 In a third aspect based on the first aspect, the secondary side magnetic body is composed of two secondary side magnetic bodies for coils formed in a rod shape and a magnetic body for forming a closed magnetic circuit formed in a rod shape, One end of each coil secondary side magnetic body is joined to the primary side magnetic body, and both ends of the closed magnetic path forming magnetic body are joined to the other end of the coil secondary side magnetic body.

第4の発明は、第3の発明において、面がコの字型の磁性体で形成され、コの字型の磁性体の一方の二次コイルが巻かれた方の磁性体をコイル用二次側磁性体とし、コの字型の磁性体の他方の二次コイルが巻かれていない方の磁性体を分流用磁性体とし、一次側磁性体、コの字型磁性体のコイル用二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、コの字型磁性体の他方の分流用磁性体部分によってコイル用二次側磁性体部分を通る磁束を分流することを特徴とする。 A fourth invention, in the third invention, the cross-sectional surface is made form with shaped magnetic material co, U-shaped one secondary coil wound towards the coil a magnetic material of the magnetic body The secondary side magnetic body, the magnetic body on which the other secondary coil of the U-shaped magnetic body is not wound is the shunting magnetic body, and the primary side magnetic body and the U-shaped magnetic body coil A closed magnetic flux magnetic circuit is formed by the secondary side magnetic body portion and the closed magnetic path forming magnetic body, and the magnetic flux passing through the secondary side magnetic body portion for the coil is generated by the other shunt magnetic body portion of the U-shaped magnetic body. It is characterized by shunting .

第5の発明は、第3の発明において、面がE字型の磁性体で形成され、E字型磁性体の両端の支路をコイル用二次側磁性体とし、E字型磁性体の中央の支路を分流用磁性体とし、一次側磁性体、E字型磁性体の二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、E字型磁性体の中央の支路の分流用磁性体部分によってコイル用二次側磁性体部分を通る磁束を分流することを特徴とする。 A fifth invention, in the third invention, the cross-sectional surface is made form a magnetic material E-shaped, the ga across the E-shaped magnetic body and the secondary side magnetic coil, E-shaped magnetic The center branch of the body is a shunting magnetic body, and a closed magnetic flux magnetic circuit is formed by the primary side magnetic body, the secondary side magnetic body portion of the E-shaped magnetic body, and the closed magnetic path forming magnetic body, and the E-shaped magnetic The magnetic flux passing through the secondary magnetic body portion for the coil is shunted by the magnetic body portion for branching of the branch in the center of the body.

第1の発明によれば、蛍光管用高周波昇圧トランスは、一次コイルが巻かれた一次側磁性体と、複数の二次コイルが巻かれ一次側磁性体と直列の閉磁束磁気回路を形成する二次側磁性体と、二次コイルの一部を覆い、その両端は二次側磁性体に接合するように形成される分流用磁性体とから構成され、複数の二次コイルはそれぞれ蛍光管に接続され、分流用磁性体によって二次側磁性体を通る磁束を分流するように構成されるので、並列に接続された蛍光管の点灯において、点灯電圧が一番低い蛍光管が点灯した後でも、残りの蛍光管を確実に点灯できる。 According to the first invention, the high-frequency step-up transformer for a fluorescent tube includes a primary side magnetic body wound with a primary coil, and a plurality of secondary coils wound around the primary side magnetic body to form a closed magnetic flux magnetic circuit in series. The secondary side magnetic body and a part of the secondary coil are covered, and both ends of the secondary side magnetic body are formed to be joined to the secondary side magnetic body. The plurality of secondary coils are respectively connected to the fluorescent tube. Since the magnetic flux passing through the secondary side magnetic material is shunted by the shunting magnetic material, even when the fluorescent tube with the lowest lighting voltage is lit when the fluorescent tubes connected in parallel are lit The remaining fluorescent tubes can be lit reliably.

第2の発明によれば、二次側磁性体はコの字型に形成され、その両端は一次側磁性体に接合するように形成され、一次側磁性体と二次側磁性体によって直列の閉磁束磁気回路を形成するので、簡易な構造で小型、高効率、高電流精度な蛍光管用高周波昇圧トランスを提供できる。 According to the second invention, the secondary side magnetic body is formed in a U-shape, and both ends thereof are formed so as to be joined to the primary side magnetic body, and are connected in series by the primary side magnetic body and the secondary side magnetic body. Runode to form a closed magnetic flux magnetic circuit, can provide compact, high efficiency, high current accuracy fluorescent tubes for high frequency step-up transformer with a simple structure.

第3の発明によれば、二次側磁性体は、棒状に形成される2つのコイル用二次側磁性体と、棒状に形成された閉磁路形成用磁性体から構成され、各コイル用二次側磁性体の一端は一次側磁性体に接合し、閉磁路形成用磁性体はその両端がコイル用二次側磁性体の各他端に接合するので、簡易な構造で小型、高効率、高電流精度な蛍光管用高周波昇圧トランスを提供できる。 According to the third invention, the secondary magnetic member is composed of a secondary side magnetic member for the two coils to be formed into a rod, which is formed in a rod shape closed magnetic path forming magnetic body, two for each coil One end of the secondary side magnetic body is joined to the primary side magnetic body, and both ends of the closed magnetic path forming magnetic body are joined to the other end of the secondary side magnetic body for the coil . A high-current high-frequency step-up transformer for fluorescent tubes can be provided.

第4の発明によれば、面がコの字型の磁性体で形成され、コの字型の磁性体の一方の二次コイルが巻かれた方の磁性体をコイル用二次側磁性体とし、コの字型の磁性体の他方の二次コイルが巻かれていない方の磁性体を分流用磁性体とし、一次側磁性体、コの字型磁性体のコイル用二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、コの字型磁性体の他方の分流用磁性体部分によってコイル用二次側磁性体部分を通る磁束を分流するので、簡易な構造で、組み立てが容易で、小型、高効率、高電流精度な蛍光管用高周波昇圧トランスを提供できる。 The According to the fourth invention, the cross-sectional surface is made form with shaped magnetic material co, one of the secondary coils wound towards magnetic secondary side coil of the shaped magnetic material co The magnetic body that is not wound with the other secondary coil of the U-shaped magnetic body is the magnetic body for shunting, and the primary side magnetic body and the secondary side for the coil of the U-shaped magnetic body A closed magnetic flux magnetic circuit is formed by the magnetic body portion and the closed magnetic path forming magnetic body, and the magnetic flux passing through the secondary magnetic body portion for the coil is shunted by the other shunt magnetic body portion of the U-shaped magnetic body . A high-frequency step-up transformer for a fluorescent tube with a simple structure, easy assembly, small size, high efficiency, and high current accuracy can be provided.

第5の発明によれば、面がE字型の磁性体で形成され、E字型磁性体の両端の支路をコイル用二次側磁性体とし、E字型磁性体の中央の支路を分流用磁性体とし、一次側磁性体、E字型磁性体の二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、E字型磁性体の中央の支路の分流用磁性体部分によってコイル用二次側磁性体部分を通る磁束を分流する
二次コイルが巻かれた二次側磁性体と、二次コイルの一部を覆う分流用磁性体とがその断面がE字型の磁性体として一体化して形成され、E字型磁性体の両端の支路を二次側磁性体とし、E字型磁性体の中央の支路を分流用磁性体とし、一次側磁性体、E字型磁性体の二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、E字型磁性体の中央の支路の分流用磁性体部分によって二次側磁性体部分を通る磁束が分流されるので、簡易な構造で、組み立てが容易で、小型、高効率、高電流精度な蛍光管用高周波昇圧トランスを提供できる。
According to the fifth invention, the cross-sectional surface is made form a magnetic material E-shaped, the ga across the E-shaped magnetic body and the secondary side magnetic coil, the central E-shaped magnetic substance The branch path is a magnetic body for shunting, and a closed magnetic flux magnetic circuit is formed by the primary side magnetic body, the secondary side magnetic body portion of the E-shaped magnetic body, and the closed magnetic path forming magnetic body, and the center of the E-shaped magnetic body and the secondary side magnetic secondary coil to shunt the magnetic flux passing through the secondary magnetic portion coil is wound by partial diversion magnetic portion of ga, the shunt magnetic body for covering a portion of the secondary coil The cross section is integrally formed as an E-shaped magnetic body, the branch at both ends of the E-shaped magnetic body is a secondary magnetic body, and the central branch of the E-shaped magnetic body is a branching magnetic body A closed magnetic flux magnetic circuit is formed by the primary side magnetic body, the secondary side magnetic body portion of the E-shaped magnetic body and the magnetic body for forming a closed magnetic path, and the E-shaped magnetic body Magnetic flux passing through the secondary magnetic part is shunted by the magnetic part for shunting in the central branch, so that the high-frequency step-up transformer for fluorescent tubes has a simple structure, easy assembly, small size, high efficiency, and high current accuracy. Can provide.

第1の実施形態.
図1は、本発明の蛍光管用高周波昇圧トランス13において、出力数がn個の場合の模式図である。本発明は、従来の磁束直列結合型漏洩磁束インダクタンス方式昇圧出力トランスの特徴を活かしながら上記欠陥を改善するために、図1に示すように、一次コイル21と、二次コイル22(22a、22b、… 22n)と、一次コイル21が巻かれた一次側磁性体23と、二次コイル22が巻かれた二次側磁性体25と、二次コイル22の一部を覆い、その先端が二次側磁性体25に接合するように構成される分流用磁性体26(26a、26b、… 26n)から構成される。
First embodiment.
FIG. 1 is a schematic diagram when the number of outputs is n in the high-frequency step-up transformer 13 for fluorescent tubes of the present invention. In order to improve the above-mentioned defects while utilizing the characteristics of the conventional magnetic flux series coupled type leakage flux inductance type step-up output transformer, the present invention, as shown in FIG. 1, a primary coil 21 and secondary coils 22 (22a, 22b). 22n), a primary side magnetic body 23 around which the primary coil 21 is wound, a secondary side magnetic body 25 around which the secondary coil 22 is wound, and a portion of the secondary coil 22 that covers a part of the secondary side magnetic body 23 It is comprised from the magnetic material 26 for shunting (26a, 26b, ... 26n) comprised so that it may join to the secondary side magnetic body 25. FIG.

図1において、一次コイルに流れる電流I1により一次側磁性体23に発生した磁束Φ1は第1の二次コイル22aが巻かれた二次側磁性体25と分流用磁性体26aの接合点P1で、接合点P1とP2の間の二次側磁性体の磁気抵抗Rm2と対応する分流用磁性体26aの磁気抵抗Rm3により、二次側磁性体にK1・Φ1の磁束が、また分流用磁性体には(1−K1)・Φ1が流れる。なお、Rm2、Rm3については、図2に記載されている。
ここで、磁束分流係数K1は、
K1=Rm3/(Rm2+Rm3)
の式で表される。
In FIG. 1, the magnetic flux Φ1 generated in the primary side magnetic body 23 by the current I1 flowing through the primary coil is a junction P1 between the secondary side magnetic body 25 and the shunting magnetic body 26a around which the first secondary coil 22a is wound. The magnetic resistance Rm3 of the shunt magnetic body 26a corresponding to the magnetic resistance Rm2 of the secondary side magnetic body between the junction points P1 and P2 causes the magnetic flux of K1 · Φ1 to be applied to the secondary side magnetic body, and the shunt magnetic body. (1−K1) · Φ1 flows through Note that Rm2 and Rm3 are shown in FIG.
Here, the magnetic flux shunt coefficient K1 is
K1 = Rm3 / (Rm2 + Rm3)
It is expressed by the following formula.

第1の二次コイル22aの二次側磁性体25を流れる磁束K1・Φ1と上側接合点P1で分流用磁性体26aに分流した磁束(1−K1)・Φ1は下側接合点P2で再び合流し、Φ1となって第2の二次コイル22bの接合点P3に流入する。このようにn個の二次コイルがあればそれぞれの二次側磁性体と分流用磁性体の接合点で分流と合流を繰り返し、一次側磁性体に還流する。   The magnetic flux K1 · Φ1 flowing through the secondary side magnetic body 25 of the first secondary coil 22a and the magnetic flux (1−K1) · Φ1 shunted to the shunt magnetic body 26a at the upper junction P1 are again at the lower junction P2. It joins, becomes Φ1, and flows into the junction point P3 of the second secondary coil 22b. In this way, if there are n secondary coils, the diversion and merging are repeated at the junction of each secondary side magnetic body and the diversion magnetic body, and then returned to the primary side magnetic body.

図2は図1の蛍光管用高周波昇圧トランスを磁気回路図で表現したものである。図1において、一次側磁性体の磁気抵抗をRm1、二次側磁性体のP1からP2までの一区間の磁気抵抗をRm2、分流用磁性体の同じく一区間の磁気抵抗をRm3、入力電圧をV1(=Va・sin(2πft))、Vaを入力電圧の最大値、fを入力電圧の周波数、一次コイルに流れる電流をI1、一次コイルの巻き数をN1、一次コイルが発生する磁束をΦ1、二次側磁性体と分流用磁性体の各接合点での磁束分流係数をK1、二次コイルの巻き数をN2、出力側負荷抵抗をR、二次コイルの出力電流をI2、I2により二次コイル直下の二次側磁性体に発生する逆方向の起磁力Vm2、これにより発生する磁束をΦ2とする。   FIG. 2 is a magnetic circuit diagram of the fluorescent tube high-frequency step-up transformer of FIG. In FIG. 1, the magnetic resistance of the primary side magnetic material is Rm1, the magnetic resistance of one section from P1 to P2 of the secondary side magnetic body is Rm2, the magnetic resistance of the same section of the shunting magnetic body is Rm3, and the input voltage is V1 (= Va · sin (2πft)), Va is the maximum value of the input voltage, f is the frequency of the input voltage, I1 is the current flowing through the primary coil, N1 is the number of turns of the primary coil, and Φ1 is the magnetic flux generated by the primary coil. , The magnetic flux shunting coefficient at each junction of the secondary side magnetic body and the shunting magnetic body is K1, the number of turns of the secondary coil is N2, the output side load resistance is R, and the output current of the secondary coil is I2 and I2. The magnetomotive force Vm2 in the reverse direction generated in the secondary side magnetic body directly below the secondary coil, and the magnetic flux generated thereby is Φ2.

先ず、二次コイルの出力端子が全て開放の場合、それぞれの二次コイルは二次側磁性体に流れる磁束K1・Φ1と鎖交するため出力端子電圧V2は
V2=N2・d(K1・Φ1)/dt
V1=N1・d(Φ1)/dt
の関係式より
V2=K1・N2・Va・sin(2πf・t)/N1
となる。
First, when all the output terminals of the secondary coils are open, each secondary coil is linked to the magnetic flux K1 · Φ1 flowing in the secondary side magnetic body, so the output terminal voltage V2 is V2 = N2 · d (K1 · Φ1). ) / Dt
V1 = N1 · d (Φ1) / dt
From the relational expression, V2 = K1, N2, Va, sin (2πf, t) / N1
It becomes.

また、この関係より二次コイル出力端子に蛍光管放電開始に必要な出力電圧V2を出力する時に必要な一次コイルの発生磁束Φ1は、V2=Vo・sin(2πf・t)として上式をΦ1について解いて
Φ1=Vo/2πf・K1・N2
で与えられる。このように本発明による多出力蛍光管用高周波昇圧トランスの場合、二次コイルと磁束が直列に結合するため、n個の二次コイル全てがVoを出力しても、一次側の磁束は1個の場合と同じで良いことになる。
Also, from this relationship, the generated magnetic flux Φ1 of the primary coil necessary for outputting the output voltage V2 necessary for starting the fluorescent tube discharge to the secondary coil output terminal is V2 = Vo · sin (2πf · t), and the above equation is Φ1 Φ1 = Vo / 2πf ・ K1 ・ N2
Given in. As described above, in the high-frequency step-up transformer for a multi-output fluorescent tube according to the present invention, since the secondary coil and the magnetic flux are coupled in series, even if all the n secondary coils output Vo, the primary side magnetic flux is one. It will be the same as in the case of.

次に、第1の二次コイル22aの出力端子のみ負荷抵抗Rが接続されたとき、第1の二次コイル22aの出力電圧V2aと開放状態にある第2の二次コイル22bの出力電圧V2bを計算する。先ず、第1の二次コイル22aに電流I2aが流れこの電流により第1の二次コイル22a直下の二次側磁性体には一次側より流入する磁束K1・Φ1と逆向きの起磁力N2・I2が発生し、この起磁力発生地点から見た全磁気抵抗をRmsとして、この起磁力による磁束Φ2
Φ2=N2・I2a/Rms
がK1・Φ1を減ずる方向に生ずる。Φ2は第1の二次コイル22aの二次側磁性体と分流用磁性体の接合点P1で、P1点での磁束分流比をK2として一次側磁性体にK2・Φ2、分流用磁性体に(1−K2)・Φ2に分流する。
Next, when the load resistance R is connected only to the output terminal of the first secondary coil 22a, the output voltage V2a of the first secondary coil 22a and the output voltage V2b of the second secondary coil 22b in the open state are connected. Calculate First, a current I2a flows through the first secondary coil 22a, and this current causes a magnetomotive force N2 · in the direction opposite to the magnetic flux K1 · Φ1 flowing from the primary side into the secondary side magnetic body immediately below the first secondary coil 22a. I2 is generated, and the total magnetic resistance seen from the magnetomotive force generation point is Rms, and the magnetic flux Φ2 by this magnetomotive force is
Φ2 = N2 ・ I2a / Rms
Occurs in the direction of decreasing K1 · Φ1. Φ2 is a junction P1 between the secondary side magnetic body and the shunt magnetic body of the first secondary coil 22a, and the magnetic shunt ratio at the P1 point is K2, and the primary side magnetic body is K2 · Φ2, and the shunt magnetic body is (1-K2) ・ Divert to Φ2.

K2は分流用磁性体の磁気抵抗Rm3と、一次側磁性体の磁気抵抗Rm1と第2から第nまでの二次コイル22の二次側磁性体の磁気抵抗Rm2、同じく分流用磁性体の磁気抵抗Rm3の並列磁気抵抗の和の磁気抵抗をRmpとして次式で与えられる。
K2=Rm3/(Rm1+Rmp+Rm3)
このように、一次コイルの発生する磁束が分流用磁性体にて分流しK1・Φ1が二次コイルと鎖交し、また同じように二次コイルの発生する磁束Φ2のうちK2・Φ2のみが一次コイル21と鎖交することにより等価的に各二次コイルの出力に直列にインダクタンスが入ることとなる。このインダクタンスは各出力ごとに磁束を分流することにより生ずるものであり、ここでは分流磁束インダクタンスLbとする。
K2 is the magnetic resistance Rm3 of the magnetic material for shunting, the magnetic resistance Rm1 of the primary side magnetic material, the magnetic resistance Rm2 of the secondary side magnetic material of the second to n-th secondary coils 22, and the magnetic resistance of the magnetic material for shunting. The magnetic resistance of the sum of the parallel magnetic resistances of the resistor Rm3 is given by the following equation as Rmp.
K2 = Rm3 / (Rm1 + Rmp + Rm3)
In this way, the magnetic flux generated by the primary coil is shunted by the shunting magnetic material, and K1 · Φ1 is linked to the secondary coil. Similarly, only K2 · Φ2 of the magnetic flux Φ2 generated by the secondary coil is the same. By interlinking with the primary coil 21, an inductance is equivalently inserted in series with the output of each secondary coil. This inductance is generated by shunting the magnetic flux for each output, and is here referred to as a shunt magnetic flux inductance Lb.

第1の二次コイルの出力電圧V2aはV1を
V1=Va・sin(2πf・t)
として、一次側及び二次側の関係式
V1=N1・d(Φ1−K2・Φ2)/dt
V2a=N2・d(K1・Φ1−Φ2)/dt
I2a=V2a/R
Φ2=N2・I2a/Rms=(N2・N2/R・Rms)・d(K1・Φ1−Φ2)/dt
を解いて、V2aのピーク値Voaは次式で与えられる。
Voa=K1・N2・R・Va/N1・Lb・√{(R/Lb)2 +(2πf)2
The output voltage V2a of the first secondary coil is V1 V1 = Va · sin (2πf · t)
The relational expression of the primary side and the secondary side V1 = N1 · d (Φ1−K2 · Φ2) / dt
V2a = N2 * d (K1 * Φ1-Φ2) / dt
I2a = V2a / R
Φ2 = N2 ・ I2a / Rms = (N2 ・ N2 / R ・ Rms) ・ d (K1 ・ Φ1−Φ2) / dt
, The peak value Voa of V2a is given by the following equation.
Voa = K 1 · N 2 · R · Va / N 1 · Lb · √ {(R / Lb) 2 + (2πf) 2 }

次に、出力端子が開放されている第2の二次コイル22bの出力電圧V2bを計算する。第2の二次コイル22直下の二次側磁性体の磁束は一次コイルよりの磁束がK1・Φ1、また第1の二次コイルが発生する逆方向の磁束Φ2のうち、一次側磁性体23に分流する成分K2・Φ2が一次側磁性体23から第nの出力区間・・・・・第3の出力区間をまわり第2の二次コイル22bの二次側磁性体25と分流用磁性体26の下側接合点P4まで一周してくるが、P4で各出力区間の二次側磁性体と分流用磁性体の磁束分流比K1を乗じた磁束が二次側磁性体に分流するため、K1・K2・Φ2が第2の二次コイル直下の二次側磁性体に、一次コイルからの磁束K1・Φ1を減ずる方向で流入する。従って、第2の二次コイル22bの出力電圧V2bは
V2b=N2・d(K1・Φ1−K1・K2・Φ2)/dt
であるから、Voaの計算で求めたΦ1、Φ2を上式に代入すると、V2bのピーク値Vobは
Vob=K1・N2・Va/N1
となる。
Next, the output voltage V2b of the second secondary coil 22b whose output terminal is open is calculated. The magnetic flux of the secondary side magnetic body just below the second secondary coil 22 is K1 · Φ1 from the primary coil, and the reverse side magnetic flux Φ2 generated by the first secondary coil is the primary side magnetic body 23. The components K2 and .PHI.2 to be shunted from the primary side magnetic body 23 to the nth output section... The third output section and the secondary side magnetic body 25 of the second secondary coil 22b and the shunt magnetic body. 26, the magnetic flux obtained by multiplying the magnetic flux shunt ratio K1 between the secondary side magnetic body and the shunting magnetic body in each output section is shunted to the secondary side magnetic body at P4. K1, K2, and Φ2 flow into the secondary side magnetic body directly below the second secondary coil in a direction that reduces the magnetic flux K1 and Φ1 from the primary coil. Accordingly, the output voltage V2b of the second secondary coil 22b is V2b = N2 · d (K1 · Φ1−K1 · K2 · Φ2) / dt
Therefore, when Φ1 and Φ2 obtained by the calculation of Voa are substituted into the above equation, the peak value Vob of V2b is Vob = K1, N2, Va, N1
It becomes.

これは、全ての出力が開放状態の時の式と同じとなるため、複数の蛍光管を負荷としたときにどれか一本の蛍光管が点灯状態になっても、まだ放電開始していない蛍光管には放電開始電圧を超える電圧が印加されることとなり、結果として全ての蛍光管が点灯状態に入ることが出来ることを示している。   This is the same as the equation when all outputs are open, so when one of the fluorescent tubes is turned on when multiple fluorescent tubes are loaded, the discharge has not started yet. This indicates that a voltage exceeding the discharge start voltage is applied to the fluorescent tube, and as a result, all the fluorescent tubes can enter the lighting state.

次に、全ての二次コイル22の出力端子に負荷抵抗Rが負荷されたときの二次側の出力電圧V2を計算する。先ず第1の二次コイル22aに電流I2aが流れこの電流により第1の二次コイル22a直下の二次側磁性体には一次側より流入する磁束K1・Φ1と逆向きの起磁力N2・I2aが発生し、発生地点から見た全磁気抵抗をRmsとして、この起磁力による磁束Φ2は
Φ2=N2・I2/Rms
がK1・Φ1を減じる方向に生ずる。Φ2は第1の二次コイル22aの二次側磁性体25と分流用磁性体26の接合点P1で、この磁束分流比をK2として入力側磁性体にK2・Φ2、分流用磁性体に(1−K2)・Φ2が分流する。
Next, the output voltage V2 on the secondary side when the load resistance R is loaded on the output terminals of all the secondary coils 22 is calculated. First, a current I2a flows through the first secondary coil 22a, and this current causes a magnetomotive force N2 · I2a in the opposite direction to the magnetic flux K1 · Φ1 flowing from the primary side into the secondary side magnetic body immediately below the first secondary coil 22a. The total magnetic resistance seen from the point of occurrence is Rms, and the magnetic flux Φ2 due to this magnetomotive force is Φ2 = N2 · I2 / Rms
Occurs in the direction of decreasing K1 · Φ1. Φ2 is a junction point P1 between the secondary side magnetic body 25 and the shunt magnetic body 26 of the first secondary coil 22a, and this flux shunt ratio is set to K2 for the input side magnetic body K2 · Φ2, and for the shunt magnetic body ( 1-K2) · Φ2 is shunted.

また、全ての出力の負荷抵抗R、及びK1,K2,N2が等しいとすると各出力の出力電圧V2、出力電流I2も全て等しく、また第2の二次コイル22bに流れる電流により第2の二次コイル22b直下の二次側磁性体25に発生する磁束Φ2は第1の二次コイルの発生する磁束Φ2と等しく、第2の二次コイル22bの二次側磁性体25と分流用磁性体26bとの上側の接合点P3で、K2・Φ2が第1の二次コイル側に流れ、(1−K2)・Φ2が第2の二次コイルの分流用磁性体に分流する。第1の二次コイル部に流入した磁束K2・Φ2は第1の二次コイルの二次側磁性体と分流用磁性体の下側接合点P2で二次側磁性体へのK1・K2・Φ2と分流用磁性体への(1−K1)・K2・Φ2に分流するが、同じく上側の接合点P1で再び合流しK2・Φ2として一次側磁性体に流れ込む。   Further, assuming that the load resistances R of all the outputs and K1, K2, and N2 are equal, the output voltages V2 and the output currents I2 of all the outputs are all equal, and the second second coil 22b is caused by the current flowing through the second secondary coil 22b. The magnetic flux Φ2 generated in the secondary side magnetic body 25 immediately below the secondary coil 22b is equal to the magnetic flux Φ2 generated by the first secondary coil, and the secondary side magnetic body 25 and the shunting magnetic body of the second secondary coil 22b. At the upper junction point P3 with 26b, K2 · Φ2 flows to the first secondary coil side, and (1-K2) · Φ2 branches to the magnetic material for shunting of the second secondary coil. The magnetic flux K2 · Φ2 flowing into the first secondary coil section is applied to the secondary side magnetic body at the lower junction P2 of the secondary side magnetic body and the shunting magnetic body of the first secondary coil. The current is divided into (1−K1) · K2 · Φ2 to Φ2 and the magnetic material for diversion, but again merges at the upper junction P1 and flows into the primary side magnetic material as K2 · Φ2.

このように第2の二次コイル22a〜第nの二次コイル22nの発生する磁束は
(n−1)・K1・K2・Φ2
が第1の二次コイル22a直下の二次側磁性体25に一次コイル21よりの磁束K1Φ1を減じる方向で流れ込むこととなるため、第1の二次コイル22aが鎖交する磁束は
K1・Φ1−Φ2−(n−1)・K1・K2・Φ2
となる。
Thus, the magnetic flux generated by the second secondary coil 22a to the n-th secondary coil 22n is
(n-1) ・ K1 ・ K2 ・ Φ2
Flows into the secondary side magnetic body 25 immediately below the first secondary coil 22a in a direction to reduce the magnetic flux K1Φ1 from the primary coil 21, so that the magnetic flux interlinked with the first secondary coil 22a is K1 · Φ1. −Φ2− (n−1) ・ K1 ・ K2 ・ Φ2
It becomes.

従って、この場合の出力電圧V2、出力電流I2はV1を上述の正弦波電圧として、一次側および二次側の関係式
V1=N1・d(Φ1−n・K2・Φ2)/dt
V2=N2・d(K1・Φ1−Φ2−(n−1)・K1・K2・Φ2)/dt
I2=V2/R
Φ2=N2・I2/Rms
=(N2・N2/R・Rms)・d(K1・Φ1−Φ2+(n−1)・K1・K2・Φ2)/dt
を解いて,それぞれのピーク値Vo、Ioは次式で与えられる。
Vo=K1・N2・R・Va/N1・Lb・√{(R/Lb)2 + (2πf)2
Io=K1・N2・Va/N1・Lb・√{(R/Lb)2 + (2πf)2
Therefore, in this case, the output voltage V2 and the output current I2 are V1 = N1 · d (Φ1−n · K2 · Φ2) / dt where V1 is the sine wave voltage described above.
V2 = N2 · d (K1 · Φ1-Φ2-(n-1) · K1 · K2 · Φ2) / dt
I2 = V2 / R
Φ2 = N2 / I2 / Rms
= (N2 / N2 / R / Rms) / d (K1 / Φ1-Φ2 + (n−1) / K1 / K2 / Φ2) / dt
, And the respective peak values Vo and Io are given by the following equations.
Vo = K1, N2, R, Va / N1, Lb, {{R / Lb) 2 + (2πf) 2 }
Io = K 1 · N 2 · Va / N 1 · Lb · √ {(R / Lb) 2 + (2πf) 2 }

上式の中のLbは先に述べたように、二次側磁性体25の磁束を分流用磁性体26で分流することにより、等価的に二次コイル22の出力に直列に発生する分流磁束インダクタンスである。この結果より、本方式の蛍光管用高周波昇圧トランスは点灯時の電圧、電流が出力数nによらず一定であることが分る。   As described above, Lb in the above equation is a shunt magnetic flux that is equivalently generated in series with the output of the secondary coil 22 by shunting the magnetic flux of the secondary side magnetic body 25 by the shunt magnetic body 26. Inductance. From this result, it can be seen that the voltage and current at the time of lighting of the high-frequency step-up transformer for a fluorescent tube of this system are constant regardless of the number of outputs n.

以上の検討結果より、本発明による蛍光管用高周波昇圧トランスは従来問題となっていた以下の点を改善することを特徴とするものである。
特徴(1)
出力数nを増やしても一次側磁性体の磁束が増大しない。
先に述べたように、n個の出力において磁束並列結合型漏洩磁束インダクタンス方式蛍光管用高周波昇圧トランスでは一次側磁性体の磁束量が一個の場合のn倍に増大するのに対し、本発明の蛍光管用高周波昇圧トランスの場合は一個でも、n個でも同じ磁束量となり、多出力の蛍光管用高周波昇圧トランスでも入力電圧を一個の場合と同じに抑えることができる。入力電圧が低いことは一次コイルの励磁電流が少ないことであり、結果として、電流の二乗に比例する一次コイルの導体損失を大きく低減することができる。また、磁束密度のほぼ二乗に比例する磁性体損失も大幅に改善されるため高効率の蛍光管用高周波昇圧トランスを実現することができる。さらに、磁性体の磁気飽和を防ぐために磁気断面積を拡大する必要も無く、小型化・軽量化を実現することができる。
From the above examination results, the high-frequency step-up transformer for a fluorescent tube according to the present invention is characterized by improving the following points which have been problems in the past.
Features (1)
Increasing the number of outputs n does not increase the magnetic flux of the primary side magnetic body.
As described above, in the high frequency step-up transformer for a magnetic flux parallel coupled type leakage flux inductance type fluorescent tube at n outputs, the amount of magnetic flux of the primary side magnetic material increases to n times that of a single case. In the case of a single high frequency step-up transformer for fluorescent tubes, the number of magnetic fluxes is the same regardless of whether the number is n or n, and even in the case of a multi-output high frequency step-up transformer for fluorescent tubes, the input voltage can be suppressed to the same level. The low input voltage means that the excitation current of the primary coil is small, and as a result, the conductor loss of the primary coil proportional to the square of the current can be greatly reduced. In addition, since the magnetic material loss proportional to the square of the magnetic flux density is greatly improved, a highly efficient fluorescent tube high-frequency step-up transformer can be realized. Furthermore, there is no need to increase the magnetic cross-sectional area in order to prevent magnetic saturation of the magnetic material, and a reduction in size and weight can be realized.

特徴(2)
出力電圧、電流が出力数nに依存しない。
従来より汎用トランスとして用いられている磁束直列結合型漏洩磁束インダクタンス方式高周波昇圧トランスではn個の出力のうち一個でも点灯状態に入ると、その他の出力電圧が極端に低下するため残りの蛍光管は点灯することが出来ないが、本発明の蛍光管用高周波昇圧トランスでは分流用磁性体の働きにより、個々の出力は他の出力の点灯、非点灯に関係なく動作するため、簡素なトランス構造でn=10を超える場合でも、並列配置され放電開始電圧にバラツキのある蛍光管でも点灯することができ、点灯装置の小型化・高信頼度化・低価格化を実現することができるものである。
Features (2)
The output voltage and current do not depend on the number of outputs n.
In a conventional magnetic flux series coupled leakage flux inductance type high frequency step-up transformer that has been used as a general-purpose transformer, when one of the n outputs enters the lighting state, the other output voltage drops extremely, so the remaining fluorescent tubes Although it cannot light up, in the high-frequency voltage step-up transformer for fluorescent tubes of the present invention, each output operates regardless of whether other outputs are lit or not lit by the action of the magnetic material for shunting. Even in the case of exceeding 10, it is possible to light even a fluorescent tube arranged in parallel and having a variation in the discharge start voltage, and the lighting device can be reduced in size, reliability, and price.

特徴(3)
それぞれの出力コイルに結合する磁束が共通であるため出力電圧、出力電流のバラツキが極端に少ない。コンデンサによりn個の出力を分岐する多出力バラストコンデンサ方式ではコンデンサの容量値のバラツキにほぼ等しい出力電流値バラツキがあり、また磁束並列結合型漏洩磁束インダクタンス方式多出力蛍光管用高周波昇圧トランスでは一次コイルの発生する磁束がn個の二次側磁性体にそれぞれの磁気抵抗の比率により分流するが、n=10個を超える二次側磁性体の磁気抵抗の比率を限られた形状で効率よく抑えることは難しく、出力電流のバラツキは大きいものとなる。本発明による蛍光管用高周波昇圧トランスでは、各出力が二次側磁性体を通る共通の磁束で決まるため、出力電圧、出力電流のバラツキを抑えることができるものである。
Features (3)
Since the magnetic flux coupled to each output coil is common, the variation in output voltage and output current is extremely small. In the multi-output ballast capacitor system that branches n outputs by the capacitor, there is an output current value variation that is almost equal to the variation in the capacitance value of the capacitor. In addition, the primary coil is used in the high-frequency step-up transformer for the multi-output fluorescent tube. However, the magnetic resistance ratio of the secondary side magnetic body exceeding n = 10 is efficiently suppressed with a limited shape. This is difficult, and the output current varies greatly. In the fluorescent tube high-frequency step-up transformer according to the present invention, since each output is determined by a common magnetic flux passing through the secondary side magnetic body, variations in output voltage and output current can be suppressed.

図3は、本発明の第1の実施形態の蛍光管用高周波昇圧トランス13おける出力数4の場合の模式図である。この第1の実施形態においては、図3に示すように、一次側磁性体23とコの字型に形成された二次側磁性体25によって閉磁束磁気回路が形成される。この第1の実施形態の蛍光管用高周波昇圧トランスでは、一次側磁性体23に一次コイル21が巻かれ、二次側磁性体25に二次コイル22(22a、22b、22c、22d)が巻かれ、二次コイル22の一部を覆うように分流用磁性体26(26a、26b、26c、26d)が取りつけられる。分流用磁性体26はコの字形状に形成され、中央部は二次コイル22を覆い、端部は二次側磁性体25に接合する。一般に、一次コイル21および二次コイル22はそれぞれボビンに巻かれた状態で一次側磁性体23および二次側磁性体25に嵌合される。   FIG. 3 is a schematic diagram of the case where the number of outputs is 4 in the fluorescent tube high-frequency step-up transformer 13 according to the first embodiment of the present invention. In the first embodiment, as shown in FIG. 3, a closed magnetic flux magnetic circuit is formed by the primary side magnetic body 23 and the secondary side magnetic body 25 formed in a U-shape. In the high frequency step-up transformer for a fluorescent tube of the first embodiment, a primary coil 21 is wound around a primary side magnetic body 23, and a secondary coil 22 (22a, 22b, 22c, 22d) is wound around a secondary side magnetic body 25. The shunting magnetic body 26 (26a, 26b, 26c, 26d) is attached so as to cover a part of the secondary coil 22. The shunting magnetic body 26 is formed in a U shape, the center portion covers the secondary coil 22, and the end portion is joined to the secondary side magnetic body 25. Generally, the primary coil 21 and the secondary coil 22 are fitted to the primary side magnetic body 23 and the secondary side magnetic body 25 in the state wound around the bobbin, respectively.

図4は、本発明の第1の実施形態の蛍光管用高周波昇圧トランス13の構造を示す斜視図である。図4において、コの字型の二次側磁性体25の端部は一次側磁性体23の両端に接合し閉磁束磁気回路を形成している。一次コイル21および二次コイル22はそれぞれボビンに巻かれた状態で一次側磁性体23および二次側磁性体25に嵌合されている。分流用磁性体26は、中央部が二次コイル22の上から二次コイル22を覆い、その両端部は二次側磁性体25に接合して、磁束分流回路を形成している。   FIG. 4 is a perspective view showing the structure of the fluorescent tube high-frequency step-up transformer 13 according to the first embodiment of the present invention. In FIG. 4, the end portion of the U-shaped secondary side magnetic body 25 is joined to both ends of the primary side magnetic body 23 to form a closed magnetic flux magnetic circuit. The primary coil 21 and the secondary coil 22 are respectively fitted to the primary side magnetic body 23 and the secondary side magnetic body 25 in a state of being wound around a bobbin. The center part of the shunting magnetic body 26 covers the secondary coil 22 from above the secondary coil 22, and both ends thereof are joined to the secondary side magnetic body 25 to form a magnetic flux shunt circuit.

このように本発明による分流磁束インダクタンス方式による多出力の蛍光管用高周波昇圧トランスでは並列配置され、かつ放電開始電圧にバラツキのある複数の蛍光管を効率よく点灯することが出来るとともに、負荷時のそれぞれの出力電圧V2は二次側磁性体と分流用磁性体の磁束分流比K1、二次コイル/一次コイルの巻き数比N2/N1、分流磁束インダクタンスLb,負荷抵抗R、入力電圧の振幅Va、周波数fのみにより決まり、出力数nには依存しない。このことは、出力数nに上限のある磁束並列結合型漏洩磁束インダクタンス方式多出力蛍光管用高周波昇圧トランスと異なり、n=10を超える蛍光管の並列駆動がひとつのトランスで実現でき、かつそれぞれの出力は一次側磁性体、二次側磁性体をループ状に回る共通の一定磁束で駆動されるため、出力電流のバラツキを極端に低減することができるものである。   As described above, the high-frequency step-up transformer for multi-output fluorescent tubes using the shunt magnetic flux inductance method according to the present invention can be arranged in parallel and can efficiently light a plurality of fluorescent tubes with variations in the discharge start voltage, and at the time of load. Output voltage V2 is the magnetic flux shunt ratio K1 between the secondary side magnetic body and the shunt magnetic body, the secondary coil / primary coil turns ratio N2 / N1, the shunt flux inductance Lb, the load resistance R, the amplitude Va of the input voltage, It depends only on the frequency f and does not depend on the number of outputs n. This is different from the high-frequency step-up transformer for a magnetic flux parallel coupled leakage flux inductance type multi-output fluorescent tube having an upper limit on the number of outputs n, and it is possible to realize the parallel driving of fluorescent tubes exceeding n = 10 with one transformer, and Since the output is driven by a common constant magnetic flux that loops around the primary side magnetic body and the secondary side magnetic body, variation in output current can be extremely reduced.

また、一次側磁性体の磁束量が出力数nに関係なく一定であるため、並列磁束結合型漏洩磁束インダクタンス方式多出力蛍光管用高周波昇圧トランスのようにnの増加とともに一次側磁性体の磁束量が増大することも無く、磁性体断面積が小さく出来るため小型・軽量の蛍光管用高周波昇圧トランス形状を実現できる。さらに、磁束密度のほぼ二乗に比例する磁性体損失も大幅に低減することが可能であり、蛍光管の点灯駆動回路の点灯効率の向上にも寄与するものである。   Further, since the amount of magnetic flux of the primary side magnetic body is constant regardless of the number of outputs n, the amount of magnetic flux of the primary side magnetic body increases as n increases as in the case of the parallel magnetic flux coupling type leakage flux inductance type multi-frequency fluorescent tube high-frequency step-up transformer. The cross-sectional area of the magnetic material can be reduced without increasing the size of the magnetic material, so that a compact and lightweight high-frequency step-up transformer shape for a fluorescent tube can be realized. Furthermore, it is possible to greatly reduce the loss of the magnetic material proportional to the square of the magnetic flux density, which contributes to the improvement of the lighting efficiency of the lighting driving circuit of the fluorescent tube.

第2の実施形態.
図5は、本発明の第2の実施形態の蛍光管用高周波昇圧トランス13おける出力数4の場合の模式図である。この第2の実施形態においては、図5に示すように、一次側磁性体23と棒状の閉磁路形成用磁性体29間に棒状の二次側磁性体25が挟まれ閉磁束磁気回路が形成される。この第2の実施形態の蛍光管用高周波昇圧トランスでは、一次側磁性体23に一次コイル21が巻かれ、二次側磁性体25に二次コイル22(22a、22b、22c、22d)が巻かれ、閉磁路形成用磁性体29が2つの二次側磁性体25に接合して閉磁束磁気回路を形成すると共に、二次コイル22の一部を覆うように分流用磁性体26が取りつけられる。分流用磁性体26(26a、26b、26c、26d)はコの字形状に形成され、中央部は二次コイル22を覆い、端部は二次側磁性体25に接合する。一般に、一次コイル21および二次コイル22はそれぞれボビンに巻かれた状態で一次側磁性体23および二次側磁性体25に嵌合される。なお、図5において、閉磁路形成用磁性体29が二次側磁性体25と分離して形成される以外は第1の実施形態と同じである。
Second embodiment.
FIG. 5 is a schematic diagram of the case where the number of outputs is 4 in the fluorescent tube high-frequency step-up transformer 13 according to the second embodiment of the present invention. In the second embodiment, as shown in FIG. 5, a rod-shaped secondary magnetic body 25 is sandwiched between the primary-side magnetic body 23 and the rod-shaped closed magnetic path forming magnetic body 29 to form a closed magnetic flux magnetic circuit. Is done. In the fluorescent tube high-frequency step-up transformer of the second embodiment, the primary coil 21 is wound around the primary side magnetic body 23, and the secondary coil 22 (22 a, 22 b, 22 c, 22 d) is wound around the secondary side magnetic body 25. The closed magnetic path forming magnetic body 29 is joined to the two secondary side magnetic bodies 25 to form a closed magnetic flux magnetic circuit, and the shunt magnetic body 26 is attached so as to cover a part of the secondary coil 22. The diverting magnetic body 26 (26 a, 26 b, 26 c, 26 d) is formed in a U shape, the center portion covers the secondary coil 22, and the end portion is joined to the secondary side magnetic body 25. Generally, the primary coil 21 and the secondary coil 22 are fitted to the primary side magnetic body 23 and the secondary side magnetic body 25 in the state wound around the bobbin, respectively. In FIG. 5, the second embodiment is the same as the first embodiment except that the closed magnetic path forming magnetic body 29 is formed separately from the secondary side magnetic body 25.

図6は、本発明の第2の実施形態の蛍光管用高周波昇圧トランス13の構造を示す斜視図である。図6において、閉磁路形成用磁性体29が二次側磁性体25と分離して形成される以外は第1の実施形態と同じであるので、詳細な説明は省略する。   FIG. 6 is a perspective view showing a structure of the fluorescent tube high-frequency step-up transformer 13 according to the second embodiment of the present invention. In FIG. 6, the closed magnetic path forming magnetic body 29 is the same as that of the first embodiment except that it is formed separately from the secondary side magnetic body 25, and thus detailed description thereof is omitted.

第3の実施形態.
図7は本発明の第3の実施形態の蛍光管用高周波昇圧トランス13の構造を示す模式図である。この第3の実施形態においては、図7に示すように、一次側磁性体23と閉磁路形成用磁性体29間に複数のコの字型の磁性体27(27a、27b、27c、27d)を挟んで閉磁束磁気回路を形成する。閉磁束磁気回路は、一次側磁性体23、コの字型の磁性体の二次コイルが巻かれた複数の磁性体部分、閉磁路形成用磁性体29によって形成される。コの字型の磁性体は、一方の支路は二次コイルが巻かれる二次側磁性体として、また他方の支路は分流用磁性体として機能する。コの字型の磁性体を複数個縦続接続することによって、分流用磁性体は二次コイル22の一部を覆うようにすることができる。第3の実施形態では、二次コイルが巻かれる磁性体を個別に製造できるため、出力数に応じてコの字型の磁性体27を柔軟に取りつけることができる。また、各コの字型磁性体は小型のため製造価格が安価であるので、蛍光管用高周波昇圧トランスのコスト低減を実現することができる。
Third embodiment.
FIG. 7 is a schematic diagram showing the structure of the fluorescent tube high-frequency step-up transformer 13 according to the third embodiment of the present invention. In the third embodiment, as shown in FIG. 7, a plurality of U-shaped magnetic bodies 27 (27a, 27b, 27c, 27d) are provided between the primary side magnetic body 23 and the closed magnetic path forming magnetic body 29. A closed magnetic flux magnetic circuit is formed across The closed magnetic flux magnetic circuit is formed by a primary magnetic body 23, a plurality of magnetic body portions around which a secondary coil of a U-shaped magnetic body is wound, and a closed magnetic path forming magnetic body 29. In the U-shaped magnetic body, one branch functions as a secondary side magnetic body around which a secondary coil is wound, and the other branch functions as a branching magnetic body. By connecting a plurality of U-shaped magnetic bodies in cascade, the shunting magnetic body can cover a part of the secondary coil 22. In the third embodiment, since the magnetic body around which the secondary coil is wound can be individually manufactured, the U-shaped magnetic body 27 can be flexibly attached according to the number of outputs. In addition, since each U-shaped magnetic body is small in size and inexpensive to manufacture, it is possible to reduce the cost of the high-frequency step-up transformer for a fluorescent tube.

第4の実施形態.
図8は本発明の第4の実施形態の蛍光管用高周波昇圧トランス13の構造を示す模式図である。この第4の実施形態においては、図8に示すように、一次側磁性体23と閉磁路形成用磁性体29間に複数のE字型の磁性体28(28a、28b、28c、28d)を挟んで閉磁束磁気回路を形成する。閉磁束磁気回路は、一次側磁性体23、E字型の磁性体の二次コイルが巻かれた複数の磁性体部分、閉磁路形成用磁性体29によって形成される。E字型の磁性体は、上下の支路は二次コイルが巻かれる二次側磁性体として、また中央の支路は両端のふたつの二次側磁性体の共通の分流用磁性体として機能する。E字型の磁性体を複数個縦続接続することによって、分流用磁性体は二次コイル22の一部を覆うようにすることができる。第4の実施形態では、ふたつの二次コイルがひとつの分流用磁性体を共用するため小型・軽量化が図れるとともに、二次コイルが巻かれる磁性体を個別に製造できるため、出力数に応じてE字型の磁性体28を柔軟に取りつけることができる。また、各E字型磁性体は小型のため製造価格が安価であるので、蛍光管用高周波昇圧トランスのコスト低減を実現することができる。
Fourth embodiment.
FIG. 8 is a schematic diagram showing the structure of a fluorescent tube high-frequency step-up transformer 13 according to the fourth embodiment of the present invention. In the fourth embodiment, as shown in FIG. 8, a plurality of E-shaped magnetic bodies 28 (28a, 28b, 28c, 28d) are provided between the primary side magnetic body 23 and the closed magnetic path forming magnetic body 29. A closed magnetic flux magnetic circuit is formed by sandwiching them. The closed magnetic flux magnetic circuit is formed by a primary side magnetic body 23, a plurality of magnetic body portions around which a secondary coil of an E-shaped magnetic body is wound, and a closed magnetic path forming magnetic body 29. The E-shaped magnetic body functions as a secondary side magnetic body on which the secondary coil is wound on the upper and lower branches, and the central branch path functions as a common shunting magnetic body for the two secondary side magnetic bodies at both ends. To do. By connecting a plurality of E-shaped magnetic bodies in cascade, the shunting magnetic body can cover a part of the secondary coil 22. In the fourth embodiment, since the two secondary coils share one magnetic material for shunting, the size and weight can be reduced, and the magnetic material around which the secondary coil is wound can be individually manufactured. Thus, the E-shaped magnetic body 28 can be flexibly attached. In addition, since each E-shaped magnetic body is small in size and inexpensive to manufacture, the cost of the high-frequency step-up transformer for a fluorescent tube can be reduced.

図9は、大画面液晶表示パネル用バックライト蛍光管点灯インバータ回路用の多出力蛍光管用高周波昇圧トランスの性能を各方式について比較した一覧表である。図9に示すように、本発明による蛍光管用高周波昇圧トランスは、多出力が得られ、起動特性も良く、高効率で、小型軽量で、信頼性が高くコストも安価である等全ての項目で他の方式の蛍光管用高周波昇圧トランスよりも優れていることが一目で分かる。   FIG. 9 is a table comparing the performance of the high-frequency step-up transformer for a multi-output fluorescent tube for a backlight fluorescent tube lighting inverter circuit for a large-screen liquid crystal display panel for each method. As shown in FIG. 9, the high-frequency step-up transformer for fluorescent tubes according to the present invention provides multiple outputs, has good start-up characteristics, is highly efficient, small and lightweight, is reliable, and is inexpensive. It can be seen at a glance that it is superior to other types of high-frequency step-up transformers for fluorescent tubes.

本発明は、液晶表示パネルのバックライトとして用いられる並列配置された複数の蛍光管を点灯させるための蛍光管用高周波昇圧トランスとして利用することができる。   The present invention can be used as a high-frequency step-up transformer for fluorescent tubes for lighting a plurality of fluorescent tubes arranged in parallel used as a backlight of a liquid crystal display panel.

本発明の第1の実施形態の蛍光管用高周波昇圧トランスおける出力数nの場合の模式図である。It is a schematic diagram in the case of the number n of outputs in the high frequency step-up transformer for fluorescent tubes of the first embodiment of the present invention. 本発明の第1の実施形態の蛍光管用高周波昇圧トランスおける出力数nの蛍光管用高周波昇圧トランスの磁気回路図である。FIG. 3 is a magnetic circuit diagram of a high-frequency boost transformer for fluorescent tubes having an output number n in the high-frequency boost transformer for fluorescent tubes according to the first embodiment of the present invention. 本発明の第1の実施形態の蛍光管用高周波昇圧トランスおける出力数4の場合の模式図である。It is a schematic diagram in the case of the number of outputs 4 in the high frequency step-up transformer for fluorescent tubes of the first embodiment of the present invention. 本発明の第1の実施形態の蛍光管用高周波昇圧トランスの一例を示す斜視図である。It is a perspective view which shows an example of the high frequency pressure | voltage rise transformer for fluorescent tubes of the 1st Embodiment of this invention. 本発明の第2の実施形態の蛍光管用高周波昇圧トランスおける出力数4の場合の模式図である。It is a schematic diagram in the case of the number of outputs 4 in the high frequency step-up transformer for fluorescent tubes of the 2nd Embodiment of this invention. 本発明の第2の実施形態の蛍光管用高周波昇圧トランスの一例を示す斜視図である。It is a perspective view which shows an example of the high frequency step-up transformer for fluorescent tubes of the 2nd Embodiment of this invention. 本発明の第3の実施形態の蛍光管用高周波昇圧トランスにおける出力数4の場合の模式図である。It is a schematic diagram in the case of the number of outputs of 4 in the high frequency step-up transformer for fluorescent tubes of the third embodiment of the present invention. 本発明の第4の実施形態の蛍光管用高周波昇圧トランスにおける出力数8の場合の模式図である。It is a schematic diagram in the case of the number of outputs of 8 in the high frequency step-up transformer for fluorescent tubes of the 4th Embodiment of this invention. 本発明と従来の技術の複数蛍光管並列点灯用蛍光管用高周波昇圧トランスの各種性能比較表である。5 is a table comparing various performances of a high-frequency step-up transformer for fluorescent tubes for lighting a plurality of fluorescent tubes in parallel according to the present invention. 従来の複数蛍光管点灯回路の一例を示す図である。It is a figure which shows an example of the conventional multiple fluorescent tube lighting circuit. 蛍光管の電圧−電流特性を示す図である。It is a figure which shows the voltage-current characteristic of a fluorescent tube. バラストコンデンサ方式による複数蛍光管点灯回路の一例を示す図である。It is a figure which shows an example of the multiple fluorescent tube lighting circuit by a ballast capacitor | condenser system. バラストコンデンサ方式におけるバラストコンデンサ容量と蛍光管電流の関係を示す図である。It is a figure which shows the relationship between the ballast capacitor capacity | capacitance and fluorescent tube current in a ballast capacitor system. 漏洩磁束インダクタンス方式による複数蛍光管点灯回路の一例を示す図である。It is a figure which shows an example of the multiple fluorescent tube lighting circuit by a leakage magnetic flux inductance system. 出力数2個の磁束並列結合型漏洩磁束インダクタンス方式の蛍光管用高周波昇圧トランスの構造を示す図である。It is a figure which shows the structure of the high frequency step-up transformer for fluorescent tubes of a magnetic flux parallel coupling type leakage flux inductance system of two outputs. 出力数n個の磁束並列結合型漏洩磁束インダクタンス方式の蛍光管用高周波昇圧トランスの磁気回路を示す図である。It is a figure which shows the magnetic circuit of the high frequency step-up transformer for fluorescent tubes of the magnetic flux parallel coupling type leakage flux inductance system of n outputs. 磁束並列結合型漏洩磁束インダクタンス方式蛍光管用高周波昇圧トランスの出力数nと所要入力電圧の関係を示す図である。It is a figure which shows the relationship between the output number n of a high frequency pressure | voltage rise transformer for magnetic flux parallel coupling type | mold leakage magnetic flux inductance type fluorescent tubes, and required input voltage. 磁束並列結合型漏洩磁束インダクタンス方式蛍光管用高周波昇圧トランスの出力数nと所要入力電流の関係を示す図である。It is a figure which shows the relationship between the output number n of a high frequency pressure | voltage rise transformer for magnetic-flux parallel-coupling-type leakage flux inductance type fluorescent tubes, and required input current. 磁束並列結合型漏洩磁束インダクタンス方式蛍光管用高周波昇圧トランスの出力数nと所要一次側磁性体断面積の関係を示す図である。It is a figure which shows the relationship between the output number n of a high frequency pressure | voltage rise transformer for magnetic flux parallel coupling type | mold leakage magnetic flux inductance type | mold fluorescent tubes, and required primary side magnetic body cross-sectional area. 磁束直列結合型漏洩磁束インダクタンス方式の蛍光管用高周波昇圧トランスの模式図である。It is a schematic diagram of a high-frequency step-up transformer for a fluorescent tube of a magnetic flux series coupling type leakage flux inductance method. 磁束直列結合型漏洩磁束インダクタンス方式の蛍光管用高周波昇圧トランスの出力数nと出力電圧の関係を示す図である。It is a figure which shows the relationship between the output number n and the output voltage of the high frequency step-up transformer for fluorescent tubes of a magnetic flux series coupling type | mold leakage magnetic flux inductance system. 従来の漏洩磁束インダクタンス方式の蛍光管用高周波昇圧トランスを示す図である。It is a figure which shows the conventional high frequency step-up transformer for fluorescent tubes of a leakage magnetic flux inductance system.

符号の説明Explanation of symbols

13 蛍光管用高周波昇圧トランス
21一次コイル
22、22a、22b、・・22n 二次コイル
23 一次側磁性体
25、25a、25b 二次側磁性体
26、26a、26b、・・26n 分流用磁性体
27、27a〜27d 分流用磁性体
28、28a〜28h 分流用磁性体
29 閉磁路形成用磁性体
13 High frequency step-up transformer for fluorescent tube 21 Primary coil 22, 22a, 22b,... 22n Secondary coil 23 Primary side magnetic body 25, 25a, 25b Secondary side magnetic body 26, 26a, 26b,. 27a to 27d Magnetic material for diversion 28, 28a to 28h Magnetic material for diversion 29 Magnetic material for forming a closed magnetic circuit

Claims (5)

一次コイルが巻かれた一次側磁性体と、複数の二次コイルが巻かれ前記一次側磁性体と直列の閉磁束磁気回路を形成する二次側磁性体と、
前記二次コイルの一部を覆い、その両端は前記二次側磁性体に接合するように形成される分流用磁性体とから構成され、
前記複数の二次コイルはそれぞれ蛍光管に接続され、
記分流用磁性体によって前記二次側磁性体を通る磁束を分流することを特徴とする蛍光管用高周波昇圧トランス。
A primary side magnetic body wound with a primary coil, a secondary side magnetic body wound with a plurality of secondary coils and forming a closed magnetic flux magnetic circuit in series with the primary side magnetic body;
Covering a part of the secondary coil, both ends thereof are composed of a magnetic material for shunting formed so as to be joined to the secondary side magnetic material,
The plurality of secondary coils are each connected to a fluorescent tube,
Fluorescent tubes for high frequency step-up transformer, characterized in that diverting the magnetic flux passing through the secondary magnetic member by pre Symbol fraction diverted magnetic material.
前記二次側磁性体はコの字型に形成され、その両端は前記一次側磁性体に接合するように形成され、前記一次側磁性体と前記二次側磁性体によって直列の閉磁束磁気回路を形成することを特徴とする請求項1に記載の蛍光管用高周波昇圧トランス。 The secondary side magnetic body is formed in a U-shape, and both ends thereof are formed to be joined to the primary side magnetic body, and a closed magnetic flux magnetic circuit in series by the primary side magnetic body and the secondary side magnetic body. fluorescent tubes for high frequency step-up transformer as claimed in claim 1, characterized that you form. 前記二次側磁性体は、棒状に形成される2つのコイル用二次側磁性体と、棒状に形成された閉磁路形成用磁性体から構成され、前記各コイル用二次側磁性体の一端は前記一次側磁性体に接合し、前記閉磁路形成用磁性体はその両端が前記コイル用二次側磁性体の各他端に接合することを特徴とする請求項1に記載の蛍光管用高周波昇圧トランス。 The secondary side magnetic body is composed of two coil secondary side magnetic bodies formed in a bar shape and a closed magnetic path forming magnetic body formed in a bar shape, and one end of each coil secondary side magnetic body 2. The high-frequency tube for a fluorescent tube according to claim 1, wherein the first magnetic member is joined to the primary side magnetic body, and both ends of the magnetic material for forming a closed magnetic path are joined to the other end of the secondary side magnetic body for the coil. Boost transformer. 面がコの字型の磁性体で形成され、前記コの字型の磁性体の一方の二次コイルが巻かれた方の磁性体をコイル用二次側磁性体とし、前記コの字型の磁性体の他方の二次コイルが巻かれていない方の磁性体を分流用磁性体とし、前記一次側磁性体、前記コの字型磁性体の前記コイル用二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、前記コの字型磁性体の他方の分流用磁性体部分によって前記コイル用二次側磁性体部分を通る磁束を分流することを特徴とする請求項3に記載の蛍光管用高周波昇圧トランス。 Cross-section is made form with shaped magnetic material co, one of the secondary coils wound toward the magnetic body of the shaped magnetic material of the co and secondary magnetic coil, of the co A magnetic body on which the other secondary coil of the U-shaped magnetic body is not wound is used as a shunt magnetic body, and the primary side magnetic body and the secondary side magnetic body portion for the coil of the U-shaped magnetic body And a closed magnetic path forming magnetic body to form a closed magnetic flux magnetic circuit, and a magnetic flux passing through the coil secondary side magnetic body portion is shunted by the other shunt magnetic body portion of the U-shaped magnetic body. The high frequency step-up transformer for a fluorescent tube according to claim 3. 面がE字型の磁性体で形成され、前記E字型磁性体の両端の支路をコイル用二次側磁性体とし、前記E字型磁性体の中央の支路を分流用磁性体とし、前記一次側磁性体、前記E字型磁性体の前記二次側磁性体部分および閉磁路形成用磁性体によって閉磁束磁気回路を形成し、前記E字型磁性体の中央の支路の分流用磁性体部分によって前記コイル用二次側磁性体部分を通る磁束を分流することを特徴とする請求項3に記載の蛍光管用高周波昇圧トランス。 Cross-section is made form a magnetic material E-shaped, said E-shaped magnetic material ga across the secondary-side magnetic coil of the central partial diverted magnetic the ga of the E-shaped magnetic substance A closed magnetic flux magnetic circuit is formed by the primary side magnetic body, the secondary side magnetic body portion of the E-shaped magnetic body, and a closed magnetic path forming magnetic body, and a branch in the center of the E-shaped magnetic body 4. The high-frequency step-up transformer for a fluorescent tube according to claim 3, wherein a magnetic flux passing through the secondary magnetic part for the coil is shunted by the magnetic part for shunting.
JP2007102870A 2007-04-10 2007-04-10 High frequency step-up transformer for fluorescent tubes Expired - Fee Related JP4021931B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007102870A JP4021931B1 (en) 2007-04-10 2007-04-10 High frequency step-up transformer for fluorescent tubes
PCT/JP2007/072367 WO2008129714A1 (en) 2007-04-10 2007-11-19 High-frequency boosting transformer for fluorescent tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102870A JP4021931B1 (en) 2007-04-10 2007-04-10 High frequency step-up transformer for fluorescent tubes

Publications (2)

Publication Number Publication Date
JP4021931B1 true JP4021931B1 (en) 2007-12-12
JP2008262977A JP2008262977A (en) 2008-10-30

Family

ID=38857850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102870A Expired - Fee Related JP4021931B1 (en) 2007-04-10 2007-04-10 High frequency step-up transformer for fluorescent tubes

Country Status (2)

Country Link
JP (1) JP4021931B1 (en)
WO (1) WO2008129714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098790A1 (en) * 2008-02-06 2009-08-13 Shigetoshi Watanabe Multi-output high frequency step-up transformer for fluorescent tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8379417B2 (en) * 2011-07-06 2013-02-19 Rockwell Automation Technologies, Inc. Power converter and integrated DC choke therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820498U (en) * 1981-07-31 1983-02-08 松下電工株式会社 discharge lamp lighting device
JPH10208949A (en) * 1997-01-24 1998-08-07 Toko Inc Inverter transformer
JP3386972B2 (en) * 1997-02-21 2003-03-17 スミダコーポレーション株式会社 Inverter transformer and method of manufacturing the same
JP2006049470A (en) * 2004-08-03 2006-02-16 Matsushita Electric Ind Co Ltd Coil part
JP2006324632A (en) * 2005-04-18 2006-11-30 Matsushita Electric Ind Co Ltd Transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098790A1 (en) * 2008-02-06 2009-08-13 Shigetoshi Watanabe Multi-output high frequency step-up transformer for fluorescent tube

Also Published As

Publication number Publication date
WO2008129714A1 (en) 2008-10-30
JP2008262977A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US7183754B2 (en) DC/DC converter
US7697306B2 (en) DC/DC converter
KR101241564B1 (en) Couple inductor, Couple transformer and Couple inductor-transformer
US10594225B1 (en) Interleaved LLC half-bridge series resonant converter having integrated transformer
RU2524385C2 (en) Magnetic integral symmetrical converter
Ouyang et al. Planar-integrated magnetics (PIM) module in hybrid bidirectional DC–DC converter for fuel cell application
US7915989B2 (en) Magnetic element and magnetic core assembly having reduced winding loss
JPH09117141A (en) Converter
US7138787B2 (en) DC/DC converter
US20080129218A1 (en) Multiple Discharge Lamp Lighting Apparatus
US9509221B2 (en) Forward boost power converters with tapped transformers and related methods
US11749433B2 (en) Transformers having integrated magnetic structures for power converters
US8299881B2 (en) Transformer improved in leakage inductance
JP4021931B1 (en) High frequency step-up transformer for fluorescent tubes
US11632052B2 (en) Dual active bridge with distributed inductance
US7528552B2 (en) Power transformer combined with balance windings and application circuits thereof
US20240079963A9 (en) Isolated multi-phase dc/dc converter with reduced quantity of blocking capacitors
CN110299849A (en) A kind of interleaving shunt-wound two-transistor forward power converter of phase shifting control
US20170040097A1 (en) Switching converter circuit with an integrated transformer
CN211405871U (en) Magnetic integrated double-active-bridge converter
US20080030283A1 (en) Circuit, Manufacturing Method And Inverter circuit For Discharge Tube
CN112751489A (en) Magnetic integration interleaved LLC resonant converter
JP4124806B1 (en) Multi-output high-frequency step-up transformer for fluorescent tubes
JP2002151285A (en) Inverter-type stabilizer
CN104900393A (en) Winding method and product for flyback transformer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees