JP3958137B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP3958137B2
JP3958137B2 JP2002215647A JP2002215647A JP3958137B2 JP 3958137 B2 JP3958137 B2 JP 3958137B2 JP 2002215647 A JP2002215647 A JP 2002215647A JP 2002215647 A JP2002215647 A JP 2002215647A JP 3958137 B2 JP3958137 B2 JP 3958137B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
nanosheet
layered
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215647A
Other languages
Japanese (ja)
Other versions
JP2003138145A (en
Inventor
正義 鈴江
昭嘉 犬伏
治恵 松永
Original Assignee
大塚化学ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学ホールディングス株式会社 filed Critical 大塚化学ホールディングス株式会社
Priority to JP2002215647A priority Critical patent/JP3958137B2/en
Publication of JP2003138145A publication Critical patent/JP2003138145A/en
Application granted granted Critical
Publication of JP3958137B2 publication Critical patent/JP3958137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無機化合物系ナノシートを合成樹脂に分散させてなる樹脂組成物に関する。
【0002】
【従来の技術】
最近になって、化学物質をナノメーター(nm)レベルまで微小化すると、元の化学物質とは異なる特性を示すことに大きな関心が寄せられ、様々な化学物質について、ナノスケール物質を合成することが試みられている。
【0003】
無機化合物の分野においては、厚みがサブnm〜nmの範囲にあるナノシートが合成され、合成樹脂の充填材として用いるための研究が進められている。ナノシートは、合成樹脂に良好なガスバリア性及び液体バリア性を付与するとともに、従来の粒子状、繊維状または板状の無機充填材よりも少い充填量で、合成樹脂の各種の機械的強度を向上させるが、樹脂マトリックス中で均一に分散し難いという欠点を有している。
【0004】
この様な欠点を解消するため、特開昭62−74957号公報、特開昭63−230766号公報及び特開平1−11157号公報では、モンモリロナイト等の珪酸塩系ナノシートを12−アミノドデカン酸等の膨潤化剤で処理し、これとポリアミド用モノマーとを共存させた状態で重合反応を行うことにより、珪酸塩系ナノシートを均一に分散させたポリアミド樹脂組成物を製造している。同様に、ポリアミド用モノマーと膨潤性フッ素雲母系鉱物(珪酸塩系ナノシート)とを共存させて重合反応を行い、膨潤性フッ素雲母系鉱物が均一に分散したポリアミド樹脂組成物が知られている(特開平8−3310号公報及び特開平8−12882号公報)。
【0005】
これらの特許公報に記載の方法によれば、モノマー成分が膨潤化剤の作用によって珪酸塩系ナノシートの層間にインターカレートされると同時並行的に重合が起こることから、珪酸塩系ナノシートをある程度均一にポリアミド中に分散させることができる。しかしながら、この方法は樹脂種がポリアミドのみに限定され、汎用性がない。また、得られるポリアミド樹脂組成物は、液体バリア性または気体バリア性、機械的強度、耐熱性、寸法安定性等に優れたプラスチック複合材料とされている。しかしながら、プラスチック複合材料の主用途である電気・電子機器類の内部機構部品や筐体、自動車内外装部品等において、小型化及び軽量化の要請に伴って一層の細密化及び薄膜化が進められている現状にあっては、より高い機械的特性、特により高い弾性率が求められている。
【0006】
更に、層状チタン酸ナノシートを含む熱可塑性樹脂組成物も提案されている(特開2001−81333号公報)。該特許公報によれば、層状チタン酸ナノシートは各種の熱可塑性樹脂マトリックスに分子レベルで分散する旨記載されているが、実施例で具体的に開示されている樹脂種はポリアミドのみである。しかも、従来と同様にポリアミド用モノマーと層状チタン酸ナノシートとの共存下に重合を行う実施例1及び2では、層状チタン酸ナノシートの樹脂マトリックス中での分散性は確かに良好であるが、ポリアミドと層状チタン酸ナノシートとを溶融混練する実施例3及び4では、層状チタン酸ナノシートの分散性は「やや良」と評価されており、実際には十分満足できる分散性は得られない。また、該熱可塑性樹脂組成物は引張強度(伸度)や耐熱性に優れるとされているが、弾性率は十分満足できる程向上していない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、無機化合物系ナノシートが均一に分散した樹脂組成物であって、高い弾性率を有し、かつ耐熱性に優れた樹脂組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、鋭意研究の結果、無機化合物系ナノシートとして、膨潤化された層状チタン酸ナノシートを用いることにより、一般的な溶融混練法で樹脂マトリックス中に、厚みがサブnm〜nmの範囲にある無機化合物系ナノシートを均一に分散することができ、高い弾性率を有し、かつ耐熱性に優れた樹脂組成物とすることができることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、レピドクロサイト型類似チタン酸塩を酸処理して得られる層状チタン酸を膨潤化剤で処理することにより膨潤化された層状チタン酸ナノシートを合成樹脂に配合してなることを特徴とする樹脂組成物である。
本発明においては、合成樹脂100重量部に対して、膨潤化された層状チタン酸ナノシートを0.1〜100重量部の範囲で配合することが好ましい。
【0010】
また、本発明において用いる、膨潤化された層状チタン酸ナノシートは、その層間距離が1〜5nmであることが好ましい。
本発明において用いる合成樹脂としては、例えば、ポリオレフィン、ポリアミド、ポリエステル、ポリアセタール、ポリスチレン及び芳香族ポリカーボネートから選ばれる1種または2種以上の熱可塑性樹脂が挙げられる。
【0011】
本発明の特徴は、無機化合物系ナノシートとして、膨潤化された層状チタン酸ナノシートを用いることにある。
膨潤化された層状チタン酸ナノシートは、層間に膨潤化剤がインターカレートしているため、層間が拡大し、層間の結合力が弱まった状態にある。これに、合成樹脂との溶融混練時の剪断力等の外力が加わると、層間剥離が起こり、樹脂マトリックスへの分散性に優れた単層または数層〜数十層のチタン酸ナノシート(平均厚み0.4〜80nm、平均シート径0.1〜20μm)が生成する。
【0012】
従って、膨潤化された層状チタン酸ナノシートを合成樹脂に配合すると、溶融混練法等の一般的な方法により、樹脂種に関係なく、単層または数層〜数十層のチタン酸ナノシートが均一に分散した樹脂組成物を得ることができる。
【0013】
分散したチタン酸ナノシート同士は、樹脂マトリックス中で、好ましくは100Å以上の距離を保ったランダムな状態にある。また、膨潤化された層状チタン酸ナノシートが剥離せずに、そのまま樹脂マトリックス中に残存することは殆どない。これらのことは、透過電子顕微鏡によって観察することができる。
【0014】
本発明の樹脂組成物は、樹脂単独の場合及び樹脂に層状チタン酸ナノシートを配合した場合よりも、機械的強度が向上し、特に弾性率が著しく向上し、耐熱性にも特に優れている。
【0015】
【発明の実施の形態】
本発明の樹脂組成物は、膨潤化された層状チタン酸ナノシートを合成樹脂に配合してなる。
【0016】
本発明において、合成樹脂としては、熱可塑性樹脂及び熱硬化性樹脂を使用できる。
熱可塑性樹脂としては特に制限されず、公知のものをいずれも使用でき、例えば、ポリエーテルイミド、ポリエーテルサルフォン、ポリフェニレンエーテル、ポリエーテルケトン系樹脂(ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトン等)、ポリカーボネート、芳香族ポリカーボネート、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル、芳香族ポリエステル、ポリアセタール、熱可塑性ポリウレタン、ポリアミド、ポリアクリレート、ポリ塩化ビニル、ポリスチレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリフェニルサルフォン、ポリサルフォン、液晶ポリマー、熱可塑性ポリイミド、ポリアリレート、ポリエーテルニトリル、ポリフェニレンサルファイド、熱可塑性エラストマー(ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等)、加硫及び未加硫のゴム(天然ゴム、ブタジエンゴム、クロロプレンゴム、EPDM、イソプレンゴム、イソブチレンーイソプレンゴム、NBR、SBR等)等を挙げることができる。
【0017】
これらの熱可塑性樹脂の中でも、ポリオレフィン、ポリアミド、ポリエステル、ポリアセタール、ポリスチレン、芳香族ポリカーボネート等を好ましく使用できる。
【0018】
ポリオレフィンとしては、プロピレン単独重合体、プロピレンと他のα−オレフィン(エチレン、ブテン−1,4−メチルペンテン−1、ヘキセン−1等)とのランダム重合体及びブロック重合体等のポリプロピレンを挙げることができる。また、極性が付与された変性ポリプロピレンも使用できる。成形性等を考慮すると、メルトフローが0.1〜100g/10分のものが好ましい。
【0019】
ポリアミドとしては、例えば、ナイロン6、ナイロン11、ナイロン12、ナイロン66(ヘキサメチレンジアミンとアジピン酸の重縮合物)、ナイロン610(ヘキサメチレンジアミンとセバシン酸の重縮合物)、ナイロン612(ヘキサメチレンジアミンとドデカン二酸の重縮合物)、ナイロンMXD6(メタキシリレンジアミンとアジピン酸の重縮合物)、ナイロン46(1,4ジアミノブタンとアジピン酸との重縮合物)、半芳香族ナイロン、前記ナイロンを構成するモノマー成分の2種以上からなる共重合ナイロン等を挙げることができる。これらの中でも、ナイロン6、ナイロン66等が好ましい。
【0020】
ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等のポリアルキレンテレフタレート、ポリ乳酸等を挙げることができる。ポリアセタールの市販品としては、「Delrin」、「Duracon」(いずれも商品名)等を挙げることができる。
【0021】
ポリスチレンには、スチレンの重合体及びスチレンを主成分とする重合体が包含され、具体的には、一般用ポリスチレン、耐衝撃性ポリスチレン、アクリロニトリル−スチレン(AS)樹脂、アクリロニトリル−プタジエン−スチレン(ABS)樹脂等を挙げることができる。
【0022】
芳香族ポリカーボネートとしては、例えば、ビスフェノールAのナトリウム塩とホスゲンから得られるポリカーボネート等を挙げることができる。
熱可塑性樹脂は1種を単独で使用でき叉は2種以上のアロイ若しくはブレンドとしてもよい。
【0023】
一方、熱硬化性樹脂としても特に制限されず、公知のものをいずれも使用できるが、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリウレタン等を好ましく使用できる。
【0024】
エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等を挙げることができる。
【0025】
不飽和ポリエステルとしては、ポリエステルの分子鎖中に不飽和基の二重結合を有し、これらが溶剤でもあるビニル系モノマーと容易に共重合して架橋し硬化体となる樹脂等を挙げることができる。即ち、不飽和ジカルボン酸であるマレイン酸またはフマル酸とエチレングリコール、プロピレングリコール、ジまたはトリエチレングリコール、ジまたはトリプロピレングリコール等の二価アルコールを縮重合したものをスチレン等のビニル系モノマーに溶解したものである。改質を目的として、例えば、不飽和ジカルボン酸の一部をフタル酸等で置き換えてもよい。
【0026】
ビニル系モノマーとしては、スチレンその他のアクリル酸エステル等を挙げることができる。ビニルエステル樹脂としては、ポリ酢酸ビニル、ポリけい皮酸ビニル、ビスフェノール型エポキシ樹脂等に、メタクリル酸、アクリル酸等を反応して得られる樹脂を挙げることができる。
【0027】
フェノール樹脂としては、フェノール化合物とアルデヒド化合物との付加・縮合物等を挙げることができる。フェノール化合物としては、フェノール、クレゾール、キシレノール、プロピルフェノール、ブチルフェノール、ノニルフエノール、カテコール、ヒドロキノン、ビスフェノールA等を挙げることができる。アルデヒド化合物としては、ホルムアルデヒド、アセトアルデヒドベンズアルデヒド、グリオキザール等を挙げることができる。より具体的には、フェノール化合物とアルデヒド化合物とを、塩基触媒下で反応させたレゾール型フェノール樹脂、酸触媒下で反応させたノボラック型フェノール樹脂等を挙げることができる。
【0028】
ポリウレタンとしては、例えば、多価イソシアナート化合物とポリエーテル、ポリエステル等のポリオールとの反応物等を挙げることができる。イソシアナート化合物の具体例としては、トリレンジイソシアナート、ジフエニルメタン−4,4’−ジイソシアナート、多核ポリイソシアナート等を挙げることができる。ポリオールの具体例としては、2個のOH基を有するジエチレングリコール、ジプロピレングリコール等、3個のOH基を有するグリセリン、4個のOH基を有するエリトリトール、5個のOH基を有するアラビトール、6個のOH基を有するソルビトール等を挙げることができる。
【0029】
熱硬化性樹脂は1種を単独で使用できまたは2種以上を併用できる。
本発明において、合成樹脂への充填材として使用する、膨潤化処理された層状チタン酸ナノシートは、チタン酸から構成される厚さサブnm〜nmのシート(チタン酸ナノシート)が数十〜数百層積層した層状チタン酸ナノシートを膨潤化剤を用いて処理したものである。
【0030】
膨潤化された層状チタン酸ナノシートの層間距離(平均面間隔)は特に制限はないが、通常は1〜5nm、好ましくは2〜4nmである。1nmを著しく下回ると、合成樹脂と溶融混練する際に、層間剥離が円滑に進行せず、単層または数層〜数十層のチタン酸ナノシートが生成しない可能性がある。一方、層間距離が5nmを超えるものを得るには、膨潤化剤を著しく多量に使用しなければならないが、そうすると、膨潤化処理された層状チタン酸ナノシートのみを純度良く得ることが困難になり、残存する膨潤化剤が樹脂組成物の物性に悪影響を及ぼすおそれが生じる。
【0031】
一方、膨潤化された層状チタン酸ナノシートを合成樹脂に分散した時に生成する、単層または数層〜数十層のチタン酸ナノシートは、通常平均厚みが0.4〜80nm、好ましくは0.4〜30nm、平均シート径が通常0.1〜20μm、好ましくは0.5〜10μmである。
【0032】
膨潤化された層状チタン酸ナノシートは、例えば、層状チタン酸を膨潤化剤で処理することにより製造できる。
原料化合物となる層状チタン酸は、例えば、レピドクロサイト型類似チタン酸塩化合物を塩酸等で酸処理し、結晶構造中のアルカリ金属をほぼ100%イオン交換により抽出することで得られる。レピドクロサイト型類似チタン酸塩化合物は、公知の方法に従って製造できる。例えば、特許第2979132号公報に開示の方法に従い、炭酸セシウムと二酸化チタンをモル比1:5.3で混合し、800℃で焼成することにより、レピドクロサイト型類似チタン酸塩化合物である斜方晶チタン酸セシウム(CsxTi2-x/44,x=0.70)が得られる。また、国際公開公報WO99/11574号公報に開示の方法に従い、炭酸カリウム(K2CO3)と炭酸リチウム(Li2CO3)と二酸化チタン(TiO2)をK/Li/Ti=3/1/6.5(モル比)で混合して摩砕し、800℃で焼成することにより、レピドクロサイト型類似チタン酸塩化合物であるK0.8Li0.27Ti1.734が得られる。更に、特開2001−81333号公報に記載の層状チタン酸ナノシートを、本発明における層状チタン酸として用いることもできる。
【0033】
膨潤化剤としては、例えば、ドデシルトリメチルアンモニウム塩、セチルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ジメチルジステアリルアンモニウム塩、ジメチルステアリルベンジルアンモニウム塩、ドデシルビス(2−ヒドロキシエチル)メチルアンモニウム塩、ジメチルジステアリルアンモニウム塩、ジメチルジデシルアンモニウム塩、トリメチルフェニルアンモニウム塩、ベンジルトリブチルアンモニウム塩等の4級アンモニウム塩、ブチルアミン、ペンチルアミン、ヘキシルアミン、オクチルアミン、ドデシルアミン、ステアリルアミン、ジペンチルアミン、ジオクチルアミン、2−エチルヘキシルアミンなどのアルキルアミンとこれらの塩、12−アミノドデカン酸等を挙げることができる。膨潤化剤は1種を単独で使用できまたは2種以上を併用できる。
【0034】
膨潤化剤による層状チタン酸の処理は、層状チタン酸の水性懸濁液に、撹拌下に膨潤化剤を加えることにより行われる。膨潤化剤の添加量は特に制限はなく、層状チタン酸の形状や大きさ、厚み、組成等に応じて広い範囲から適宜選択すれば良いが、通常層状チタン酸のイオン交換容量の5〜200当量%、好ましくは10〜150当量%とすればよい。膨潤化剤の添加量が5当量%よりも少ないと、層状チタン酸を膨潤化することができない場合があり、一方、200当量%を超える膨潤化剤を添加しても、200当量%未満の場合と比べ、膨潤効果に大きな差がなく、経済的に不利である。
【0035】
本発明の樹脂組成物において、膨潤化された層状チタン酸ナノシートの配合量は特に制限されず、合成樹脂の種類、得ようとする樹脂組成物の用途等の各種条件に応じて広い範囲から適宜選択すればよいが、得られる樹脂組成物の弾性率、成形性等をより一層良好なものとすること等を考慮すると、合成樹脂100重量部に対し通常0.1〜100重量部、好ましくは1〜30重量部とすればよい。膨潤化された層状チタン酸ナノシートの配合量が少ないと、弾性率及び耐熱性を高めるという本発明の効果が十分に得られない場合があり、配合量が多いと、成形が困難になる場合がある。
【0036】
本発明の樹脂組成物には、その好ましい特性を損なわない範囲で、従来から樹脂添加剤として用いられている各種の有機化合物または無機化合物の1種または2種以上を配合できる。その具体例としては、例えば、各種形状(粒子状、繊維状、鱗片状)の無機質充填剤、顔料、酸化防止剤、帯電防止剤、離型剤、潤滑剤、熱安定剤、難燃剤、ドリップ防止剤、紫外線吸収剤、光安定剤、遮光剤、金属不活性剤、老化防止剤、滑剤、可塑剤、衝撃強度改良剤、相溶化剤等を挙げることができる。
【0037】
熱可塑性樹脂をマトリックスとする本発明の樹脂組成物は、熱可塑性樹脂、所定量のチタン酸ナノシート及び必要に応じて樹脂添加剤を、公知の手段に従って混合または混練することにより製造できる。例えば、粉末、ビーズ、フレークまたはペレット状の各成分を必要に応じてミキサーやタンブラーで混合した後、1軸押出機、2軸押出機等の押出機、バンバリーミキサー、ニーダー、ミキシングロール等の混練機等を用いて混合及び混練することにより、本発明の樹脂組成物を得ることができる。この様にして得られる樹脂組成物を粉砕機やペレタイザー等を用いてペレット化し、射出成形や押出し成形等の公知の成形手段に従って、フィルム、チューブ、シート等の任意の形状の成形品に加工することができる。
【0038】
また、チタン酸ナノシートを高濃度に含んだマスターバッチを作成し、射出成形や押出し成形等により成形加工する段階で、マスターバッチの樹脂と同種または異種の樹脂で希釈または混合して使用することができる。
【0039】
熱可塑性樹脂をマトリックスとする本発明の樹脂組成物は、従来から熱可塑性樹脂が用いられている実質的に全ての用途に使用可能であり、特に、電子・電気・精密機器類の機構部品や筐体、自動車等の輸送機器類の内外装部品(特に耐熱用途部品)、各種容器(特にガスバリア用容器)、スポーツ用品(特に軽量高弾性率用途)、耐熱性家庭用品、包装用資材(特にガスバリア性あるいは紫外線遮蔽用途)、機械部品用資材(特に高弾性率耐熱用途)、ガラス代替用光学資材、耐熱フィルム用途、紫外線遮蔽板あるいはフィルム、建築用資材、農業用シート、ガスバリア性エラストマー用途等を挙げることができる。
【0040】
一方、熱硬化性樹脂をマトリックスとする本発明の樹脂組成物は、熱硬化性樹脂、チタン酸ナノシート及び必要に応じて他の樹脂添加剤を、一般的な撹拌混合機、高速攪拌機、ニーダー等で混合することにより製造できる。
【0041】
熱硬化性樹脂をマトリックスとする本発明の樹脂組成物は、従来から熱硬化性樹脂が用いられている実質的に全ての用途に使用可能であり、例えば、スポーツ用品、レジャー用品、航空宇宙用途、一般産業用途等を挙げることができる。
【0042】
本発明の樹脂組成物は、発泡体とすることができる。本発明の樹脂組成物を発泡するに際しては、分解型発泡剤を用いる公知の発泡方法を採用できる。
分解型発泡剤としては、公知の有機系分解型発泡剤及び無機系分解型発泡剤をいずれも使用できる。有機系分解型発泡剤としては、例えば、アゾジカルボンアミド、アゾビスイソブチロニトリル、ジアゾアミノベンゼン、アゾジカルボン酸バリウム、ヒドラゾジカルボンアミド等のアゾ系化合物、p−トルエンスルホニルヒドラジド、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)等のスルホニルヒドラジド化合物、N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジニトロソ−N,N’−ジメチルテレフタルアミド等のニトロソ化合物、5−フェニルテトラゾール、4−アミノウラゾール等の複素環系化合物等を挙げることができる。無機系分解型発泡剤としては、例えば、炭酸カルシウム、重炭酸ナトリウム、炭酸ナトリウム、酸化カルシウム、酸化ナトリウム、酸化マグネシウム等を挙げることができる。これらの中でも、有機系分解型発泡剤を好ましく使用でき、分解温度の調整範囲、安全性、取扱い性、経済性等を考慮すると、アゾジカルボンアミドが特に好ましい。分解型発泡剤は1種を単独で使用でき又は2種以上を併用できる。分解型発泡剤の配合量は特に制限されず、樹脂の種類、層状チタン酸ナノシートの配合量、分解型発泡剤そのものの種類、発泡条件、得られる発泡体の用途等の各種条件に応じて広い範囲から適宜選択できるが、通常、本発明樹脂組成物100重量部に対して1〜30重量部、好ましくは2〜15重量部とすればよい。
【0043】
本発明において、有機系分解型発泡剤には表面処理を施しても良い。表面処理剤としては公知のものを使用でき、例えば、シラン系カップリング剤(メチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−フェニルアミノメチルトリメトキシシラン、ビニルメチルジエトキシシラン等)、アルミニウム系カップリング剤(アルミニウムイソプロピレート、アルミニウムエチレート、アルミニウムトリス(エチルアセトアセテート)、エチルアセトアセテートアルミニウムジイソプロピレート等)、チタネート系カップリング剤(イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート等)等のカップリング剤、液状乃至固体状の油脂(大豆油、ヤシ油、アマニ油、綿実油、ナタネ油、キリ油、パインオイル、ロジン、ヒマシ油、牛脂、スクワラン、ラノリン、硬化油等の植物性又は動物性の天然油脂及びこれらの精製品等)、炭化水素類(炭素数20〜48の脂肪族炭化水素類及びその誘導体、炭素数8〜19の芳香族炭化水素類及びその誘導体(例えばジオクチルフタレート等のジアルキルフタレート類、ノニルアルコールフタレート等の高級アルコールフタレート類等)、パラフィン系、ナフテン系又は芳香族系のプロセス油、流動パラフィン等)、脂肪酸類(ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘミン酸等の脂肪酸類及びその塩類もしくは誘導体等)等の油脂類を挙げることができる。
【0044】
本発明においては、得られる発泡体の物性を損なわない範囲で、分解促進剤を配合することができる。分解促進剤としては公知のものを使用でき、例えば、酸化亜鉛、酸化鉛等の金属酸化物、炭酸亜鉛、炭酸鉛、炭酸カリウム等の金属炭酸塩、塩化亜鉛、塩化カリウム等の金属塩化物、酢酸亜鉛等の金属酢酸塩、オレイン酸亜鉛、ステアリン酸亜鉛、ベンゼンスルフィン酸ナトリウム、2−エチルヘキソイン酸亜鉛、尿素等を挙げることができる。分解促進剤は1種を単独で使用でき又は2種以上を併用できる。分解促進剤を配合する場合、その配合量は特に制限されないが、通常分解型発泡剤100重量部に対して5〜100重量部、好ましくは10〜50重量部とすればよい。
【0045】
本発明においては、得られる発泡体の物性を損なわない範囲で、発泡核剤を配合することができる。発泡核剤としては公知のものを使用でき、例えば、タルク、シリカ、炭酸カルシウム、クレー、ゼオライト、カオリン、ベントナイト、酸化アルミニウム、炭酸マグネシウム等を挙げることができる。核剤は1種を単独で使用でき又は2種以上を併用してもよい。発泡核剤の配合量は特に制限されず、樹脂の種類、層状チタン酸ナノシートの種類や配合量、発泡核剤そのものの種類、分解型発泡剤の種類や配合量、発泡条件、得ようとする発泡体の物性や用途等に応じて広い範囲から適宜選択すればよいが、通常樹脂100重量部に対して0.1〜50重量部、好ましくは0.5〜1重量部とすればよい。
【0046】
分解型発泡剤を用いる公知の発泡方法としては、より具体的には、(1)樹脂、層状チタン酸ナノシート及び分解型発泡剤を、該分解型発泡剤が分解しない温度で混練し、得られる混練物を押出成形、カレンダーロール成形、プレス成形等で所定の形状に成形した後、加熱して分解型発泡剤を分解させてガスを発生させ、発泡体を得る方法、(2)樹脂、層状チタン酸ナノシート及び分解型発泡剤を、該分解型発泡剤が分解しない温度で混練し、得られる混練物をパルプ紙、水酸化アルミ紙、布、石膏ボード、繊維素ボード、パーライト板等の基板にナイフコーター、ロールコーター、スプレー等の塗布装置又はシルクスクリーン印刷、ロータリースクリーン印刷等の印刷装置を用い、乾燥後の膜厚が0.05〜0.50mmとなるように塗布又は印刷し、電気加熱式熱風炉、LPG燃焼式熱風炉、オイル燃焼式熱風炉等の乾燥炉を用いて分解型発泡剤の分解しない温度(通常80〜150℃)で30秒〜5分間乾燥し、次いで、分解型発泡剤の分解温度まで温度を上昇させ、分解型発泡剤を分解して発泡体を得る方法、(3)樹脂、層状チタン酸ナノシート及び分解型発泡剤を混合し、樹脂の溶融と分解型発泡剤の分解が起こる温度で押出成形、射出成形、プレス成形を行い、所定形状の発泡体を得る方法等を挙げることができる。いずれの方法においても、発泡(=分解型発泡剤の分解)は、通常180〜230℃の温度下に行われ、通常20秒〜3分程度で終了する。
【0047】
このようにして得られる本発明樹脂組成物の発泡体は、本発明樹脂組成物の非発泡の成形体と同様の用途に使用できる。
【0048】
【実施例】
以下に実施例及び比較例を挙げ、本発明を具体的に説明する。なお、以下において「%」及び「部」とあるのは、特に断らない限り重量基準を意味するものとする。
【0049】
〔実施例1〕
(チタン酸塩の合成)炭酸カリウム29.9g、炭酸リチウム5.25g、二酸化チタン69.23gを乾式で粉砕混合した原料を、850℃にて4時間焼成した。得られた層状チタン酸塩はK0.80Li0.266Ti1.7334であり、粉砕後の平均粒径5μmであった。
【0050】
(チタン酸の合成)このK0.80Li0.266Ti1.733465gを3.5%塩酸5kgに分散撹拌し、その後濾過した。この操作をさらに2回行なった後、脱イオン水で充分洗浄し、KイオンとLiイオンを水素イオンまたはヒドロニウムイオンに交換した層状チタン酸(含水率35%)を得た。
【0051】
(膨潤化された層状チタン酸ナノシート)上記の層状チタン酸60gを脱イオン水4kgに分散し、80℃で加熱撹拌しながら10%ドデシルトリメチルアンモニウムクロライド水溶液300gを添加した。1時間加熱撹拌を続けた後、濾過して取り出した。熱水で4回洗浄後、空気中80℃で乾燥し、粉砕して200メッシュのふるいを通した。さらに窒素ガス流通下に160℃で20時間乾燥し、膨潤化された層状チタン酸ナノシートを得た。X線回折から求めた層間距離は、2.5nmであった。
【0052】
(熱可塑性樹脂組成物の作製と評価)ナイロン6(商品名:アミランCM1017、東レ(株)製)に上記の膨潤化された層状チタン酸ナノシートを5%になるように添加し、ラボプラストミル(東洋精機(株)製)で混練した。混練条件は240℃、60rpm、5分間とした。取り出した樹脂組成物を粉砕し、射出成形機(商品名:ミニマットM26、住友重機(株)製、シリンダー温度240℃、金型温度75℃)にて、JISに準拠した試験片を成形した。この試験片を用いて曲げ弾性率(JIS K7203)を求め、また耐熱性の評価として荷重たわみ温度(荷重1.8MPa、JIS K7191)を測定した。結果を表1に示す。なお、この樹脂組成物の透過型電子顕微鏡観察から求めたチタン酸ナノシートの平均厚みは4nm、及び平均シート径は0.8μmであった。
【0053】
〔実施例2〕
実施例1で得た層状チタン酸60gを脱イオン水4kgに分散し、撹拌しながら10%ジオクチルアミンのイソプロパノール溶液300gを添加した。1時間撹拌を続けた後、濾過して取り出した。イソプロパノールで3回洗浄後、空気中80℃で乾燥し、粉砕して200メッシュのふるいを通した。さらに減圧下に160℃で15時間乾燥し、膨潤化された層状チタン酸ナノシートを得た。X線回折から求めた層間距離は、1.9nmであった。実施例1と同様にして樹脂試験片を作製し、各試験を行なった。結果を表1に示す。透過型電子顕微鏡観察から求めたチタン酸ナノシートの平均厚みは3nm、平均シート径は0.5μmであった。
【0054】
〔比較例1〕
市販の珪酸塩系ナノコンポジット用フィラーとしてクロイサイト30B(サザンクレイ(株)製)を用いて比較を行なった。ナイロン6にクロイサイト30Bを5%になるように添加し、実施例1と同様に操作して樹脂試験片を作製し、各試験を行なった。結果を表1に示す。
【0055】
〔比較例2〕
ナイロン6(アミランCM1017)のみの樹脂試験片を作製し、各試験を行なった。結果を表1に示す。
【0056】
【表1】

Figure 0003958137
【0057】
表1に示すように、本発明に従う実施例1及び実施例2の樹脂組成物は、比較例1の樹脂組成物に比べ、曲げ弾性率及び荷重たわみ温度が高く、弾性率及び耐熱性において優れていることがわかる。
【0058】
〔実施例3〕
実施例1と同様な方法で得た層状チタン酸60gを脱イオン水4kgに分散し、撹拌しながら10%ドデシルベンジルジメチルアンモニウムクロライド水溶液450gを添加した。80℃で1時間加熱撹拌を続けた後、濾過して取り出した。熱水で4回洗浄後、空気中80℃で乾燥し、粉砕して200メッシュのふるいを通した。さらに窒素ガス流通下に160℃で20時間乾燥し、膨潤化された層状チタン酸ナノシートを得た。X線回折から求めた層間距離は、2.5nmであった。
【0059】
PBT樹脂(商品名:ジュラネックス2002、ポリプラスチックス(株)製)に上記の膨潤化された層状チタン酸ナノシートを5%になるように添加し、ラボプラストミル(東洋精機(株)製)で混練した。混練条件は250℃、60rpm、5分間とした。取り出した樹脂組成物を粉砕し、射出成形機(商品名:ミニマットM26住友重機(株)製、シリンダー温度245℃、金型温度80℃)にて、JISに準拠した試験片を成形した。この試験片を用いて曲げ弾性率(JIS K7203)を求め、また耐熱性の評価として荷重たわみ温度(荷重1.8MPa、JIS K719)を測定した。結果を表2に示す。透過型電子顕微鏡観察から求めたチタン酸ナノシートの平均厚みは8nm、平均シート径は0.9μmであった。
【0060】
〔比較例3〕
市販の珪酸塩系ナノコンポジット用フィラーとしてクロイサイト10A(サザンクレイ(株)製)を用いて比較を行なった。PBT樹脂にクロイサイト10Aを5%になるように添加し、実施例3と同じ条件でラボプラストミルで混練した。評価結果は同じく表2に示す。
【0061】
【表2】
Figure 0003958137
【0062】
表2に示すように、本発明に従う実施例3の樹脂組成物は、比較例3の樹脂組成物に比べ、曲げ弾性率及び荷重たわみ温度が高く、弾性率及び耐熱性において優れていることがわかる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition in which an inorganic compound nanosheet is dispersed in a synthetic resin.
[0002]
[Prior art]
Recently, when a chemical substance is miniaturized to the nanometer (nm) level, there is a great interest in showing different properties from the original chemical substance, and synthesizing nanoscale substances for various chemical substances. Has been tried.
[0003]
In the field of inorganic compounds, nanosheets having a thickness in the range of sub-nm to nm have been synthesized, and research for using them as fillers for synthetic resins is underway. Nanosheets impart good gas barrier properties and liquid barrier properties to synthetic resins, and provide various mechanical strengths of synthetic resins with a smaller filling amount than conventional particulate, fibrous, or plate-like inorganic fillers. Although improved, it has the disadvantage of being difficult to disperse uniformly in the resin matrix.
[0004]
In order to eliminate such drawbacks, in Japanese Patent Laid-Open Nos. 62-74957, 63-230766, and 1-1157, silicate-based nanosheets such as montmorillonite are replaced with 12-aminododecanoic acid or the like. A polyamide resin composition in which silicate nanosheets are uniformly dispersed is produced by performing a polymerization reaction in a state in which this is combined with a monomer for polyamide. Similarly, a polyamide resin composition is known in which a monomer for polyamide and a swellable fluoromica mineral (silicate nanosheet) are allowed to coexist to carry out a polymerization reaction and the swellable fluoromica mineral is uniformly dispersed ( JP-A-8-3310 and JP-A-8-12882).
[0005]
According to the methods described in these patent publications, when the monomer component is intercalated between the layers of the silicate nanosheet by the action of the swelling agent, polymerization occurs in parallel, It can be uniformly dispersed in the polyamide. However, this method is not versatile because the resin type is limited to polyamide only. Further, the obtained polyamide resin composition is a plastic composite material excellent in liquid barrier property or gas barrier property, mechanical strength, heat resistance, dimensional stability, and the like. However, with the demand for miniaturization and weight reduction in internal mechanism parts and casings for automobiles and exterior parts, which are the main applications of plastic composite materials, further miniaturization and thinning have been promoted. Under the present circumstances, higher mechanical properties, particularly higher elastic modulus are required.
[0006]
Furthermore, a thermoplastic resin composition containing a layered titanate nanosheet has also been proposed (Japanese Patent Laid-Open No. 2001-81333). According to the patent publication, the layered titanate nanosheet is described as being dispersed in various thermoplastic resin matrices at a molecular level, but the only resin type specifically disclosed in the examples is polyamide. In addition, in Examples 1 and 2 in which polymerization is performed in the presence of a polyamide monomer and a layered titanate nanosheet as in the conventional case, the dispersibility of the layered titanate nanosheet in the resin matrix is certainly good. In Examples 3 and 4, in which the layered titanate nanosheets are melt-kneaded, the dispersibility of the layered titanate nanosheets is evaluated as “slightly good”, and in fact, a sufficiently satisfactory dispersibility cannot be obtained. Further, the thermoplastic resin composition is said to be excellent in tensile strength (elongation) and heat resistance, but the elastic modulus has not been improved to a satisfactory level.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition in which inorganic compound nanosheets are uniformly dispersed, having a high elastic modulus and excellent in heat resistance.
[0008]
[Means for Solving the Problems]
As a result of diligent research, the inventor has used a swollen layered titanate nanosheet as an inorganic compound-based nanosheet, so that the thickness can be in the range of sub-nm to nm in a resin matrix by a general melt-kneading method. It has been found that a certain inorganic compound-based nanosheet can be uniformly dispersed, has a high elastic modulus, and is excellent in heat resistance, and has completed the present invention.
[0009]
That is, the present invention By treating lamellar titanic acid obtained by acid treatment of a lipidocrocite-type similar titanate with a swelling agent A resin composition comprising a swollen layered titanate nanosheet mixed with a synthetic resin.
In this invention, it is preferable to mix | blend the swollen layered titanic acid nanosheet in the range of 0.1-100 weight part with respect to 100 weight part of synthetic resins.
[0010]
In addition, the layered titanate nanosheet swollen used in the present invention preferably has an interlayer distance of 1 to 5 nm.
Examples of the synthetic resin used in the present invention include one or more thermoplastic resins selected from polyolefin, polyamide, polyester, polyacetal, polystyrene, and aromatic polycarbonate.
[0011]
The feature of the present invention resides in the use of a swollen layered titanate nanosheet as the inorganic compound-based nanosheet.
In the swollen layered titanate nanosheet, since the swelling agent is intercalated between the layers, the layers are expanded and the bonding force between the layers is weakened. When an external force such as a shearing force at the time of melt kneading with a synthetic resin is applied to this, delamination occurs, and a single layer or several to several tens of layers of titanate nanosheets having an excellent dispersibility in the resin matrix (average thickness) 0.4-80 nm, average sheet diameter 0.1-20 μm).
[0012]
Therefore, when the swollen layered titanate nanosheet is blended with a synthetic resin, a single layer or several to several tens of layers of titanate nanosheets are uniformly formed by a general method such as a melt-kneading method. A dispersed resin composition can be obtained.
[0013]
The dispersed titanate nanosheets are in a random state in the resin matrix, preferably maintaining a distance of 100 mm or more. Further, the swollen layered titanate nanosheet does not peel off and hardly remains in the resin matrix as it is. These can be observed with a transmission electron microscope.
[0014]
The resin composition of the present invention has improved mechanical strength, particularly improved elastic modulus, and particularly excellent heat resistance, compared to the case of the resin alone and the case where the layered titanate nanosheet is added to the resin.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The resin composition of the present invention is obtained by blending a swollen layered titanate nanosheet with a synthetic resin.
[0016]
In the present invention, a thermoplastic resin and a thermosetting resin can be used as the synthetic resin.
The thermoplastic resin is not particularly limited, and any known one can be used. For example, polyetherimide, polyethersulfone, polyphenylene ether, polyetherketone resin (polyketone, polyetherketone, polyetheretherketone, Polyether ketone ketone, polyether ether ketone, etc.), polycarbonate, aromatic polycarbonate, polyolefin (polyethylene, polypropylene, etc.), polyester, aromatic polyester, polyacetal, thermoplastic polyurethane, polyamide, polyacrylate, polyvinyl chloride, polystyrene, polyfluoride Vinylidene chloride, polyvinylidene chloride, polyphenylsulfone, polysulfone, liquid crystal polymer, thermoplastic polyimide, polyarylate, polyethernitrile, poly Phenylene sulfide, thermoplastic elastomer (polystyrene thermoplastic elastomer, polyolefin thermoplastic elastomer, polyurethane thermoplastic elastomer, polyamide thermoplastic elastomer, etc.), vulcanized and unvulcanized rubber (natural rubber, butadiene rubber, chloroprene rubber) EPDM, isoprene rubber, isobutylene-isoprene rubber, NBR, SBR, etc.).
[0017]
Among these thermoplastic resins, polyolefin, polyamide, polyester, polyacetal, polystyrene, aromatic polycarbonate and the like can be preferably used.
[0018]
Examples of polyolefins include propylene homopolymers, polypropylenes such as random polymers and block polymers of propylene and other α-olefins (ethylene, butene-1,4-methylpentene-1, hexene-1, etc.). Can do. Moreover, the modified polypropylene to which polarity was given can also be used. In consideration of moldability and the like, those having a melt flow of 0.1 to 100 g / 10 min are preferable.
[0019]
Examples of polyamides include nylon 6, nylon 11, nylon 12, nylon 66 (polycondensate of hexamethylenediamine and adipic acid), nylon 610 (polycondensate of hexamethylenediamine and sebacic acid), and nylon 612 (hexamethylene). Diamine and dodecanedioic acid polycondensate), nylon MXD6 (metaxylylenediamine and adipic acid polycondensate), nylon 46 (1,4 diaminobutane and adipic acid polycondensate), semi-aromatic nylon, Examples thereof include copolymer nylon composed of two or more monomer components constituting the nylon. Among these, nylon 6, nylon 66 and the like are preferable.
[0020]
Examples of the polyester include polyalkylene terephthalate such as polyethylene terephthalate, polybutylene terephthalate, and polypropylene terephthalate, and polylactic acid. Examples of commercially available products of polyacetal include “Delrin” and “Duracon” (both are trade names).
[0021]
Polystyrene includes styrene polymers and polymers based on styrene, specifically, general-purpose polystyrene, impact-resistant polystyrene, acrylonitrile-styrene (AS) resin, acrylonitrile-pentadiene-styrene (ABS). ) Resins and the like can be mentioned.
[0022]
Examples of the aromatic polycarbonate include a polycarbonate obtained from a sodium salt of bisphenol A and phosgene.
One thermoplastic resin can be used alone, or two or more alloys or blends can be used.
[0023]
On the other hand, the thermosetting resin is not particularly limited, and any known one can be used. For example, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, a polyurethane, and the like can be preferably used.
[0024]
Epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol B type epoxy resins, novolac type epoxy resins, epoxy resins having a fluorene skeleton, and the co-polymerization of phenolic compounds and dicyclopentadiene. An epoxy resin, a glycidyl ether-type epoxy resin, a glycidylamine-type epoxy resin, etc., made from a coalescent material can be used.
[0025]
Examples of the unsaturated polyester include a resin having a double bond of an unsaturated group in the molecular chain of the polyester, which is easily copolymerized with a vinyl monomer that is also a solvent to be crosslinked to form a cured product. it can. In other words, polycondensation of unsaturated dicarboxylic acid maleic acid or fumaric acid and dihydric alcohols such as ethylene glycol, propylene glycol, di or triethylene glycol, di or tripropylene glycol, etc., is dissolved in vinyl monomers such as styrene. It is a thing. For the purpose of modification, for example, a part of the unsaturated dicarboxylic acid may be replaced with phthalic acid or the like.
[0026]
Examples of vinyl monomers include styrene and other acrylic esters. Examples of the vinyl ester resin include resins obtained by reacting methacrylic acid, acrylic acid and the like with polyvinyl acetate, polyvinyl cinnamate, bisphenol type epoxy resin, and the like.
[0027]
Examples of the phenol resin include addition / condensation products of a phenol compound and an aldehyde compound. Examples of the phenol compound include phenol, cresol, xylenol, propylphenol, butylphenol, nonylphenol, catechol, hydroquinone, bisphenol A, and the like. Examples of the aldehyde compound include formaldehyde, acetaldehyde benzaldehyde, and glyoxal. More specifically, a resol type phenol resin obtained by reacting a phenol compound and an aldehyde compound under a base catalyst, a novolac type phenol resin obtained by reacting under an acid catalyst, and the like can be exemplified.
[0028]
Examples of the polyurethane include a reaction product of a polyvalent isocyanate compound and a polyol such as polyether and polyester. Specific examples of the isocyanate compound include tolylene diisocyanate, diphenylmethane-4,4′-diisocyanate, polynuclear polyisocyanate and the like. Specific examples of polyols include diethylene glycol having 2 OH groups, dipropylene glycol, etc., glycerin having 3 OH groups, erythritol having 4 OH groups, arabitol having 5 OH groups, 6 And sorbitol having an OH group.
[0029]
A thermosetting resin can be used individually by 1 type, or can use 2 or more types together.
In the present invention, the layered titanate nanosheet subjected to swelling treatment used as a filler for the synthetic resin has a thickness of sub-nm to nm (titanic acid nanosheet) composed of titanic acid. The layered layered titanate nanosheet is processed using a swelling agent.
[0030]
The interlayer distance (average surface spacing) of the swollen layered titanate nanosheet is not particularly limited, but is usually 1 to 5 nm, preferably 2 to 4 nm. If it is significantly less than 1 nm, delamination does not proceed smoothly when melt-kneading with a synthetic resin, and a single layer or several to several tens of layers of titanate nanosheets may not be generated. On the other hand, in order to obtain a layer having an interlayer distance exceeding 5 nm, it is necessary to use a considerably large amount of a swelling agent. However, it becomes difficult to obtain only the layered titanate nanosheet subjected to the swelling treatment with high purity, The remaining swelling agent may adversely affect the physical properties of the resin composition.
[0031]
On the other hand, the monolayer or several to several tens of titanate nanosheets produced when the swollen layered titanate nanosheets are dispersed in a synthetic resin usually have an average thickness of 0.4 to 80 nm, preferably 0.4. The average sheet diameter is generally 0.1 to 20 μm, preferably 0.5 to 10 μm.
[0032]
The swollen layered titanate nanosheet can be produced, for example, by treating layered titanate with a swelling agent.
The layered titanic acid used as the raw material compound can be obtained, for example, by treating a lepidochrosite-type similar titanate compound with hydrochloric acid or the like and extracting the alkali metal in the crystal structure by almost 100% ion exchange. The lipidocrosite type similar titanate compound can be produced according to a known method. For example, according to the method disclosed in Japanese Patent No. 2979132, cesium carbonate and titanium dioxide are mixed at a molar ratio of 1: 5.3, and calcined at 800 ° C. Tetragonal cesium titanate (Cs x Ti 2-x / 4 O Four , X = 0.70). Further, according to the method disclosed in International Publication No. WO99 / 11574, potassium carbonate (K 2 CO Three ) And lithium carbonate (Li 2 CO Three ) And titanium dioxide (TiO 2 ) Is mixed with K / Li / Ti = 3/1 / 6.5 (molar ratio), ground, and calcined at 800 ° C. 0.8 Li 0.27 Ti 1.73 O Four Is obtained. Furthermore, the layered titanate nanosheet described in JP 2001-81333 A can also be used as the layered titanate in the present invention.
[0033]
Examples of swelling agents include dodecyl trimethyl ammonium salt, cetyl trimethyl ammonium salt, stearyl trimethyl ammonium salt, dimethyl distearyl ammonium salt, dimethyl stearyl benzyl ammonium salt, dodecyl bis (2-hydroxyethyl) methyl ammonium salt, dimethyl distearyl ammonium. Salts, quaternary ammonium salts such as dimethyldidecylammonium salt, trimethylphenylammonium salt, benzyltributylammonium salt, butylamine, pentylamine, hexylamine, octylamine, dodecylamine, stearylamine, dipentylamine, dioctylamine, 2-ethylhexyl Examples thereof include alkylamines such as amines and salts thereof, and 12-aminododecanoic acid. A swelling agent can be used individually by 1 type, or can use 2 or more types together.
[0034]
The treatment of the layered titanic acid with the swelling agent is performed by adding the swelling agent to the aqueous suspension of the layered titanic acid with stirring. The addition amount of the swelling agent is not particularly limited, and may be appropriately selected from a wide range according to the shape, size, thickness, composition and the like of the layered titanic acid. Usually, the ion exchange capacity of the layered titanic acid is 5 to 200. Equivalent%, preferably 10 to 150 equivalent%. If the addition amount of the swelling agent is less than 5 equivalent%, the layered titanic acid may not be swollen. On the other hand, even if a swelling agent exceeding 200 equivalent% is added, it is less than 200 equivalent%. Compared with the case, there is no big difference in the swelling effect, which is economically disadvantageous.
[0035]
In the resin composition of the present invention, the compounding amount of the swollen layered titanate nanosheet is not particularly limited, and is appropriately selected from a wide range according to various conditions such as the type of the synthetic resin and the use of the resin composition to be obtained. In view of making the elastic modulus, moldability, etc. of the obtained resin composition even better, it is usually 0.1-100 parts by weight, preferably 100 parts by weight of the synthetic resin. What is necessary is just to be 1-30 weight part. If the amount of the swollen layered titanate nanosheet is small, the effect of the present invention to increase the elastic modulus and heat resistance may not be sufficiently obtained. If the amount is large, molding may be difficult. is there.
[0036]
In the resin composition of the present invention, one or more of various organic compounds or inorganic compounds conventionally used as a resin additive can be blended within a range that does not impair the preferable characteristics. Specific examples thereof include, for example, inorganic fillers of various shapes (particulate, fibrous, scale-like), pigments, antioxidants, antistatic agents, mold release agents, lubricants, thermal stabilizers, flame retardants, and drip. Examples thereof include an inhibitor, an ultraviolet absorber, a light stabilizer, a light-shielding agent, a metal deactivator, an anti-aging agent, a lubricant, a plasticizer, an impact strength improver, and a compatibilizer.
[0037]
The resin composition of the present invention using a thermoplastic resin as a matrix can be produced by mixing or kneading a thermoplastic resin, a predetermined amount of titanic acid nanosheet and, if necessary, a resin additive according to known means. For example, powder, beads, flakes, or pellets are mixed as necessary using a mixer or tumbler, and then kneaded using a single screw extruder, twin screw extruder, banbury mixer, kneader, mixing roll, etc. The resin composition of the present invention can be obtained by mixing and kneading using a machine or the like. The resin composition thus obtained is pelletized using a pulverizer or a pelletizer, and processed into a molded product having an arbitrary shape such as a film, a tube, or a sheet according to known molding means such as injection molding or extrusion molding. be able to.
[0038]
In addition, a masterbatch containing a high concentration of titanate nanosheets can be prepared and used by diluting or mixing with the same or different resin as the masterbatch resin at the stage of molding by injection molding or extrusion molding. it can.
[0039]
The resin composition of the present invention using a thermoplastic resin as a matrix can be used for practically all uses in which thermoplastic resins have been conventionally used, and in particular, for mechanical parts of electronic / electrical / precision instruments, Cases, interior and exterior parts of transport equipment such as automobiles (particularly heat-resistant parts), various containers (particularly gas barrier containers), sports equipment (particularly lightweight and high elastic modulus), heat-resistant household goods, packaging materials (particularly Gas barrier properties or UV shielding applications), mechanical parts materials (especially high elastic modulus heat resistance applications), glass substitute optical materials, heat resistant film applications, UV shielding plates or films, building materials, agricultural sheets, gas barrier elastomer applications, etc. Can be mentioned.
[0040]
On the other hand, the resin composition of the present invention using a thermosetting resin as a matrix is composed of a thermosetting resin, titanic acid nanosheets and other resin additives as necessary, a general stirring mixer, a high-speed stirring machine, a kneader, etc. It can manufacture by mixing with.
[0041]
The resin composition of the present invention using a thermosetting resin as a matrix can be used for practically all uses in which thermosetting resins have been conventionally used. For example, sports products, leisure products, aerospace applications And general industrial applications.
[0042]
The resin composition of the present invention can be a foam. When foaming the resin composition of the present invention, a known foaming method using a decomposable foaming agent can be employed.
As the decomposable foaming agent, any of known organic decomposable foaming agents and inorganic decomposable foaming agents can be used. Examples of the organic decomposable foaming agent include azo compounds such as azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, barium azodicarboxylate, hydrazodicarbonamide, p-toluenesulfonyl hydrazide, 4,4. Sulfonyl hydrazide compounds such as' -oxybis (benzenesulfonylhydrazide), nitroso compounds such as N, N'-dinitrosopentamethylenetetramine, N, N'-dinitroso-N, N'-dimethylterephthalamide, 5-phenyltetrazole, Examples include heterocyclic compounds such as 4-aminourazole. Examples of the inorganic decomposable foaming agent include calcium carbonate, sodium bicarbonate, sodium carbonate, calcium oxide, sodium oxide, magnesium oxide and the like. Among these, organic decomposable foaming agents can be preferably used, and azodicarbonamide is particularly preferable in consideration of the adjustment range of the decomposition temperature, safety, handleability, economy, and the like. A decomposable foaming agent can be used individually by 1 type, or can use 2 or more types together. The compounding amount of the decomposable foaming agent is not particularly limited, and is wide according to various conditions such as the type of resin, the compounding amount of the layered titanate nanosheet, the type of the decomposable foaming agent itself, the foaming conditions, and the use of the resulting foam. Although it can select suitably from the range, Usually, what is necessary is just to set it as 1-30 weight part with respect to 100 weight part of this invention resin compositions, Preferably 2-15 weight part.
[0043]
In the present invention, the organic decomposable foaming agent may be subjected to a surface treatment. As the surface treatment agent, known ones can be used. For example, silane coupling agents (methyltrimethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane, vinylmethyldiethoxysilane, etc.), aluminum coupling agents (aluminum isopropylate, aluminum ethylate, aluminum tris (ethyl acetoacetate), ethyl acetoacetate aluminum diisopropylate, etc.), titanate Coupling agents (isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dio Coupling agents such as tyrpyrophosphate) oxyacetate titanate), liquid or solid oils (soybean oil, coconut oil, linseed oil, cottonseed oil, rapeseed oil, tung oil, pine oil, rosin, castor oil, beef tallow, squalane Plant oils such as lanolin and hardened oil and their refined products, etc.), hydrocarbons (aliphatic hydrocarbons having 20 to 48 carbon atoms and derivatives thereof, aromatic having 8 to 19 carbon atoms) Hydrocarbons and derivatives thereof (for example, dialkyl phthalates such as dioctyl phthalate, higher alcohol phthalates such as nonyl alcohol phthalate), paraffinic, naphthenic or aromatic process oils, liquid paraffin, etc.), fatty acids (lauric acid) Fatty acids such as acid, myristic acid, palmitic acid, stearic acid, oleic acid, and behemic acid Can be exemplified salts thereof or derivatives thereof) oils such as.
[0044]
In this invention, a decomposition accelerator can be mix | blended in the range which does not impair the physical property of the foam obtained. Known decomposition accelerators can be used, for example, metal oxides such as zinc oxide and lead oxide, metal carbonates such as zinc carbonate, lead carbonate and potassium carbonate, metal chlorides such as zinc chloride and potassium chloride, Examples thereof include metal acetates such as zinc acetate, zinc oleate, zinc stearate, sodium benzenesulfinate, zinc 2-ethylhexoate, urea and the like. A decomposition accelerator can be used individually by 1 type, or can use 2 or more types together. When the decomposition accelerator is blended, the blending amount is not particularly limited, but is usually 5 to 100 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the decomposable foaming agent.
[0045]
In the present invention, a foam nucleating agent can be blended within a range that does not impair the physical properties of the obtained foam. Known foaming nucleating agents can be used, and examples thereof include talc, silica, calcium carbonate, clay, zeolite, kaolin, bentonite, aluminum oxide, magnesium carbonate and the like. A nucleating agent can be used individually by 1 type, or may use 2 or more types together. The amount of the foam nucleating agent is not particularly limited, and the type of resin, the type and amount of layered titanate nanosheets, the type of foaming nucleating agent itself, the type and amount of decomposable foaming agent, the foaming conditions, and trying to obtain. Although it may be appropriately selected from a wide range according to the physical properties and application of the foam, it is usually 0.1 to 50 parts by weight, preferably 0.5 to 1 part by weight based on 100 parts by weight of the resin.
[0046]
As a known foaming method using a decomposable foaming agent, more specifically, (1) a resin, a layered titanate nanosheet, and a decomposable foaming agent are kneaded at a temperature at which the decomposable foaming agent does not decompose. A method of obtaining a foam by forming a kneaded product into a predetermined shape by extrusion molding, calender roll molding, press molding, etc., and then decomposing the decomposable foaming agent to generate gas, and (2) resin, layered The titanate nanosheet and the decomposable foaming agent are kneaded at a temperature at which the decomposable foaming agent does not decompose, and the resulting kneaded product is a substrate such as pulp paper, aluminum hydroxide paper, cloth, gypsum board, fiber base board, pearlite board, etc. Using a coating device such as a knife coater, roll coater, or spray, or a printing device such as silk screen printing or rotary screen printing, the film thickness after drying is 0.05 to 0.50 mm. Or, print and dry for 30 seconds to 5 minutes at a temperature (normally 80 to 150 ° C) where the decomposable foaming agent is not decomposed using a drying furnace such as an electric heating hot air furnace, LPG combustion hot air furnace, or oil combustion hot air furnace. And then raising the temperature to the decomposition temperature of the decomposable foaming agent, and decomposing the decomposable foaming agent to obtain a foam, (3) mixing the resin, the layered titanate nanosheet and the decomposable foaming agent, And a method of obtaining a foam having a predetermined shape by performing extrusion molding, injection molding, and press molding at a temperature at which melting of the resin and decomposition of the decomposable foaming agent occur. In any method, foaming (= decomposition of the decomposable foaming agent) is usually performed at a temperature of 180 to 230 ° C. and is usually completed in about 20 seconds to 3 minutes.
[0047]
The foam of the resin composition of the present invention thus obtained can be used for the same application as the non-foamed molded product of the resin composition of the present invention.
[0048]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “%” and “parts” mean weight basis unless otherwise specified.
[0049]
[Example 1]
(Synthesis of Titanate) A raw material obtained by pulverizing and mixing 29.9 g of potassium carbonate, 5.25 g of lithium carbonate, and 69.23 g of titanium dioxide in a dry method was baked at 850 ° C. for 4 hours. The layered titanate obtained is K 0.80 Li 0.266 Ti 1.733 O Four The average particle size after pulverization was 5 μm.
[0050]
(Synthesis of titanic acid) 0.80 Li 0.266 Ti 1.733 O Four 65 g was dispersed and stirred in 5 kg of 3.5% hydrochloric acid, and then filtered. This operation was further performed twice, and then thoroughly washed with deionized water to obtain layered titanic acid (water content 35%) in which K ions and Li ions were exchanged with hydrogen ions or hydronium ions.
[0051]
(Swelled layered titanate nanosheet) 60 g of the above layered titanate was dispersed in 4 kg of deionized water, and 300 g of a 10% aqueous solution of dodecyltrimethylammonium chloride was added while heating and stirring at 80 ° C. After continuing heating and stirring for 1 hour, it was filtered out. After washing with hot water four times, it was dried in air at 80 ° C., pulverized and passed through a 200 mesh sieve. Furthermore, it dried at 160 degreeC under nitrogen gas distribution for 20 hours, and obtained the swollen layered titanic acid nanosheet. The interlayer distance determined from X-ray diffraction was 2.5 nm.
[0052]
(Production and evaluation of thermoplastic resin composition) The above-mentioned swollen layered titanate nanosheet was added to nylon 6 (trade name: Amilan CM1017, manufactured by Toray Industries, Inc.) so as to be 5%, and Laboplast mill (Made by Toyo Seiki Co., Ltd.) The kneading conditions were 240 ° C., 60 rpm, and 5 minutes. The taken-out resin composition was pulverized, and a test piece compliant with JIS was molded with an injection molding machine (trade name: Minimat M26, manufactured by Sumitomo Heavy Industries, Ltd., cylinder temperature 240 ° C., mold temperature 75 ° C.). . Using this test piece, the flexural modulus (JIS K7203) was determined, and the deflection temperature under load (load 1.8 MPa, JIS K7191) was measured as an evaluation of heat resistance. The results are shown in Table 1. In addition, the average thickness of the titanic acid nanosheet calculated | required from the transmission electron microscope observation of this resin composition was 4 nm, and the average sheet diameter was 0.8 micrometer.
[0053]
[Example 2]
60 g of layered titanic acid obtained in Example 1 was dispersed in 4 kg of deionized water, and 300 g of a 10% dioctylamine-isopropanol solution was added with stirring. Stirring was continued for 1 hour and then filtered out. After washing with isopropanol three times, it was dried in air at 80 ° C., pulverized, and passed through a 200 mesh sieve. Furthermore, it dried at 160 degreeC under pressure reduction for 15 hours, and obtained the swollen layered titanic acid nanosheet. The interlayer distance determined from X-ray diffraction was 1.9 nm. Resin test pieces were prepared in the same manner as in Example 1, and each test was performed. The results are shown in Table 1. The average thickness of titanate nanosheets determined from observation with a transmission electron microscope was 3 nm, and the average sheet diameter was 0.5 μm.
[0054]
[Comparative Example 1]
Comparison was performed using Cloicite 30B (manufactured by Southern Clay Co., Ltd.) as a commercially available filler for silicate nanocomposites. The nylon 6 was added with 5% of closite 30B, and a resin test piece was prepared in the same manner as in Example 1, and each test was performed. The results are shown in Table 1.
[0055]
[Comparative Example 2]
Resin test pieces made only of nylon 6 (Amilan CM1017) were prepared and tested. The results are shown in Table 1.
[0056]
[Table 1]
Figure 0003958137
[0057]
As shown in Table 1, the resin compositions of Example 1 and Example 2 according to the present invention have higher flexural modulus and deflection temperature under load than the resin composition of Comparative Example 1, and are excellent in elastic modulus and heat resistance. You can see that
[0058]
Example 3
60 g of layered titanic acid obtained in the same manner as in Example 1 was dispersed in 4 kg of deionized water, and 450 g of a 10% aqueous solution of dodecylbenzyldimethylammonium chloride was added with stirring. After stirring for 1 hour at 80 ° C., the mixture was filtered and taken out. After washing with hot water four times, it was dried in air at 80 ° C., pulverized and passed through a 200 mesh sieve. Furthermore, it dried at 160 degreeC under nitrogen gas distribution for 20 hours, and obtained the swollen layered titanic acid nanosheet. The interlayer distance determined from X-ray diffraction was 2.5 nm.
[0059]
The above-mentioned swollen layered titanic acid nanosheet is added to PBT resin (trade name: DURANEX 2002, manufactured by Polyplastics Co., Ltd.) so as to be 5%. Kneaded. The kneading conditions were 250 ° C., 60 rpm, and 5 minutes. The taken-out resin composition was pulverized, and a test piece compliant with JIS was molded with an injection molding machine (trade name: Minimat M26, manufactured by Sumitomo Heavy Industries, Ltd., cylinder temperature 245 ° C., mold temperature 80 ° C.). Using this test piece, the flexural modulus (JIS K7203) was determined, and the deflection temperature under load (load 1.8 MPa, JIS K719) was measured as an evaluation of heat resistance. The results are shown in Table 2. The average thickness of the titanate nanosheet obtained from observation with a transmission electron microscope was 8 nm, and the average sheet diameter was 0.9 μm.
[0060]
[Comparative Example 3]
A comparison was made using Cloisite 10A (manufactured by Southern Clay Co., Ltd.) as a commercially available filler for silicate nanocomposites. Cloisite 10A was added to the PBT resin so as to be 5%, and kneaded with a Laboplast mill under the same conditions as in Example 3. The evaluation results are also shown in Table 2.
[0061]
[Table 2]
Figure 0003958137
[0062]
As shown in Table 2, the resin composition of Example 3 according to the present invention has higher flexural modulus and deflection temperature under load than the resin composition of Comparative Example 3, and is excellent in elastic modulus and heat resistance. Recognize.

Claims (4)

レピドクロサイト型類似チタン酸塩を酸処理して得られる層状チタン酸を膨潤化剤で処理することにより膨潤化された層状チタン酸ナノシートを合成樹脂に配合してなる樹脂組成物。 A resin composition comprising a synthetic resin and layered titanic acid nanosheets swollen by treating layered titanic acid obtained by acid treatment of a lipidocrosite-type similar titanate with a swelling agent . 合成樹脂100重量部に対して、膨潤化された層状チタン酸ナノシート0.1〜100重量部を配合する請求項1に記載の樹脂組成物。  The resin composition according to claim 1, wherein 0.1 to 100 parts by weight of the swollen layered titanate nanosheet is blended with 100 parts by weight of the synthetic resin. 膨潤化された層状チタン酸ナノシートの層間距離が1〜5nmである請求項1または2に記載の樹脂組成物。  The resin composition according to claim 1 or 2, wherein the interlayer distance of the swollen layered titanate nanosheet is 1 to 5 nm. 合成樹脂が、ポリオレフィン、ポリアミド、ポリエステル、ポリアセタール、ポリスチレン及び芳香族ポリカーボネートから選ばれる1種または2種以上の熱可塑性樹脂である請求項1〜3のいずれか1項に記載の樹脂組成物。  The resin composition according to any one of claims 1 to 3, wherein the synthetic resin is one or more thermoplastic resins selected from polyolefins, polyamides, polyesters, polyacetals, polystyrenes, and aromatic polycarbonates.
JP2002215647A 2001-08-20 2002-07-24 Resin composition Expired - Fee Related JP3958137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215647A JP3958137B2 (en) 2001-08-20 2002-07-24 Resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-249392 2001-08-20
JP2001249392 2001-08-20
JP2002215647A JP3958137B2 (en) 2001-08-20 2002-07-24 Resin composition

Publications (2)

Publication Number Publication Date
JP2003138145A JP2003138145A (en) 2003-05-14
JP3958137B2 true JP3958137B2 (en) 2007-08-15

Family

ID=26620677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215647A Expired - Fee Related JP3958137B2 (en) 2001-08-20 2002-07-24 Resin composition

Country Status (1)

Country Link
JP (1) JP3958137B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176563A (en) * 2004-12-21 2006-07-06 Japan Polypropylene Corp Thermoplastic resin composition for interior trim component and interior trim component molded from the same
JP4747647B2 (en) * 2005-04-12 2011-08-17 株式会社カネカ POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP4896425B2 (en) * 2005-04-27 2012-03-14 日本化薬株式会社 Thermosetting resin composition
JP4948803B2 (en) 2005-08-25 2012-06-06 大塚化学株式会社 Flaky titanic acid having a polymerizable functional group, suspension and coating film thereof
JP5220290B2 (en) * 2006-08-21 2013-06-26 大塚化学株式会社 Compatibilizer for polymer alloy, polymer alloy and masterbatch for preparing polymer alloy
US11479652B2 (en) 2012-10-19 2022-10-25 Rutgers, The State University Of New Jersey Covalent conjugates of graphene nanoparticles and polymer chains and composite materials formed therefrom
EP2909028B1 (en) 2012-10-19 2019-09-25 Rutgers, the State University of New Jersey In situ exfoliation method to fabricate a graphene-reinforced polymer matrix composite
JP6393743B2 (en) 2013-04-18 2018-09-19 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー In situ exfoliation method for producing graphene reinforced polymer matrix composites
KR102435617B1 (en) 2014-07-30 2022-08-24 럿거스, 더 스테이트 유니버시티 오브 뉴저지 Graphine-reinforced polymer matrix composites
US11702518B2 (en) 2016-07-22 2023-07-18 Rutgers, The State University Of New Jersey In situ bonding of carbon fibers and nanotubes to polymer matrices
MX2019000871A (en) 2016-07-22 2019-06-12 Univ Rutgers In situ bonding of carbon fibers and nanotubes to polymer.
WO2018020976A1 (en) * 2016-07-28 2018-02-01 大塚化学株式会社 Solid lubricant, grease composition, lubricant composition for plastic working, method for producing solid lubricant and method for processing metal material
US11479653B2 (en) 2018-01-16 2022-10-25 Rutgers, The State University Of New Jersey Use of graphene-polymer composites to improve barrier resistance of polymers to liquid and gas permeants
DE202018106258U1 (en) 2018-10-15 2020-01-20 Rutgers, The State University Of New Jersey Nano-graphite sponges
US11807757B2 (en) 2019-05-07 2023-11-07 Rutgers, The State University Of New Jersey Economical multi-scale reinforced composites
JP7476439B2 (en) 2020-03-17 2024-05-01 大塚化学株式会社 Coating composition and dry lubricating coating
JP7399761B2 (en) * 2020-03-17 2023-12-18 住鉱潤滑剤株式会社 Paint composition and dry lubricant coating

Also Published As

Publication number Publication date
JP2003138145A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP3958137B2 (en) Resin composition
Lee et al. Polymer nanocomposite foams
Fu et al. Effect of nanoclay on the mechanical properties of PMMA/clay nanocomposite foams
Ismail et al. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites
US8648132B2 (en) Nanocomposite method of manufacture
JP3947641B2 (en) Method for producing polyester resin foam molding
US20110201731A1 (en) Method for preparing a thermoplastic composite material containing nanotubes particularly carbon nanotubes
US20070106006A1 (en) Polymeric composite including nanoparticle filler
JP5082863B2 (en) COMPOSITE RESIN COMPOSITION AND MOLDED BODY USING THE SAME
Bhowmick et al. Morphology–property relationship in rubber-based nanocomposites: some recent developments
Biswal et al. Mechanical, thermal and dynamic‐mechanical behavior of banana fiber reinforced polypropylene nanocomposites
EP3448924B1 (en) Controlled polymer foaming using a hybrid nucleating agent formed from a mineral and an organic nucleating agent
JP3847681B2 (en) Resin composition
WO2015132707A1 (en) Core-shell particles comprising low bulk density carbon in the shell
Maiti et al. Preparation and characterization of nanocomposites based on thermoplastic elastomers from rubber–plastic blends
Wei et al. Eco-friendly strategy to a dual-2D graphene-derived complex for poly (lactic acid) with exceptional smoke suppression and low CO2 production
WO2023112514A1 (en) Resin composition and molded article
JP4938513B2 (en) Polyurethane elastomer resin composition and process for producing the same
JP2003138147A (en) Resin composition
CN113813796A (en) Nano composite dispersion liquid, high-gas-barrier nano composite film and preparation method thereof
Guo et al. Wood–polymer composite foams
JP2004331844A (en) Expandable resin composition and its foam
EP4097172B1 (en) Foamed sheet, manufacture, and method for producing foamed sheet
Li et al. Preparation of novel organo-montmorillonite and its influence on the acid resistance of hybrid cathodic electrodeposition polyurethane coating
KR100889837B1 (en) Manufacturing method of polyurethane foam/clay nano composites for the thermal insulation and the Polyurethane foam/clay nano composites using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees