JP3935116B2 - Thickness control device for rolling mill - Google Patents

Thickness control device for rolling mill Download PDF

Info

Publication number
JP3935116B2
JP3935116B2 JP2003187365A JP2003187365A JP3935116B2 JP 3935116 B2 JP3935116 B2 JP 3935116B2 JP 2003187365 A JP2003187365 A JP 2003187365A JP 2003187365 A JP2003187365 A JP 2003187365A JP 3935116 B2 JP3935116 B2 JP 3935116B2
Authority
JP
Japan
Prior art keywords
frequency
rolling
rolling mill
disturbance
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003187365A
Other languages
Japanese (ja)
Other versions
JP2005021913A (en
Inventor
政典 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003187365A priority Critical patent/JP3935116B2/en
Publication of JP2005021913A publication Critical patent/JP2005021913A/en
Application granted granted Critical
Publication of JP3935116B2 publication Critical patent/JP3935116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、単スタンド式圧延機、および、連続スタンド式圧延機において、高精度に板厚を制御する装置に関する。
【0002】
【従来の技術】
単スタンド圧延機、および、連続スタンド圧延機において、板厚を制御する場合、非特許文献1に詳しく記載されているように、図2に示されるゲージメータAGC(Automatic Gage Control)、図3に示されるMMC(Mill Modulus Control)、図4に示される張力AGCが代表的である。
【0003】
圧延機の圧延荷重P、ロールギャップS、入側板厚H、出側板厚hとの関係は、図5のようになり、圧延機の変形を表す圧延機の伸びと、板の塑性変形を表す塑性曲線との交点が、出側板厚hおよび圧延荷重Pとなる。ゲージメータAGCの動作原理を説明する。ゲージメータAGCでは、圧延機の出側板厚hを式(1)より推定する。
h=S+αP/M (1)
【0004】
ここで、Mはミル剛性係数と呼ばれる圧延機の硬さを表す係数であり、図5の板の伸びを表す線の傾きである。また、αはスケールファクターと呼ばれる調整係数であり、理論的には1となる。ある時点で圧延荷重Pが計測されたとき、式(1)で推定した出側板厚が設定出側板厚h1と異なっていたときには、図6のように、ロールギャップを調整し、出側板厚偏差Δh(≡h−h1)を0に制御する。これは図6のaの点からbの点に交点を移動させることに相当する。出側板厚偏差Δhを0にするためのロールギャップ修正量ΔSは、交点近傍で板の塑性曲線が傾きQの直線であると仮定すると、式(2)で求めることができる。
ΔS=−(Q+M)/M×Δh (2)
【0005】
次に、MMCの動作原理を説明する。MMCでは、設定荷重P1と測定した圧延荷重Pとの偏差ΔPに基づき、ロールギャップ修正量ΔSを式(3)に基づいて制御を行う。
ΔS=−α/M×ΔP (3)
ここで、Mはミル剛性係数、αはスケールファクターと呼ばれる調整係数であり、0.8程度に設定する。このように制御を行うことで、圧延機の圧下制御系が高応答である場合、ミル剛性係数は等価的に、M/(1−α)と見なすことができる。これは、ミルを等価的に硬くした場合に相当し、圧延機の伸びを表す線が、図7の線9から線10に変わったと考えることができる。圧延機が硬くなったため、外乱による出側板厚変動が少なくなる。
【0006】
最後に、張力AGCの動作原理を説明する。張力AGCでは、出側に板厚計を設置し、板厚計の実測板厚hsと設定板厚h1との偏差を0とするように、前段圧延機2のロール速度を調整する制御方式であり、制御対象圧延機1の入側張力を変更することで、板厚を制御するため、張力AGCと呼ばれている。入側張力を変更する理由は、出側板厚は、出側張力よりも入側張力の影響を大きく受けるためである。図4は連続スタンド圧延機の例を示しているが、単スタンド式圧延機の場合、巻き戻しリールのロール速度を調整する。
この他、出側板厚計の実測板厚と設定板厚との偏差が0とするように、ロールギャップを修正するモニターAGCと呼ばれる板厚制御方式も一般に用いられている。
【0007】
【非特許文献】
・社団法人 日本鉄鋼協会 共同研究会 圧延理論部会 編集、板圧延の理論と実際、第1版、昭和59年9月1日発行、社団法人 日本鉄鋼協会 出版、12章(p. 295 -313)
【0008】
【発明が解決しようとする課題】
実際の圧延においては、被圧延材に板厚制御する際の外乱となる様々な要因が存在する。例えば、図8のようにスキッドに接することにより生じるスキッドマークと呼ばれる加熱ムラによる温度変動や、熱間圧延した直後の高温の被圧延コイル(冷間圧延対象材)を図9のようにコイル置台の上で自然冷却した場合に、コイル置台との接触付近のみ冷却現象が異なることにより生じる硬度変動などである。このような外乱は特定の周波数を持っており、それらの周波数情報を利用すれば、より制御効果を高めることが期待できる。
【0009】
さて、図3に示されるMMCにおいて、G=100、T=0.01、K=1、α=0.8の場合、入側板厚外乱が出側板厚へ及ぼす影響の周波数応答を描画すると、図10の線12のようになる。ここで、線11は制御を行わなかった場合の周波数応答である。このように、制御を行わなかった場合に比べ、最大でも7dB程度しか効果がないことが分かる。すなわち、MMCを行わなかったときと比べ1/2程度しか出側板厚外乱は減らないということになる。図10は入側板厚外乱の影響を描画したが、温度外乱や硬度外乱でも、それらを仮想的に入側板厚外乱と見なすことができ、板厚外乱と同じ議論が成り立つ。
【0010】
本発明は、上記のような課題を解決するために考案されたものであり、特定の周波数帯域の外乱が発生したとしても、出側板厚を一定に制御することを目的とする。
【0011】
【課題を解決するための手段】
課題を解決するための手段として、本発明の圧延機の板厚制御装置を説明すれば、少なくとも圧延機の圧延荷重を検出する荷重検出手段と、圧延機のロールギャップを変更するロールギャップ変更手段を有する圧延機の板厚制御装置において、検出された圧延荷重と設定荷重との偏差から圧延機の出側板厚偏差を推定する板厚偏差推定手段と、指定された周波数帯域のみ大きなゲインを持つゲインフィルタと、巻き戻しリールの回転周波数から原板の外乱周波数を推定する外乱周波数検出手段と、前記ゲインフィルタの周波数帯域を外乱周波数により変更するフィルタ周波数変更手段を備え、前記板厚偏差推定手段の出力を前記ゲインフィルタに入力し、その出力に基づきロールギャップを修正する点に特徴を有する。
【0012】
また、本発明の圧延機の板厚制御装置は、少なくとも圧延機の圧延荷重を検出する荷重検出手段と、圧延機のロールギャップを変更するロールギャップ変更手段を有する圧延機の板厚制御装置において、検出された圧延荷重と設定荷重との偏差から圧延機の出側板厚偏差を推定する板厚偏差推定手段と、指定された周波数帯域のみ大きなゲインを持つゲインフィルタと、原板の外乱周波数を検出もしくは推定する外乱周波数検出手段と、他の圧延機の外乱周波数検出手段にて検出した外乱周波数に基づき前記ゲインフィルタの周波数帯域を外乱周波数により変更するフィルタ周波数変更手段を備え、前記板厚偏差推定手段の出力を前記ゲインフィルタに入力し、その出力に基づきロールギャップを修正する点に特徴を有する。
【0013】
【発明の実施の形態】
以下、図面を参照して、本発明の板厚制御装置の形態について説明する。図1は本発明を単スタンド式圧延機に適用したときの実施の形態を示す図である。図3のMMCと比べ、ゲインフィルタ6、フィルタ周波数変更手段7、外乱周波数検出器が付加されている。本発明の板厚制御装置では、先ず、制御対象圧延機1に設置されたロードセル等から圧延荷重Pと設定荷重P1との差ΔPを求め、板厚偏差推定手段5にて出側板厚偏差Δhを推定する。次に、出側板厚偏差Δhに指定された周波数帯域のみ大きなゲインを持つゲインフィルタ6を作用させて、ロールギャップ修正量ΔSを求め、ΔSだけロールギャップを修正する。
【0014】
本発明では、出側板厚偏差Δhに指定された周波数帯域のみ大きなゲインを持つゲインフィルタ6を作用させることがポイントである。ゲインフィルタの周波数帯域と、外乱周波数帯域とを等しくすることにより、外乱のみを効果的に抑制することが可能となる。
【0015】
【実施例】
本発明を図1のような単スタンド式圧延機に適用し、G=100、T=0.01、K=1、α=0.8の場合を説明する。ゲインフィルタを式(4)とし、ゲインフィルタの係数wLとwHを、外乱周波数wFよりそれぞれ式(5)、式(6)のように決定するものとする。
ΔS={(s+wL)(s+wH/α)/(s+wL/α)(s+wH)}×α×Δh (4)
L=wF/β (5)
H=wF×β (6)
ここで、βはゲインフィルタの周波数帯域の幅を決定する調整係数である。
【0016】
外乱周波数wFを1(rad/s)、β=10として、ゲインフィルタの周波数応答を描画すると図11のようになる。このように、ゲインフィルタは外乱周波数の1(rad/s)付近ではゲインは1に近づき、1(rad/s)から離れると、αの値である0.8に近づくようになる。ゲインフィルタを式4のように決定すると、必ずゲインの最大値は1以下になるため、制御し過ぎることにはならない。
【0017】
入側板厚外乱が出側板厚へ及ぼす影響の周波数応答を描画すると、図12の線15のようになる。図12で線13は制御を行わなかった場合の周波数応答、線14はMMCを行った場合の周波数応答である。このように、外乱周波数である1(rad/s)付近では、板厚外乱は出側板厚へほとんど影響しなくなることが分かる。
【0018】
さて、前記では外乱周波数が予め分かっている場合の実施例を説明したが、外乱周波数検出器にて外乱周波数wFを検出することが可能な場合には、外乱周波数wFを式(5)と式(6)に与え、ゲインフィルタの係数wLとwHを算出し、ゲインフィルタの係数を変更しても良い。この場合には、外乱周波数が時々刻々変わるようなプロセスでも効果的に外乱の影響を少なくすることができる。
【0019】
例えば、図9のように被圧延コイルとコイル置き台との接触による冷却ムラによる硬度変動の場合には、硬度変動はコイル1周ごとに1回発生するため、硬度変動の周波数は、巻き戻しリールの回転周波数と一致する。そこで、巻き戻しリールにタコジェネレータを設置し、巻き戻しリールの回転周波数を検出し、それを外乱周波数wFとすれば良い。
【0020】
他の例を上げると、図8のようにスキッドに接することにより生じるスキッドマークと呼ばれる加熱ムラによる温度変動や、図9の場合の硬度外乱いずれにおいても、それらの外乱は圧延機に作用し、外乱周波数に応じて荷重も変動する。すなわち、外乱周波数と荷重変動周波数は一致する。そこで、圧延機の荷重をロードセル等で検出し、その出力をF/Vコンバータに与え、その出力を外乱周波数wFとすれば良い。
同様に、外乱は荷重だけでなく圧延機の入出側の板張力も同じ周波数で変動させるため、圧延機の入側または出側に板張力を検出する張力計を設置し、その出力をF/Vコンバータに与え、その出力を外乱周波数wFとすれば良い。
【0021】
同様に、外乱は最終的には板厚に影響を与えるため、出側の板厚を板厚計で検出し、それをF/Vコンバータに与え、その出力を外乱周波数wFとすれば良い。また、連続式圧延機の場合には、各スタンドの外乱周波数wFは同じであるため、スタンド間に板厚計を設置し、それをF/Vコンバータに与え、その出力を外乱周波数wFとし、前段と後段スタンドのゲインフィルタの係数wLとwHをこの外乱周波数wFに基づき変更しても良い。
【0022】
連続式圧延機の場合には、各スタンドの外乱周波数wFは同じであるため、前記いずれかの方法(例えば、いずれかのスタンドの荷重をロードセル等で検出し、F/Vコンバータを介して外乱周波数wFを求める)で外乱周波数wFを検出し、ゲインフィルタの係数wLとwHを全スタンド同じ値で変更しても構わない。
【0023】
【発明の効果】
以上詳しく説明したように、本発明では、板厚を制御するに当たり、指定された周波数帯域のみ大きなゲインを持つゲインフィルタを用いることにより、特定の周波数の外乱の影響を効果的に減ずることが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態の板厚制御装置構成図。
【図2】 ゲージメータAGC構成図。
【図3】 MMC構成図。
【図4】 張力AGC構成図。
【図5】 圧延機の伸びと板の塑性曲線。
【図6】 ゲージメータAGCの原理説明図。
【図7】 MMCの原理説明図。
【図8】 加熱炉内で加熱される被圧延材。
【図9】 コイル置台の上に置かれた被圧延コイル。
【図10】 MMCの板厚制御性能。
【図11】 ゲインフィルタの周波数特性。
【図12】 本発明の板厚制御装置の板厚制御性能。
【符号の説明】
1・・・制御対象圧延機 2・・・前段圧延機
3・・・荷重制御器 4・・・板厚計
5・・・板厚偏差推定手段 6・・・ゲインフィルタ
7・・・フィルタ周波数変更手段 8・・・巻き戻しリール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device for controlling a plate thickness with high accuracy in a single stand type rolling mill and a continuous stand type rolling mill.
[0002]
[Prior art]
When controlling the plate thickness in a single stand rolling mill and a continuous stand rolling mill, as described in detail in Non-Patent Document 1, a gauge meter AGC (Automatic Gage Control) shown in FIG. The MMC (Mill Modulus Control) shown, and the tension AGC shown in FIG. 4 are representative.
[0003]
The relationship between the rolling load P, the roll gap S, the entry side plate thickness H, and the exit side plate thickness h of the rolling mill is as shown in FIG. 5 and represents the elongation of the rolling mill representing the deformation of the rolling mill and the plastic deformation of the plate. The intersection with the plastic curve is the exit thickness h and the rolling load P. The operation principle of the gauge meter AGC will be described. In the gauge meter AGC, the outlet side plate thickness h of the rolling mill is estimated from the equation (1).
h = S + αP / M (1)
[0004]
Here, M is a coefficient representing the hardness of the rolling mill called the mill rigidity coefficient, and is the slope of the line representing the elongation of the plate in FIG. Α is an adjustment coefficient called a scale factor, which is theoretically 1. When the rolling load P is measured at a certain point in time, and the delivery side plate thickness estimated by the equation (1) is different from the set delivery side plate thickness h1, the roll gap is adjusted as shown in FIG. Δh (≡h−h1) is controlled to 0. This corresponds to moving the intersection from point a in FIG. 6 to point b. The roll gap correction amount ΔS for setting the delivery side thickness deviation Δh to 0 can be obtained by Expression (2) assuming that the plastic curve of the plate is a straight line having an inclination Q in the vicinity of the intersection.
ΔS = − (Q + M) / M × Δh (2)
[0005]
Next, the operation principle of the MMC will be described. In the MMC, the roll gap correction amount ΔS is controlled based on the equation (3) based on the deviation ΔP between the set load P1 and the measured rolling load P.
ΔS = −α / M × ΔP (3)
Here, M is a mill stiffness coefficient, α is an adjustment coefficient called a scale factor, and is set to about 0.8. By performing the control in this manner, when the rolling control system of the rolling mill has a high response, the mill stiffness coefficient can be equivalently regarded as M / (1-α). This corresponds to a case where the mill is hardened equivalently, and it can be considered that the line representing the elongation of the rolling mill has changed from line 9 to line 10 in FIG. Since the rolling mill has become hard, fluctuations in the thickness of the outlet side due to disturbance are reduced.
[0006]
Finally, the operating principle of tension AGC will be described. In the tension AGC, a thickness gauge is installed on the outlet side, and the roll speed of the preceding rolling mill 2 is adjusted so that the deviation between the measured thickness hs of the thickness gauge and the set thickness h1 is zero. Yes, it is called tension AGC in order to control the sheet thickness by changing the entry side tension of the controlled rolling mill 1. The reason for changing the entry side tension is that the exit side plate thickness is more influenced by the entry side tension than the exit side tension. FIG. 4 shows an example of a continuous stand rolling mill, but in the case of a single stand type rolling mill, the roll speed of the rewinding reel is adjusted.
In addition, a plate thickness control method called a monitor AGC is generally used to correct the roll gap so that the deviation between the measured plate thickness of the delivery side thickness gauge and the set plate thickness is zero.
[0007]
[Non-patent literature]
・ The Japan Iron and Steel Institute Joint Research Group Rolling Theory Division Editing, Theory and Practice of Sheet Rolling, 1st Edition, published on September 1, 1984, Japan Iron and Steel Institute Publishing, Chapter 12 (p. 295 -313)
[0008]
[Problems to be solved by the invention]
In actual rolling, there are various factors that cause disturbance when the thickness of the material to be rolled is controlled. For example, as shown in FIG. 8, temperature fluctuations due to heating unevenness called a skid mark caused by contact with the skid, or a hot rolled coil (material to be cold-rolled) immediately after hot rolling is shown in FIG. This is, for example, a hardness fluctuation caused by a different cooling phenomenon only in the vicinity of the contact with the coil mount when naturally cooled on the surface. Such a disturbance has a specific frequency, and if the frequency information is used, it can be expected that the control effect is further enhanced.
[0009]
In the MMC shown in FIG. 3, when G = 100, T = 0.01, K = 1, and α = 0.8, the frequency response of the influence of the input side plate thickness disturbance on the output side plate thickness is drawn. As shown by the line 12 in FIG. Here, the line 11 is a frequency response when control is not performed. Thus, it can be seen that the effect is only about 7 dB at maximum as compared with the case where the control is not performed. In other words, the outer side plate thickness disturbance is reduced by only about 1/2 compared to when MMC was not performed. Although FIG. 10 depicts the influence of the entrance side plate thickness disturbance, the temperature argument and the hardness disturbance can be virtually regarded as the entrance side plate thickness disturbance, and the same argument as the plate thickness disturbance holds.
[0010]
The present invention has been devised to solve the above-described problems, and it is an object of the present invention to control the outlet side plate thickness even when a disturbance in a specific frequency band occurs.
[0011]
[Means for Solving the Problems]
As means for solving the problems, the sheet thickness control device for a rolling mill according to the present invention will be described. At least a load detecting means for detecting a rolling load of the rolling mill, and a roll gap changing means for changing the roll gap of the rolling mill. In a sheet thickness control apparatus for a rolling mill having a sheet thickness deviation estimating means for estimating a sheet thickness deviation of a rolling mill from a deviation between a detected rolling load and a set load, and having a large gain only in a specified frequency band A gain filter , a disturbance frequency detecting means for estimating the disturbance frequency of the original plate from the rotation frequency of the rewinding reel, and a filter frequency changing means for changing the frequency band of the gain filter according to the disturbance frequency . The output is input to the gain filter, and the roll gap is corrected based on the output.
[0012]
Further, the sheet thickness control apparatus for a rolling mill according to the present invention is a sheet thickness control apparatus for a rolling mill having at least a load detection means for detecting a rolling load of the rolling mill and a roll gap changing means for changing the roll gap of the rolling mill. , Plate thickness deviation estimation means to estimate the rolling strip thickness deviation from the deviation between the detected rolling load and set load, gain filter with large gain only in the specified frequency band, and detection of disturbance frequency of the original plate Alternatively, it comprises: a disturbance frequency detecting means for estimating; and a filter frequency changing means for changing the frequency band of the gain filter based on the disturbance frequency detected by the disturbance frequency detecting means of another rolling mill, and the plate thickness deviation estimation The output of the means is input to the gain filter, and the roll gap is corrected based on the output.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to drawings, the form of the plate | board thickness control apparatus of this invention is demonstrated. FIG. 1 is a diagram showing an embodiment when the present invention is applied to a single stand type rolling mill. Compared with the MMC of FIG. 3, a gain filter 6, a filter frequency changing means 7, and a disturbance frequency detector are added. In the sheet thickness control device of the present invention, first, a difference ΔP between the rolling load P and the set load P1 is obtained from a load cell or the like installed in the controlled rolling mill 1, and the sheet thickness deviation estimating means 5 uses the delivery side sheet thickness deviation Δh. Is estimated. Next, the gain filter 6 having a large gain is applied only in the frequency band designated for the outlet side thickness deviation Δh to determine the roll gap correction amount ΔS, and the roll gap is corrected by ΔS.
[0014]
In the present invention, it is important to operate the gain filter 6 having a large gain only in the frequency band specified for the outlet side thickness deviation Δh. By making the frequency band of the gain filter equal to the disturbance frequency band, it is possible to effectively suppress only the disturbance.
[0015]
【Example】
The case where the present invention is applied to a single stand type rolling mill as shown in FIG. 1 and G = 100, T = 0.01, K = 1, and α = 0.8 will be described. Assume that the gain filter is expressed by equation (4), and the gain filter coefficients w L and w H are determined from the disturbance frequency w F as expressed by equations (5) and (6), respectively.
ΔS = {(s + w L ) (s + w H / α) / (s + w L / α) (s + w H )} × α × Δh (4)
w L = w F / β (5)
w H = w F × β (6)
Here, β is an adjustment coefficient that determines the width of the frequency band of the gain filter.
[0016]
FIG. 11 shows the frequency response of the gain filter when the disturbance frequency w F is 1 (rad / s) and β = 10. Thus, the gain filter approaches 1 near 1 (rad / s) of the disturbance frequency, and approaches 0.8, which is the value of α, away from 1 (rad / s). If the gain filter is determined as shown in Expression 4, the maximum value of the gain is always 1 or less, so that the control is not excessive.
[0017]
When the frequency response of the influence of the input side plate thickness disturbance on the output side plate thickness is drawn, a line 15 in FIG. 12 is obtained. In FIG. 12, a line 13 indicates a frequency response when no control is performed, and a line 14 indicates a frequency response when MMC is performed. Thus, it can be seen that the plate thickness disturbance has almost no influence on the delivery side plate thickness in the vicinity of the disturbance frequency of 1 (rad / s).
[0018]
Now, the in described an embodiment in which the disturbance frequency is known in advance, when it is possible to detect the disturbance frequency w F at the disturbance frequency detector, the disturbance frequency w F Equation (5) And gain (6), the gain filter coefficients w L and w H may be calculated, and the gain filter coefficients may be changed. In this case, the influence of the disturbance can be reduced effectively even in a process in which the disturbance frequency changes from moment to moment.
[0019]
For example, as shown in FIG. 9, in the case of hardness fluctuation due to uneven cooling due to contact between the coil to be rolled and the coil stand, the hardness fluctuation occurs once per coil, so the frequency of the hardness fluctuation is rewound. It matches the reel rotation frequency. Therefore, a tacho generator may be installed on the rewinding reel, the rotation frequency of the rewinding reel may be detected, and this may be set as the disturbance frequency w F.
[0020]
As another example, in any of the temperature fluctuation due to heating unevenness called a skid mark generated by contacting the skid as shown in FIG. 8 and the hardness disturbance in the case of FIG. 9, those disturbances act on the rolling mill, The load also varies according to the disturbance frequency. That is, the disturbance frequency and the load fluctuation frequency coincide. Therefore, the load of the rolling mill is detected by a load cell or the like, the output is given to the F / V converter, and the output is made the disturbance frequency w F.
Similarly, the disturbance causes not only the load but also the plate tension on the entry / exit side of the rolling mill to fluctuate at the same frequency. Therefore, a tensiometer that detects the plate tension is installed on the entry side or exit side of the rolling mill, given to the V converter may be its output a disturbance frequency w F.
[0021]
Similarly, since the disturbance finally affects the plate thickness, it is only necessary to detect the plate thickness on the output side with a plate thickness meter, supply it to the F / V converter, and set the output to the disturbance frequency w F. . In the case of a continuous rolling mill, since the disturbance frequency w F of each stand is the same, a thickness gauge is installed between the stands, and it is given to the F / V converter, and the output is the disturbance frequency w F. Then, the coefficients w L and w H of the gain filters of the front and rear stands may be changed based on this disturbance frequency w F.
[0022]
In the case of a continuous rolling mill, since the disturbance frequency w F of each stand is the same, any of the above methods (for example, the load of any of the stands is detected by a load cell or the like, and the F / V converter is used. The disturbance frequency w F may be detected in (obtaining the disturbance frequency w F ), and the gain filter coefficients w L and w H may be changed to the same value for all stands.
[0023]
【The invention's effect】
As described above in detail, in the present invention, it is possible to effectively reduce the influence of disturbance at a specific frequency by using a gain filter having a large gain only in a specified frequency band in controlling the plate thickness. It becomes.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a plate thickness control apparatus according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a gauge meter AGC.
FIG. 3 is an MMC configuration diagram.
FIG. 4 is a configuration diagram of a tension AGC.
FIG. 5 shows the elongation of the rolling mill and the plastic curve of the plate.
FIG. 6 is a diagram illustrating the principle of a gauge meter AGC.
FIG. 7 is a diagram illustrating the principle of MMC.
FIG. 8 A material to be rolled that is heated in a heating furnace.
FIG. 9 shows a coil to be rolled placed on a coil mount.
FIG. 10 shows the thickness control performance of MMC.
FIG. 11 shows frequency characteristics of a gain filter.
FIG. 12 shows the plate thickness control performance of the plate thickness control apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Control object rolling mill 2 ... Pre-stage rolling mill 3 ... Load controller 4 ... Sheet thickness meter 5 ... Sheet thickness deviation estimation means 6 ... Gain filter 7 ... Filter frequency Changing means 8 ... Rewind reel

Claims (2)

少なくとも圧延機の圧延荷重を検出する荷重検出手段と、圧延機のロールギャップを変更するロールギャップ変更手段を有する圧延機の板厚制御装置において、検出された圧延荷重と設定荷重との偏差から圧延機の出側板厚偏差を推定する板厚偏差推定手段と、指定された周波数帯域のみ大きなゲインを持つゲインフィルタと、巻き戻しリールの回転周波数から原板の外乱周波数を推定する外乱周波数検出手段と、前記ゲインフィルタの周波数帯域を外乱周波数により変更するフィルタ周波数変更手段を備え、前記板厚偏差推定手段の出力を前記ゲインフィルタに入力し、その出力に基づきロールギャップを修正することを特徴とする圧延機の板厚制御装置。Rolling from the deviation between the detected rolling load and the set load in the sheet thickness control device of the rolling mill having at least a load detecting means for detecting the rolling load of the rolling mill and a roll gap changing means for changing the roll gap of the rolling mill A plate thickness deviation estimating means for estimating the output side thickness deviation of the machine, a gain filter having a large gain only in a specified frequency band, a disturbance frequency detecting means for estimating the disturbance frequency of the original plate from the rotation frequency of the rewinding reel, A rolling frequency characterized by comprising filter frequency changing means for changing a frequency band of the gain filter according to a disturbance frequency , and inputting an output of the plate thickness deviation estimating means to the gain filter and correcting a roll gap based on the output. Machine thickness control device. 少なくとも圧延機の圧延荷重を検出する荷重検出手段と、圧延機のロールギャップを変更するロールギャップ変更手段を有する圧延機の板厚制御装置において、検出された圧延荷重と設定荷重との偏差から圧延機の出側板厚偏差を推定する板厚偏差推定手段と、指定された周波数帯域のみ大きなゲインを持つゲインフィルタと、原板の外乱周波数を検出もしくは推定する外乱周波数検出手段と、他の圧延機の外乱周波数検出手段にて検出した外乱周波数に基づき前記ゲインフィルタの周波数帯域を外乱周波数により変更するフィルタ周波数変更手段を備え、前記板厚偏差推定手段の出力を前記ゲインフィルタに入力し、その出力に基づきロールギャップを修正することを特徴とする圧延機の板厚制御装置。 Rolling from the deviation between the detected rolling load and the set load in the sheet thickness control device of the rolling mill having at least a load detecting means for detecting the rolling load of the rolling mill and a roll gap changing means for changing the roll gap of the rolling mill Plate thickness deviation estimating means for estimating the exit thickness deviation of the mill, gain filter having a large gain only in the specified frequency band, disturbance frequency detecting means for detecting or estimating the disturbance frequency of the original plate, and other rolling mills Filter frequency changing means for changing the frequency band of the gain filter by the disturbance frequency based on the disturbance frequency detected by the disturbance frequency detecting means, and inputting the output of the plate thickness deviation estimating means to the gain filter, A roll thickness control device for a rolling mill, wherein the roll gap is corrected based on the roll gap .
JP2003187365A 2003-06-30 2003-06-30 Thickness control device for rolling mill Expired - Fee Related JP3935116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187365A JP3935116B2 (en) 2003-06-30 2003-06-30 Thickness control device for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187365A JP3935116B2 (en) 2003-06-30 2003-06-30 Thickness control device for rolling mill

Publications (2)

Publication Number Publication Date
JP2005021913A JP2005021913A (en) 2005-01-27
JP3935116B2 true JP3935116B2 (en) 2007-06-20

Family

ID=34186245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187365A Expired - Fee Related JP3935116B2 (en) 2003-06-30 2003-06-30 Thickness control device for rolling mill

Country Status (1)

Country Link
JP (1) JP3935116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525577A (en) * 2014-12-28 2015-04-22 鞍钢冷轧钢板(莆田)有限公司 Method for eliminating thickness out-of-tolerance existing during rolling acceleration and deceleration

Also Published As

Publication number Publication date
JP2005021913A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP2008126307A (en) Thickness control system for tandem rolling mill
JP3935116B2 (en) Thickness control device for rolling mill
JP2003039108A (en) Method for controlling meandering of thin strip cast slab
JP3826762B2 (en) Thickness control method
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JP3866877B2 (en) Method and apparatus for controlling plate thickness in twin drum type continuous casting equipment, recording medium
JP2970264B2 (en) Thickness control device of tandem rolling mill
JP3521081B2 (en) Strip width control method in hot finishing mill
JP3062017B2 (en) Thickness control method in hot rolling
JP3531744B2 (en) Thickness control method of tandem rolling mill
JP3321051B2 (en) Method and apparatus for controlling shape of rolled material
JP3767832B2 (en) Thickness control method in hot rolling
JP7314921B2 (en) Method for controlling meandering of hot-rolled steel strip, meandering control device, and hot rolling equipment
JPS5994513A (en) Method and equipment for controlling automatically sheet width
JP2978407B2 (en) Rolling control method
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JP5385643B2 (en) Sheet thickness control method and sheet thickness control apparatus in multi-high rolling mill
JP2003112213A (en) Controller, controlling method, computer program and computer readable recording medium for rolling mill
JPH07100166B2 (en) Steel strip rolling method
JP2962382B2 (en) Automatic thickness control device for rolling mill
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JP6269538B2 (en) Rolling mill control method, rolling mill control apparatus, and steel plate manufacturing method
JP2763490B2 (en) Method of controlling tension between stands of rolling mill
JP2692544B2 (en) Method and device for controlling temperature of hot rolling mill
JP3396774B2 (en) Shape control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R151 Written notification of patent or utility model registration

Ref document number: 3935116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees