JP3992652B2 - 3-phase input charger - Google Patents

3-phase input charger Download PDF

Info

Publication number
JP3992652B2
JP3992652B2 JP2003178169A JP2003178169A JP3992652B2 JP 3992652 B2 JP3992652 B2 JP 3992652B2 JP 2003178169 A JP2003178169 A JP 2003178169A JP 2003178169 A JP2003178169 A JP 2003178169A JP 3992652 B2 JP3992652 B2 JP 3992652B2
Authority
JP
Japan
Prior art keywords
value
phase
unit
output
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178169A
Other languages
Japanese (ja)
Other versions
JP2005020806A (en
Inventor
輝明 竹嶋
Original Assignee
レシップ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レシップ株式会社 filed Critical レシップ株式会社
Priority to JP2003178169A priority Critical patent/JP3992652B2/en
Publication of JP2005020806A publication Critical patent/JP2005020806A/en
Application granted granted Critical
Publication of JP3992652B2 publication Critical patent/JP3992652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は入力3相電力を全波整流し、その全波整流出力をスイッチング式DC−DC変換器(コンバータ)を介して蓄電池に供給充電し、DC−DC変換器のスイッチング素子に対するオンオフ制御パルスをパルス幅変調して、上記充電電流を制御する充電装置に関する。
【0002】
【従来の技術】
図6に従来のこの種の充電装置を示す。3相交流電源11からの3相交流電力は充電装置12内の全波整流回路13により全波整流され、その全波整流出力はスイッチング式のDC−DC変換器14を介して蓄電池15へ供給充電される。DC−DC変換器14においては例えば、IGBTなどの高耐圧半導体スイッチング素子により構成されたインバータ16により全波整流電力が、例えば20kHzなどの高周波の交流電力に変換され、この交流電力は必要に応じて、絶縁用トランス17により昇圧され、そのトランス17の出力は整流回路18により整流平滑化されて、直流電力とされ、この直流電力が蓄電池15へ供給される。
【0003】
蓄電池15へ供給される充電電流は電流検出部19により検出され、その検出電流値は制御部21内で設定部22よりの設定値との差が誤差演算部23でとられ、この差出力に応じて補正部24において、レジスタ25よりの基準値に対する補正が行われ、その補正された基準値がPWM生成部26へ供給され、PWM生成部26は入力された変調信号(補正された基準値)に応じたパルス幅のパルス信号(パルス幅変調信号)を出力し、このパルス幅変調信号によりインバータ16のスイッチング素子をオンオフ制御する。この充電電流検出による帰還制御により充電電流が設定値に保持されるようにされている。
【0004】
この充電装置において、入力される3相電力の1つの相が断になり、相欠陥すると、全波整流回路13の出力レベルは1/3に減少し、電流検出部19の検出電流も1/3となる。正常状態では全波整流回路13の出力波形は、図7に示すように断線前には3つの相間電圧と対応した曲線27UV,27VW,27WUが現われているが、例えば電力線10Uが断線すると、電力線10Uと10V間の相間電圧と電力線10Wと10U間の相間電圧が0となり、全波整流回路13の出力は電力線10Vと10W間の相間電圧のみの整流出力となり、図7中において曲線27UVと27WUはなくなり、図2Aに示すように曲線27VWのみとなる。
【0005】
この状態で、検出電流の低下を補償するように、インバータ16を制御すると、相欠陥の影響を受けていない波形27VWのピークに近いΔTの区間においては、正常に動作すべき所をかなり可大な電流を流すように制御され、インバータ16を構成する素子、特にスイッチング素子が破壊するおそれがある。このような状態にならないように、図6に示すように、全波整流回路13の3相電力線10U,10V,10Wの各2線間にそれぞれトランスTUV,TVW,TWUの1次側が接続され、トランスTUV,TVW,TWUの2次側に相間電圧検出器DUV,DVW,DWUがそれぞれ接続され、これら相間電圧検出器の何れかで電力線10U,10V,10Wの2線間における相間電圧の何れか1つが所定値以下になると、充電装置の充電動作を停止するようにされていた。
【0006】
【発明が解決しようとする課題】
このように従来においては、相欠陥を検出するため、3つのトランスTUV,TVW,TWUとその相間電圧検出器DUV,DVW,DWUを用いていた。この各トランスは電圧が高いため比較的大型のものであり、このため全体としての構造が比較的大きなものになる問題があった。
【0007】
【課題を解決するための手段】
この発明の一面によれば入力3相電力中の1つの相間電圧のゼロクロス点がゼロクロス検出部により検出され、そのゼロクロス点の隣接点間の3分の1の期間ごとに、このゼロクロス点と同期して、充電電流又は電圧の実効値あるいは平均値が出力値計算部により出力値として計算され、その出力値と設定値との誤差が誤差信号として誤差演算部により演算され、その誤差信号がゼロになるように、誤差信号によりスイッチング式直流−直流変換器のスイッチング素子に対するスイッチング信号の幅が補正部により制御され、上記ゼロクロス点間の3分の1の期間ごとの誤差信号の前の誤差信号に対する変動量が変動検出部で検出され、その検出された変動量がしきい値を超えると充電動作が充電停止部により停止制御される。
【0008】
この発明の他面によれば、全波整流出力が電圧変換部で電圧に変換され、入力3相電力中の1つの相間電圧のゼロクロス点がゼロクロス検出部により検出され、この検出ゼロクロス点と同期して、その隣接ゼロクロス点間の3分の1ごとに、電圧変換部の出力がサンプリング部でサンプリングされ、そのサンプリング値がしきい値以下になると、充電停止部により充電動作が停止される。
【0009】
【発明の実施の形態】
この発明の実施形態の説明に先立ち、この発明を適用して、好ましいスイッチング式直流−直流変換器のスイッチング素子に対し制御を行う充電装置について図8を参照して説明する。図8において図6に示した装置と対応する部分に同一参照番号を付けてある。
この充電装置では制御部21に逆相生成部31が設けられる。逆相生成部31は全波整流回路13の全波整流出力波形の逆相と対応した逆相対応値を生成する。つまり、例えば図7に示したように全波整流出力波形28のリップル成分を逆位相とした(反転した)曲線32と対応したものが求められる。曲線32は連続したものとして示しているが、実際にはインバータ16のスイッチング素子に対するスイッチング周期の間隔でサンプリングしたデジタル値として求められる。
【0010】
曲線32の周期TV は入力3相交流電力の1相の周期TA の1/6である。この周期TV 内における各逆相対応値、つまりサンプル値を変調信号としてパルス幅変調部(PWM生成部)26でパルス幅変調信号を生成した時の、平均電流(実効値)が、従来の充電装置において、基準値をパルス幅変調信号とした場合の同一区間(TV )の平均電流(実効値)と等しくなるように、周期TV 内の各逆相対応値(サンプル値)を予め決めておく。
【0011】
逆相生成部31よりの逆相対応値に対し、補正部33において、インバータ16の出力電流の実効値が目標値(設定値)になるように補正部33で補正し、その補正された逆相対応値が制御値(変調信号)としてPWM生成部(パルス幅変調部)26へ供給され、パルス幅変調信号が生成され、このパルス幅変調信号により、インバータ16のスイッチング素子がオンオフ制御される。
この構成においては逆相対応値は例えば図9Aに示すように曲線32のサンプル値と対応し、この値は3相全波整流出力28のリップルのピーク値部分で最小値となり、この時のパルス幅変調信号のパルス幅は最小幅Wmin となり、リップルの極小値部分でサンプル値は最大となり、パルス幅変調信号のパルス幅も最大値Wmax となる。この各パルス幅変調信号の面積はほぼ同一になるようにされ、つまり前述したように、リップルの各部に応じてパルス幅変調信号のパルス幅Wを同一とさせる従来のもの(図9B)と異なる。同一補正値の場合は、同一期間(周期)内におけるパルス幅変調値は、従来のものと同一実効値になるようにされている。補正なしの場合における1周期TV 内における各パルス幅変調信号の各パルス幅を前述のように予め求めておけば、充電電流制御のための補正値は同一値を用いることができ、各逆相対応値をその相対的比率を保持した状態で補正値に応じて変更すればよい。インバータ16でのスイッチングのパルス幅の変化が図9Aに示した状態になるように逆相生成部31より生成される逆相対応値は入力3相電力と同期される。このため例えば降圧トランス34を介してゼロクロス検出部36が2本の電力線、例えば10Uと10V間に接続される。ゼロクロス検出部36は図7に示すように電力線10Uと10V間の相間電圧波形27UVがゼロ電圧レベルを切る時点PZ を検出して、そのゼロクロス時点PZ ごとに同期パルスを出力し、これが逆相生成部31へ供給される。逆相生成部31では、入力されたゼロクロス点パルスと同期して、周期TV =TA /6の逆相波形32のサンプル値列(逆相対応値列)を出力する。
【0012】
実施形態1
この発明の実施形態1は、直流−直流変換器のスイッチング素子を、3相全波整流出力のリップル波形のピークで幅が最小に、谷で幅が最大になるパルス幅変調信号でスイッチング制御する構成にすると共に、3相電力の各相ごとに充電電流が所定値になるように制御する構成に対しこの発明を適用したものである。図1にこの実施形態1の機能構成を図8と対応する部分に同一参照番号を付けて示す。
図7中に示した逆相波形32の1周期TV 分の波形が波形メモリ35に格納されている。理想的な3相交流電力に対する3相全波整流出力波形28において、3相交流電力の振幅が決まり、かつスイッチング式DC−DC変換器14のスイッチング周期が決まれば、そのリップルの1周期TV における各サンプル値を計算することができ、その各サンプル値の逆数を計算することができる。この逆数の各値、つまり1周期TV 分が波形メモリ35に格納される。
【0013】
一方、充電装置12に入力される3相交流電力の1つの相間電圧がゼロクロス検出部36へ入力され、その相間電圧のゼロクロス点PZ が検出される。そのゼロクロス点が検出されるごとにn進カウンタ37がリセットされる。n進カウンタ37は、PWM生成部26よりのパルス幅変調信号と同期したクロック、つまりインバータ16のスイッチング素子に対するスイッチングと同期したクロックを計数し、このクロックの周期をTC とすると、n=TV /TC 個のクロックを計数すると、リセットされ、再びゼロから計数することを繰り返すものである。
【0014】
n進カウンタ37の計数値により波形メモリ35の記憶波形が、全波整流出力波形28のリップルと同期して順次読み出され、つまり逆相対応値が順次得られ、これが、補正部33を通じてPWM生成部26へ供給され、パルス幅変調信号が生成される。
インバータ16の出力信号は出力値計算部41へ供給され、出力値計算部41はn進カウンタ37のゼロリセット出力により制御されて、リップルの1周期TV におけるインバータ出力信号の実効値又は平均値が計算され、この実効値又は平均値と、設定部42からの設定された目標値との差が誤差演算部43で求められ、その誤差出力が補正部33へ供給され、補正部33において、誤差演算部43の出力がゼロになるように、つまり計算した実効値又は平均値が設定された目標値に近づくように、波形メモリ35より出力された逆相対応値に対する補正が行われる。つまり、3相電力の各相ごとにPWMパルスの1周期TV の平均値又は実効値が目標値になるように制御され、充電電流/電圧が所定値に保持される。出力値計算部41の出力値は蓄電池15に対する充電電流/電圧の実効値又は平均値と対応したものである。
【0015】
この実施形態1では、隣接する相対応補正制御量の変動が検出され、その変動が所定値を超えると、欠相が生じたと判定される。図1においては、誤差演算部43の出力誤差信号、つまり補正制御信号が、n進カウンタ37のゼロリセット出力により前回制御量保持部61に一時格納され、変動検出部62で誤差演算部43の出力誤差信号と前回制御量保持部61よりの1周期TV 前の誤差信号、つまり1相前の誤差信号との差、即ち制御量の変動量が検出され、この変動量が比較部63でしきい値部64のしきい値と比較され、しきい値を超えれば比較部63の出力により充電停止部65が制御され、充電動作が停止される。
【0016】
図2Aに示すように、欠相が生じていない状態では全波整流出力波形は曲線28となり、そのリップル周期TV ごとの出力値計算部41の出力実効値はEN に対し、わずかな値ΔEN で変動したものとなる。従って、この場合の誤差演算部43よりの出力誤差信号も図2Bの線66に示すように、周期TV ごとの変動はわずかであり、変動検出部62より検出される変動量も小さな値であり、これはしきい値より小さなものとなり、充電停止部65は制御されることはない。
【0017】
しかし欠相が生じ、例えば電力線10Uよりの電力が断になると全波整流出力波形は図2Aの曲線27VWとなる。つまり単相全波整流出力波形となる。従って出力値計算部41の出力実効値は波形27VWのピーク部分の1周期TV においてはEA1と、欠相がない場合のその値EN とほぼ同一値となるが、ピーク部分の1周期TV の両側の1周期TV においては、EA1の2分の1より小さい値EA2となる。従ってこの場合の誤差演算部43より出力誤差信号も図2Bの線67で示すように、EA1と対応する部分は正常時と同様に小さな値CV1 であるが、EA2と対応する部分ではCV1 に対し、格段と大きな値CV2 となる。変動検出部62からCV1 とCV2 との差の絶対値が出力され、これはしきい値を超え、比較部63の出力により充電停止部65が制御されて、充電動作が停止することになる。
【0018】
実施形態2
図3にこの発明の実施形態2を図1と対応する部分に同一参照番号を付けて示す。
この実施形態2では3相全波整流回路13よりの全波整流出力は電圧変換部51に分岐供給されて全波整流出力が電圧に変換される。この場合、アイソレーション増幅器などを用いて電圧変換部51の入力側と出力側とを絶縁することが好ましい。電圧変換部51の出力電圧波形は、PWM生成部26からのクロックによりA/D変換部52でサンプリングされてデジタル値に変換され、その各デジタル値の逆数が逆数計算部53で検出され、この計算された逆数が逆相対応値として補正部33を通じてPWM生成部26へ供給される。
【0019】
PWM生成部26よりのパルス幅変調信号は、DC−DC変換器14へ供給されると共に、出力値計算部41へも分岐供給される。ゼロクロス検出部36よりのゼロクロス点PZ 検出パルスが制御パルス生成部71に入力されてゼロクロスパルスと同期した周期TV のパルスが生成され、この周期TV の制御パルスにより出力値計算部41が制御されて出力値計算部41は検出ゼロクロス点を基準として期間TV ごとの実効値又は出力値を計算し、これと、設定値との差を求め、各周期TV ごとに充電電流の補正を行う。
【0020】
この出力値計算部41の出力値も、蓄電池15に対する充電電流/電圧の実効値又は平均値と対応したものである。
制御パルス生成部71より、この制御パルスにより電圧変換部51の出力電圧をサンプリング部72でサンプリングし、そのサンプリング値としきい値部64からのしきい値とを比較部63で比較する。正常状態では図2Aから理解されるように、サンプリング部72の出力サンプリング値はほぼLN であるが、例えば電力線10Uよりの電力が断になれば、周期TV ごとのサンプリングにおいて、連続する3回のサンプリング値中の2回はほぼLN であるが、1回は0となる。よって、比較部63でサンプリング部72の出力サンプリング値が0となった時に、つまりサンプリング値がしきい値以下になると、比較部63の出力で充電停止部65が制御されて、充電動作が停止される。
この図3においても誤差演算部43の出力側に、図1に示したように前回制御量保持部61と変動検出部62を設け、変動検出部62の出力を比較部63へ供給してもよい。なおしきい値部64のしきい値は制御量の変動量と比較する場合とサンプリング値と比較する場合とでは異なった値に設定することは当然である。
【0021】
実施形態3
この発明は逆相対応値を用いる場合に限らず、図6に示した従来装置のように、3相全波整流出力波形のリップルの位相に無関係に図9Bに示したように同一幅でスイッチング素子をスイッチング制御する場合にもこの発明を適用することができる。この場合の実施形態を図4に、図3及び図6と対応する部分に同一参照番号を付けて示す。この例では図3に示したように、全波整流回路13の出力が電圧変換部51で電圧に変換され、ゼロクロス検出部36の検出パルスに基づき、制御パルス生成部71で生成された制御パルスにより、電圧に変換された全波整流出力波形がサンプリング部72でサンプリングされ、そのサンプリング値としきい値とが比較部63で比較され、しきい値以下であれば充電停止部65が制御される。制御部21には逆相生成部31は設けられることなく、図6に示したと同様の構成とされている。
図3に示した実施形態2において、3相電力の各相ごとの同一サンプル位相のサンプル値を記憶・平均部56で平均し、その平均値を利用してもよい。
【0022】
実施形態4
図5にこの発明の実施形態4を、図1、図3、図6と対応する部分に同一参照番号を付けて示す。この実施形態4は図6に示した従来の装置の制御部21と同様に逆相対応値を用いない場合であり、図1と同様にインバータ16の出力が出力値計算部41に入力され、制御パルス生成部71からの制御パルスにより、ゼロクロス点PZ と同期して周期TV ごとに実効値又は平均値が出力値として計算され、この出力値と設定部42の設定値との誤差が誤差演算部43で演算され、その誤差信号に応じて補正部24において基準値に対する制御が行われる。図1に示した場合と同様に、誤差信号の1周期TV 前の誤差信号に対する変動量が変動検出部62で検出され、この変動量がしきい値を超えると、充電停止部65が制御される。
【0023】
逆相対応値を利用する場合は、図9Aに示したように各パルス幅変調信号の面積は同一となり、3相全波整流出力28のピーク部分で特にパワーが大きくなることなく、電流容量の小さい素子でDC−DC変換器14を構成することができ、安価な充電装置とすることができる。またPWM生成部26の出力又はインバータ16の出力の実効値(平均値)が設定値になるように制御する場合は、従来の電流検出部19の検出による制御のような遅れを伴うことなく充電電流を制御することができる。
上述した各実施形態において直流−直流変換器14にインバータ16を用いたがチョッパを用いてもよい。
【0024】
【発明の効果】
以上述べたように、この発明によれば、1つのトランスを用いて欠相を検出することができ、全体としての構造を小型にすることができる。特に逆相対応値を利用する場合は、その逆相対応値処理のために用いるゼロクロス検出部を利用することができ、欠相検出のために特にトランスを設ける必要がない。
【図面の簡単な説明】
【図1】この発明の実施形態1の機能構成例を示す図。
【図2】Aは正常状態と欠相状態の全波整流出力波形例を示す図、Bは正常状態と欠相状態の制御(誤差)信号の例を示す図である。
【図3】この発明の実施形態2の機能構成例を示す図。
【図4】この発明の実施形態3の機能構成例を示す図。
【図5】この発明の実施形態4の機能構成例を示す図。
【図6】従来の3相充電装置の機能構成例を示す図。
【図7】全波整流出力波形とそのリップルの逆相波形を示す図。
【図8】逆相対応値を利用した充電装置の機能構成例を示す図。
【図9】パルス幅変調信号の例を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention performs full-wave rectification on input three-phase power, supplies the full-wave rectified output to a storage battery via a switching DC-DC converter (converter), and charges an on / off control pulse for a switching element of the DC-DC converter. It is related with the charging device which controls the said charging current by carrying out the pulse width modulation.
[0002]
[Prior art]
FIG. 6 shows a conventional charging apparatus of this type. The three-phase AC power from the three-phase AC power supply 11 is full-wave rectified by a full-wave rectifier circuit 13 in the charging device 12, and the full-wave rectified output is supplied to the storage battery 15 via the switching DC-DC converter 14. Charged. In the DC-DC converter 14, for example, full-wave rectified power is converted into high-frequency AC power, such as 20 kHz, by an inverter 16 formed of a high-voltage semiconductor switching element such as IGBT, and this AC power is converted as necessary. Then, the voltage is boosted by the insulating transformer 17, and the output of the transformer 17 is rectified and smoothed by the rectifier circuit 18 to become DC power, and this DC power is supplied to the storage battery 15.
[0003]
The charging current supplied to the storage battery 15 is detected by the current detection unit 19, and the difference between the detected current value and the set value from the setting unit 22 in the control unit 21 is taken by the error calculation unit 23. In response, the correction unit 24 corrects the reference value from the register 25, and the corrected reference value is supplied to the PWM generation unit 26. The PWM generation unit 26 receives the input modulation signal (corrected reference value). ) Is output, and the switching element of the inverter 16 is controlled to be turned on / off by the pulse width modulation signal. The charging current is held at a set value by feedback control based on this charging current detection.
[0004]
In this charging apparatus, when one phase of the input three-phase power is cut off and a phase defect occurs, the output level of the full-wave rectifier circuit 13 is reduced to 1/3, and the detected current of the current detector 19 is also 1 /. 3 In the normal state, as shown in FIG. 7, the output waveform of the full-wave rectifier circuit 13 has curves 27 UV , 27 VW , 27 WU corresponding to the three interphase voltages before the disconnection. For example, the power line 10U is disconnected. Then, the interphase voltage between the power lines 10U and 10V and the interphase voltage between the power lines 10W and 10U become 0, and the output of the full-wave rectifier circuit 13 becomes a rectified output of only the interphase voltage between the power lines 10V and 10W. There are no 27 UV and 27 WU, only the curve 27 VW as shown in FIG. 2A.
[0005]
In this state, when the inverter 16 is controlled so as to compensate for the decrease in the detection current, in the interval of ΔT close to the peak of the waveform 27 VW that is not affected by the phase defect, a place where it should operate normally is considerably allowed. Control is performed so that a large current flows, and there is a possibility that elements constituting the inverter 16, particularly switching elements, may be destroyed. In order to avoid such a state, as shown in FIG. 6, the primary sides of the transformers T UV , T VW , T WU are respectively connected between the two phases of the three-phase power lines 10U, 10V, 10W of the full-wave rectifier circuit 13. The interphase voltage detectors D UV , D VW , D WU are connected to the secondary sides of the transformers T UV , T VW , T WU , respectively, and the power lines 10U, 10V, 10W are connected by any of these inter-phase voltage detectors. When any one of the interphase voltages between the two wires is equal to or lower than a predetermined value, the charging operation of the charging device is stopped.
[0006]
[Problems to be solved by the invention]
Thus, conventionally, three transformers T UV , T VW , T WU and their phase voltage detectors D UV , D VW , D WU have been used to detect phase defects. Each of the transformers is relatively large because of a high voltage, and there is a problem that the overall structure is relatively large.
[0007]
[Means for Solving the Problems]
According to one aspect of the present invention, the zero-cross point of one phase voltage in the input three-phase power is detected by the zero-cross detector, and is synchronized with this zero-cross point every one-third period between adjacent points of the zero-cross point. Then, the effective value or average value of the charging current or voltage is calculated as an output value by the output value calculation unit, the error between the output value and the set value is calculated as an error signal by the error calculation unit, and the error signal is zero. The width of the switching signal with respect to the switching element of the switching type DC-DC converter is controlled by the correction unit by the error signal so that the error signal before the error signal for each one-third period between the zero cross points. Is detected by the fluctuation detection unit, and when the detected fluctuation amount exceeds the threshold value, the charging operation is controlled to be stopped by the charging stop unit.
[0008]
According to another aspect of the present invention, the full-wave rectified output is converted into a voltage by the voltage conversion unit, and the zero-cross point of one phase voltage in the input three-phase power is detected by the zero-cross detection unit and synchronized with the detected zero-cross point. Then, the output of the voltage conversion unit is sampled by the sampling unit every one third between the adjacent zero cross points, and when the sampling value becomes equal to or less than the threshold value, the charging operation is stopped by the charging stop unit.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the description of the embodiment of the present invention, a charging device that applies the present invention and controls the switching elements of a preferred switching type DC-DC converter will be described with reference to FIG. In FIG. 8, the same reference numerals are assigned to the parts corresponding to those of the apparatus shown in FIG.
In this charging apparatus, the control unit 21 is provided with a reverse phase generation unit 31. The negative phase generation unit 31 generates a negative phase corresponding value corresponding to the negative phase of the full wave rectification output waveform of the full wave rectification circuit 13. That is, for example, as shown in FIG. 7, a curve corresponding to the curve 32 in which the ripple component of the full-wave rectified output waveform 28 is reversed (inverted) is obtained. Although the curve 32 is shown as being continuous, it is actually obtained as a digital value sampled at intervals of the switching period with respect to the switching element of the inverter 16.
[0010]
The period T V of the curve 32 is 1/6 of the one-phase period T A of the input three-phase AC power. Each reverse-phase corresponding value in the period T V, i.e. pulse width modulation unit sample value as a modulation signal when generating the pulse width modulated signal with (PWM generator) 26, the average current (effective value) is, the conventional In the charging device, each negative phase corresponding value (sample value) within the period T V is set in advance so that it is equal to the average current (effective value) in the same section (T V ) when the reference value is a pulse width modulation signal. Decide it.
[0011]
The correction unit 33 corrects the effective value of the output current of the inverter 16 to the target value (set value) with respect to the negative phase corresponding value from the negative phase generation unit 31, and the corrected reverse The phase-corresponding value is supplied as a control value (modulation signal) to the PWM generation unit (pulse width modulation unit) 26 to generate a pulse width modulation signal, and the switching element of the inverter 16 is on / off controlled by this pulse width modulation signal. .
In this configuration, the value corresponding to the negative phase corresponds to the sample value of the curve 32 as shown in FIG. 9A, for example, and this value becomes the minimum value at the peak value portion of the ripple of the three-phase full-wave rectified output 28. The pulse width of the width modulation signal is the minimum width Wmin, the sample value is maximum at the minimum value portion of the ripple, and the pulse width of the pulse width modulation signal is also the maximum value Wmax. The areas of the respective pulse width modulation signals are made substantially the same, that is, as described above, different from the conventional one (FIG. 9B) in which the pulse width W of the pulse width modulation signal is made the same according to each part of the ripple. . In the case of the same correction value, the pulse width modulation value within the same period (cycle) is set to the same effective value as the conventional one. If the width of each pulse of each pulse width modulation signal in one cycle T V in the case of no correction Oke obtained in advance as described above, the correction value for the charging current control can be used with the same value, each reverse What is necessary is just to change a phase corresponding value according to a correction value in the state which hold | maintained the relative ratio. The negative phase corresponding value generated by the negative phase generation unit 31 is synchronized with the input three-phase power so that the change in the pulse width of the switching in the inverter 16 is as shown in FIG. 9A. For this reason, for example, the zero cross detector 36 is connected between two power lines, for example, 10 U and 10 V via the step-down transformer 34. As shown in FIG. 7, the zero-cross detector 36 detects a time point P Z at which the interphase voltage waveform 27 UV between the power lines 10U and 10V falls below the zero voltage level, and outputs a synchronization pulse at each zero-cross time point P Z. It is supplied to the reverse phase generation unit 31. The negative phase generation unit 31 outputs a sample value sequence (negative phase corresponding value sequence) of the negative phase waveform 32 having a cycle of T V = T A / 6 in synchronization with the input zero cross point pulse.
[0012]
Embodiment 1
In the first embodiment of the present invention, the switching element of the DC-DC converter is subjected to switching control with a pulse width modulation signal having a minimum width at the peak of the ripple waveform of the three-phase full-wave rectified output and a maximum width at the valley. In addition to the configuration, the present invention is applied to the configuration in which the charging current is controlled to be a predetermined value for each phase of the three-phase power. FIG. 1 shows the functional configuration of the first embodiment with the same reference numerals assigned to the portions corresponding to FIG.
1 cycle T V min of the waveform of the reverse-phase waveform 32 shown in FIG. 7 is stored in the waveform memory 35. In the three-phase full-wave rectified output waveform 28 for an ideal three-phase AC power, if the amplitude of the three-phase AC power is determined and the switching period of the switching DC-DC converter 14 is determined, one period T V of the ripple Each sample value in can be calculated, and the reciprocal of each sample value can be calculated. Each value of the inverse, i.e. one period T V content is stored in the waveform memory 35.
[0013]
Meanwhile, one of the phase voltages of the three-phase AC power input to the charging device 12 is inputted to the zero-cross detector 36, a zero-cross point P Z of the phase voltage is detected. Each time the zero cross point is detected, the n-ary counter 37 is reset. n-ary counter 37, a clock synchronized with the pulse width modulated signal from the PWM generating unit 26, i.e. by counting a clock synchronized with the switching to the switching elements of the inverter 16, when the period of the clock and T C, n = T When counting the V / T C-number of clock is reset, in which repeating counting from zero again.
[0014]
The waveform stored in the waveform memory 35 is sequentially read out in synchronization with the ripple of the full-wave rectified output waveform 28 based on the count value of the n-ary counter 37, that is, the opposite-phase corresponding values are sequentially obtained. The pulse is supplied to the generation unit 26 and a pulse width modulation signal is generated.
The output signal of the inverter 16 is supplied to the output value calculation unit 41. The output value calculation unit 41 is controlled by the zero reset output of the n-ary counter 37, and the effective value or average value of the inverter output signal in one cycle T V of the ripple. The difference between the effective value or average value and the set target value from the setting unit 42 is obtained by the error calculation unit 43, and the error output is supplied to the correction unit 33. In the correction unit 33, Correction to the anti-phase corresponding value output from the waveform memory 35 is performed so that the output of the error calculation unit 43 becomes zero, that is, the calculated effective value or average value approaches the set target value. That is, for each phase of the three-phase power, control is performed so that the average value or effective value of one cycle T V of the PWM pulse becomes the target value, and the charging current / voltage is held at a predetermined value. The output value of the output value calculation unit 41 corresponds to the effective value or average value of the charging current / voltage for the storage battery 15.
[0015]
In the first embodiment, a change in the adjacent phase-corresponding correction control amount is detected, and when the change exceeds a predetermined value, it is determined that an open phase has occurred. In FIG. 1, the output error signal of the error calculation unit 43, that is, the correction control signal is temporarily stored in the previous control amount holding unit 61 by the zero reset output of the n-ary counter 37, and the fluctuation detection unit 62 performs the error calculation unit 43. output error signal and a period T V before the error signal from the previous control amount holding section 61, i.e. the difference between one phase before the error signal, i.e. the detected fluctuation amount of the control amount, the variation amount comparison section 63 The threshold value is compared with the threshold value of the threshold value unit 64. If the threshold value is exceeded, the charging stop unit 65 is controlled by the output of the comparison unit 63, and the charging operation is stopped.
[0016]
As shown in FIG. 2A, the full-wave rectified output waveform becomes a curve 28 in a state where the open-phase has not occurred, to output the effective value E N of the output value calculation section 41 of each the ripple period T V, slight value Fluctuated by ΔE N. Accordingly, as shown in line 66 of the output error signal also Figure 2B than the error calculating unit 43 in this case, variation in every period T V is small, the amount of variation to be detected from the fluctuation detecting unit 62 at a small value Yes, this is smaller than the threshold value, and the charging stop unit 65 is not controlled.
[0017]
However, when a phase failure occurs and, for example, power from the power line 10U is cut off, the full-wave rectified output waveform becomes the curve 27 VW in FIG. 2A. That is, it becomes a single-phase full-wave rectified output waveform. Therefore, the output rms value of the output value calculation section 41 and the E A1 in one period T V of the peak portion of the waveform 27 VW, becomes substantially the same value as the value E N when there is no phase failure, the peak portion 1 In one cycle T V on both sides of the cycle T V , the value E A2 is smaller than half of E A1 . Accordingly, the output error signal from the error calculation unit 43 in this case also has a small value CV 1 corresponding to E A1 as in the normal state as shown by the line 67 in FIG. 2B, but in the portion corresponding to E A2 It is a much larger value CV 2 than CV 1 . The absolute value of the difference between CV 1 and CV 2 is output from the fluctuation detection unit 62, which exceeds the threshold value, and the charging stop unit 65 is controlled by the output of the comparison unit 63 to stop the charging operation. Become.
[0018]
Embodiment 2
FIG. 3 shows Embodiment 2 of the present invention with the same reference numerals assigned to the portions corresponding to FIG.
In the second embodiment, the full-wave rectified output from the three-phase full-wave rectifier circuit 13 is branched and supplied to the voltage converter 51, and the full-wave rectified output is converted into a voltage. In this case, it is preferable to insulate the input side and the output side of the voltage converter 51 using an isolation amplifier or the like. The output voltage waveform of the voltage converter 51 is sampled by the A / D converter 52 by the clock from the PWM generator 26 and converted into a digital value, and the reciprocal of each digital value is detected by the reciprocal calculator 53. The calculated reciprocal is supplied to the PWM generation unit 26 through the correction unit 33 as an anti-phase corresponding value.
[0019]
The pulse width modulation signal from the PWM generator 26 is supplied to the DC-DC converter 14 and is also supplied to the output value calculator 41 in a branched manner. The zero-cross point PZ detection pulse from the zero-cross detection unit 36 is input to the control pulse generation unit 71 to generate a pulse having a period T V synchronized with the zero-cross pulse, and the output value calculation unit 41 causes the control pulse of the period T V to generate a pulse. output value calculating unit 41 is controlled to calculate the effective value or the output value of each time period T V based on the detection zero cross point, which the, obtains the difference between the set value, the correction of the charging current for each period T V I do.
[0020]
The output value of the output value calculation unit 41 also corresponds to the effective value or average value of the charging current / voltage for the storage battery 15.
From the control pulse generator 71, the output voltage of the voltage converter 51 is sampled by the sampling unit 72 using this control pulse, and the sampled value and the threshold value from the threshold unit 64 are compared by the comparator 63. As in a normal state can be understood from FIG. 2A, the output sampling value of the sampling unit 72 is substantially L N, for example, power from the power line 10U is if intercepted, in the sampling of each period T V, consecutive 3 Two of the sampled values are almost L N , but one is zero. Therefore, when the output sampling value of the sampling unit 72 becomes 0 in the comparison unit 63, that is, when the sampling value is equal to or less than the threshold value, the charging stop unit 65 is controlled by the output of the comparison unit 63, and the charging operation is stopped. Is done.
3, the previous control amount holding unit 61 and the variation detecting unit 62 are provided on the output side of the error calculating unit 43 as shown in FIG. 1, and the output of the variation detecting unit 62 is supplied to the comparing unit 63. Good. It is natural that the threshold value of the threshold value unit 64 is set to a different value when compared with the variation amount of the control amount and when compared with the sampling value.
[0021]
Embodiment 3
The present invention is not limited to the case of using the anti-phase corresponding value, and switching is performed with the same width as shown in FIG. 9B regardless of the ripple phase of the three-phase full-wave rectified output waveform as in the conventional device shown in FIG. The present invention can also be applied to switching control of elements. The embodiment in this case is shown in FIG. 4 with the same reference numerals assigned to the portions corresponding to those in FIGS. In this example, as shown in FIG. 3, the output of the full-wave rectifier circuit 13 is converted into a voltage by the voltage converter 51, and the control pulse generated by the control pulse generator 71 based on the detection pulse of the zero-cross detector 36. Thus, the full-wave rectified output waveform converted into the voltage is sampled by the sampling unit 72, the sampled value and the threshold value are compared by the comparison unit 63, and if it is below the threshold value, the charging stop unit 65 is controlled. . The control unit 21 is not provided with the reverse phase generation unit 31 and has the same configuration as shown in FIG.
In the second embodiment shown in FIG. 3, the sample values of the same sample phase for each phase of the three-phase power may be averaged by the storage / average unit 56 and the average value may be used.
[0022]
Embodiment 4
FIG. 5 shows a fourth embodiment of the present invention, in which parts corresponding to those in FIGS. 1, 3, and 6 are given the same reference numerals. This Embodiment 4 is a case where the opposite phase corresponding value is not used like the control unit 21 of the conventional apparatus shown in FIG. 6, and the output of the inverter 16 is input to the output value calculation unit 41 as in FIG. the control pulse from the control pulse generator 71, the effective value or average value is calculated as an output value for each period T V in synchronization with the zero-cross point P Z, error between the set value of the setting unit 42 and the output value The calculation is performed by the error calculation unit 43, and the correction unit 24 controls the reference value according to the error signal. As in the case shown in FIG. 1, the fluctuation amount of the error signal with respect to the error signal before one cycle T V is detected by the fluctuation detecting unit 62, and when this fluctuation amount exceeds the threshold value, the charge stopping unit 65 controls the error signal. Is done.
[0023]
When using the anti-phase corresponding value, the area of each pulse width modulation signal is the same as shown in FIG. 9A, and the current capacity is not increased at the peak portion of the three-phase full-wave rectified output 28 without particularly increasing the power. The DC-DC converter 14 can be configured with small elements, and an inexpensive charging device can be obtained. Further, when control is performed so that the effective value (average value) of the output of the PWM generation unit 26 or the output of the inverter 16 becomes the set value, the charging is performed without a delay as in the control by the detection by the conventional current detection unit 19. The current can be controlled.
In each of the above-described embodiments, the inverter 16 is used for the DC-DC converter 14, but a chopper may be used.
[0024]
【The invention's effect】
As described above, according to the present invention, an open phase can be detected using a single transformer, and the overall structure can be reduced in size. In particular, when a negative phase corresponding value is used, a zero-cross detector used for the negative phase corresponding value processing can be used, and it is not necessary to provide a transformer for detecting a missing phase.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a functional configuration according to a first embodiment of the invention.
FIG. 2A is a diagram illustrating an example of a full-wave rectified output waveform in a normal state and an open phase state, and B is a diagram illustrating an example of a control (error) signal in a normal state and an open phase state.
FIG. 3 is a diagram showing an example functional configuration of a second embodiment of the present invention.
FIG. 4 is a diagram showing an example functional configuration of a third embodiment of the invention.
FIG. 5 is a diagram showing a functional configuration example of a fourth embodiment of the present invention.
FIG. 6 is a diagram illustrating a functional configuration example of a conventional three-phase charging device.
FIG. 7 is a diagram showing a full-wave rectified output waveform and a reversed-phase waveform of the ripple.
FIG. 8 is a diagram illustrating an example of a functional configuration of a charging device using a negative phase correspondence value.
FIG. 9 is a diagram showing an example of a pulse width modulation signal.

Claims (2)

入力3相交流電力を全波整流回路で全波整流し、その整流出力を、スイッチング式直流−直流変換器を介して蓄電池へ供給して充電を行う3相入力充電装置において、
上記入力3相交流電力の3本の電力線中の2本間に接続され、1つの相間電圧のゼロクロス点を検出するゼロクロス検出部と、
上記ゼロクロス検出部の検出ゼロクロス点と同期し、その隣接ゼロクロス点間の3分の1ごとに、上記蓄電池への充電電流又は電圧の実効値あるいは平均値を出力値として計算する出力値計算部と、
上記出力値と設定値との誤差を誤差信号として演算する誤差演算部と、
上記誤差信号がゼロになるように上記スイッチング式直流−直流変換器のスイッチング素子に対するスイッチング信号の幅を制御する補正部と、
上記ゼロクロス点間の3分の1ごとの上記誤差信号のその前の誤差信号に対する変動量を検出する変動検出部と、
上記検出した変動量がしきい値を超えると充電動作を停止させる充電停止部とを具備することを特徴とする3相入力充電装置。
In a three-phase input charging device that performs full-wave rectification on input three-phase AC power using a full-wave rectifier circuit, and supplies the rectified output to a storage battery via a switching DC-DC converter for charging.
A zero-cross detector connected between two of the three power lines of the input three-phase AC power and detecting a zero-cross point of one inter-phase voltage;
An output value calculation unit that calculates an effective value or an average value of a charging current or a voltage to the storage battery as an output value for each one-third between adjacent zero cross points of the zero cross detection unit; ,
An error calculation unit for calculating an error between the output value and the set value as an error signal;
A correction unit for controlling the width of the switching signal with respect to the switching element of the switching DC-DC converter so that the error signal becomes zero;
A fluctuation detecting unit for detecting a fluctuation amount of the error signal for every third of the zero cross points with respect to the previous error signal;
A three-phase input charging device comprising: a charge stopping unit that stops the charging operation when the detected fluctuation amount exceeds a threshold value.
入力3相交流電力を全波整流回路で全波整流し、その整流出力を、スイッチング式直流−直流変換器を介して蓄電池へ供給して充電を行う3相入力充電装置において、
上記全波整流出力を電圧に変換する電圧変換部と、
上記入力3相交流電力の3本の電力線中の2本間に接続され、1つの相間電圧のゼロクロス点を検出するゼロクロス検出部と、
上記ゼロクロス検出部の検出ゼロクロス点と同期し、その隣接ゼロクロス点間の3分の1ごとに、上記電圧変換部の出力をサンプリングするサンプリング部と、
サンプリング部のサンプリング値がしきい値以下になると充電動作を停止させる充電停止部と
を具備することを特徴とする3相入力充電装置。
In a three-phase input charging device that performs full-wave rectification on input three-phase AC power using a full-wave rectifier circuit, and supplies the rectified output to a storage battery via a switching DC-DC converter for charging.
A voltage converter for converting the full-wave rectified output into a voltage;
A zero-cross detector connected between two of the three power lines of the input three-phase AC power and detecting a zero-cross point of one inter-phase voltage;
A sampling unit that samples the output of the voltage conversion unit in synchronization with the detection zero cross point of the zero cross detection unit and every third of the adjacent zero cross points;
A three-phase input charging device comprising: a charge stopping unit that stops a charging operation when a sampling value of the sampling unit is equal to or less than a threshold value.
JP2003178169A 2003-06-23 2003-06-23 3-phase input charger Expired - Fee Related JP3992652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178169A JP3992652B2 (en) 2003-06-23 2003-06-23 3-phase input charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178169A JP3992652B2 (en) 2003-06-23 2003-06-23 3-phase input charger

Publications (2)

Publication Number Publication Date
JP2005020806A JP2005020806A (en) 2005-01-20
JP3992652B2 true JP3992652B2 (en) 2007-10-17

Family

ID=34179878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178169A Expired - Fee Related JP3992652B2 (en) 2003-06-23 2003-06-23 3-phase input charger

Country Status (1)

Country Link
JP (1) JP3992652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322547A (en) * 2014-06-27 2016-02-10 罗德能源优化科技(青岛)有限公司 Device and method for synchronously connecting three-phase alternating current to single-phase alternating current in parallel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822304B2 (en) * 2012-03-26 2015-11-24 ニチコン株式会社 Charger
JP6401596B2 (en) * 2014-12-11 2018-10-10 積水化学工業株式会社 Charge / discharge system
EP3352329B1 (en) * 2015-09-17 2021-02-17 IHI Corporation Contactless power transmission device, and contactless power supply system
US11498147B2 (en) 2018-05-01 2022-11-15 Illinois Tool Works Inc. Single phase input detection and power source protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322547A (en) * 2014-06-27 2016-02-10 罗德能源优化科技(青岛)有限公司 Device and method for synchronously connecting three-phase alternating current to single-phase alternating current in parallel

Also Published As

Publication number Publication date
JP2005020806A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US6771522B2 (en) Inverter parallel operation system
RU2484572C2 (en) Ups operation control system and method
US5625539A (en) Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
CN107748292B (en) Alternating current insulation detection circuit, system and method
Senguttuvan et al. Solar photovoltaic system interfaced shunt active power filter for enhancement of power quality in three-phase distribution system
JPH04190633A (en) Method for operating inverter in parallel and apparatus thereof
JPH09224376A (en) Power conversion method and power converter
US20150188454A1 (en) Inverter device, control circuit for inverter device, and method for controlling inverter device
CN107710588B (en) Conversion apparatus and method of controlling the same
JP2007174866A (en) System-tie inverter system
JP3992652B2 (en) 3-phase input charger
JP2006238621A (en) Uninterruptible power supply
Davoodnezhad et al. A fully digital hysteresis current controller for current regulation of grid connected PV inverters
Xiao et al. Active power decoupling method based on dual buck circuit with model predictive control
JP4712148B2 (en) Power converter
KR100707081B1 (en) Apparatus and method for controlling instantaneous current
JP2004112954A (en) Power storage device
JP3378562B2 (en) Single-phase three-wire AC / DC bidirectional converter
JP2004343826A (en) Uninterruptible power system
JP3676220B2 (en) High power factor converter and control method thereof
US20160181798A1 (en) Bidirectional electrical signal converter
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
JP2004147484A (en) Charging device and program therefor
JP2011229347A (en) Power conversion equipment
US11336200B2 (en) Power conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3992652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees