JP3871100B2 - Power monitoring device - Google Patents

Power monitoring device Download PDF

Info

Publication number
JP3871100B2
JP3871100B2 JP15759099A JP15759099A JP3871100B2 JP 3871100 B2 JP3871100 B2 JP 3871100B2 JP 15759099 A JP15759099 A JP 15759099A JP 15759099 A JP15759099 A JP 15759099A JP 3871100 B2 JP3871100 B2 JP 3871100B2
Authority
JP
Japan
Prior art keywords
power
level converter
level
power monitoring
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15759099A
Other languages
Japanese (ja)
Other versions
JP2000350385A (en
Inventor
敏明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP15759099A priority Critical patent/JP3871100B2/en
Publication of JP2000350385A publication Critical patent/JP2000350385A/en
Application granted granted Critical
Publication of JP3871100B2 publication Critical patent/JP3871100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Description

【0001】
【発明の属する技術分野】
この発明は、工場または一般家庭で使用する商用周波数電源の電力消費を監視するための電力監視装置に関する。
【0002】
【従来の技術】
従来、測定した電力のデータをセンタが収集する場合は、専用の通信線を敷設していた。図4は、その例を示す。図において、1は電力線、2はPT、3はCT、4,5はレベル変換器、6は電力計測手段、7は変換手段、8は変調装置、9は通信線であり、レベル変換器4,5、電力計測手段6、変換手段7、変調装置8により、電力監視装置10が構成される。図5は、これらの構成の電力監視装置10を配電系統に設置した場合を示し、電力線1から分岐された各負荷11について測定されたデータが通信線9を介して、センタであるところのコントローラ12へ送られる。
【0003】
【発明が解決しようとする課題】
このように従来は、測定した電力のデータを送信する場合に、データ通信専用の通信線が必要であるため、信号線の敷設費用、維持費用が余分にかかるという課題があった。
【0004】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、図1に示すように、電力線1に設置されたPT2と、前記電力線に設置されたCT3と、前記PT2の出力をレベル変換する第1のレベル変換器4と、前記CT3の出力をレベル変換する第2のレベル変換器5と、第1のレベル変換器4および第2のレベル変換器5の出力を用いて電力値を計測する電力計測手段6と、計測された電力値を送信データに変換する変換手段7と、換された送信データを変調し、前記PT2を介し前記電力線1に重畳して入力する変調装置8と、を備えたものである。
【0005】
また、請求項2記載の発明は、請求項1記載の電力監視装置において、前記PT2と第1のレベル変換器4との間、および、前記CT3と第2のレベル変換器5との間に、図2に示すようにローパス・フィルタ13,14を接続したものである。
【0007】
【発明の実施の形態】
次に、本発明の実施形態を図2に基づいて説明する。
この実施形態では、電力線1から電圧値を引き込むPT2と電流値を引き込むCT3を備える。電力線1の周波数は、商用周波数の50Hz,60Hzと低い周波数なので、PT2とCT3の信号をローパス・フィルタ13,14を介して、レベル変換器4,5に入力する。ローパス・フィルタ13,14の特性は、電力線1に重畳する高周波の伝送信号(例えば150kHz)を除去するように適切な特性のものとする。
【0008】
レベル変換器4の出力をマイクロ・コンピュータ16に内蔵のAD変換器に入力する。レベル変換器4,5は、オペアンプで実現し、PT2とCT3の信号をAD変換器でAD変換可能な電圧範囲Vp-p=5Vに変換できるように調整する。ここでは、電力計測手段6を、マイクロ・コンピュータ16の内部プログラムで実現している。すなわち、AD変換器で取込んだ電圧と電流の値を掛け合わせると瞬時電力が計算できる。この瞬時電力の1周期分の平均を取れば、電力実効値が計測できる。
【0009】
AD変換のタイミングは、マイクロ・コンピュータ16内部のタイマ機能で一定周期(例えば10kHz)に設定するものとする。瞬時電力の1周期分の平均を取るためには、1周期のサンプリング回数が必要である。この1周期のサンプリング回数を求めるには、信号のゼロクロス点(AD変換した値の符号が「−」から「+」に変化する点)間のサンプリング回数を求める方法と、商用周波数なのであらかじめ周波数が決まっていることからサンプリング回数を決める方法がある。
【0010】
この実施例では、50Hzの商用周波を10kHzでサンプリングした場合を例に取り、1周期のサンプル数を200回とする。すなわち、この例の場合、200サンプル分の計算した瞬時電力の総和を求めて、200で割れば、電力実効値を求めることができる。この計算値を測定した電力実効値としてマイクロ・コンピュータ16上のメモリに記憶しておく。次に、メモリに記憶されている電力実効値を読み取り、送信信号として出力し、変調回路17に送る。
【0011】
変調回路17は、商用周波数よりも高い周波数(例えば150kHz)の信号で伝送信号を変調し、保護のためのクランプ・ダイオード18とリミッタ抵抗19、およびトランス(図ではPT)を介して、電力線1に伝送信号を重畳する。上記トランスをPT2と共用することで、その分のコストを抑えることができる。
【0012】
次に、こうして計測された電力実効値を送信する場合を、図3の電力監視システムについて説明する。図では、コントローラ12から各電力監視装置10にポーリングを行い、測定値を要求することで、各負荷11の電力を監視する。各電力監視装置10に、例えば#0〜#2のような個別のアドレスを持たせておき、コントローラ12から自局のアドレスに対してデータの要求がきた場合に、測定した電力実効値を送信するようにする。
【0013】
そのため、通常は図2のマイクロ・コンピュータ16における送信/受信選択信号を受信に設定しておき、自局のアドレス(受信信号入力のポート)に対して要求がきた場合に、送信/受信選択信号を送信に切替える。そして、マイクロ・コンピュータ16の送信信号出力のポートから電力実効値のデータを送信する。ここでは、この送信信号出力のポートと受信信号入力のポートとして、マイクロ・コンピュータ16に内蔵されているUARTポートを使用する。
【0014】
また、変調回路17は、例えばナショナル・セミコンダクタ社製のLM1893のような電力線通信を実現するICを使用すれば、容易に実現できる。この場合、例えば150kHzのFSK変調でデータを伝送し、伝送レートを360ボー程度の低レートで通信することが可能となる。
【0015】
これらのことから、本発明では、電力監視装置を構成する場合、監視する電力線に伝送信号を重畳することで、電力データを伝送する通信線を省き、通信線の敷設費用・維持費用をなくすことができるという効果が得られる。また、伝送信号を重畳するためのトランスとして、電力計測用のトランスと兼ねることで、トランスのコストを軽減するという効果も得られる。
【0016】
【発明の効果】
以上述べたように本発明によれば、電力線を通信線として使用したことで、通信線の敷設費用および通信線の維持費用が不要となる効果が得られる。
【図面の簡単な説明】
【図1】本発明の構成を示す図である。
【図2】本発明の実施形態を示す図である。
【図3】本発明の実施形態を示す図である。
【図4】従来例の構成を示す図である。
【図5】従来例を示す図である。
【符号の説明】
1 電力線
2 PT
3 CT
4 第1のレベル変換器
5 第2のレベル変換器
6 電力計測手段
7 変換手段
8 変調装置
10 電力監視装置
11 負荷
12 コントローラ
13,14 ローパス・フィルタ
16 マイクロ・コンピュータ
17 変調回路
18 クランプ・ダイオード
19 リミッタ抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power monitoring apparatus for monitoring power consumption of a commercial frequency power supply used in a factory or a general household.
[0002]
[Prior art]
Conventionally, when the center collects measured power data, a dedicated communication line has been installed. FIG. 4 shows an example. In the figure, 1 is a power line, 2 is PT, 3 is CT, 4 and 5 are level converters, 6 is power measuring means, 7 is conversion means, 8 is a modulation device, 9 is a communication line, and level converter 4 5, the power measuring means 6, the converting means 7, and the modulating device 8 constitute a power monitoring device 10. FIG. 5 shows a case where the power monitoring apparatus 10 having these configurations is installed in the distribution system, and the data measured for each load 11 branched from the power line 1 is the controller at the center via the communication line 9. Sent to 12.
[0003]
[Problems to be solved by the invention]
As described above, conventionally, when data of measured power is transmitted, a communication line dedicated to data communication is required, and thus there is a problem that an installation cost and a maintenance cost of a signal line are excessive.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, as shown in FIG. 1, the invention according to claim 1 is a first method for level-converting the PT2 installed on the power line 1, the CT3 installed on the power line, and the output of the PT2. a level converter 4, and the second level converter 5 for level converting the output of the CT3, power to measure the power value using the output of the first level converter 4 and the second level converter 5 and measuring means 6, the converter 7 for converting the measured power value to the transmission data, modulates the transmission data is converted, a modulator 8 for inputting superimposed on the power line 1 through the PT2, the It is provided.
[0005]
Further , the invention according to claim 2 is the power monitoring device according to claim 1, wherein between the PT 2 and the first level converter 4 and between the CT 3 and the second level converter 5. As shown in FIG. 2, low-pass filters 13 and 14 are connected .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIG.
In this embodiment, a PT2 for drawing a voltage value from the power line 1 and a CT3 for drawing a current value are provided. Since the frequency of the power line 1 is as low as commercial frequencies of 50 Hz and 60 Hz, the signals of PT2 and CT3 are input to the level converters 4 and 5 via the low-pass filters 13 and 14, respectively. The characteristics of the low-pass filters 13 and 14 are appropriate so as to remove a high-frequency transmission signal (for example, 150 kHz) superimposed on the power line 1.
[0008]
The output of the level converter 4 is input to an AD converter built in the microcomputer 16. The level converters 4 and 5 are realized by operational amplifiers, and are adjusted so that the signals of PT2 and CT3 can be converted to a voltage range V pp = 5 V that can be AD converted by the AD converter. Here, the power measuring means 6 is realized by an internal program of the microcomputer 16. That is, the instantaneous power can be calculated by multiplying the voltage and current values taken by the AD converter. The effective power value can be measured by averaging the instantaneous power for one cycle.
[0009]
The AD conversion timing is set to a constant period (for example, 10 kHz) by a timer function in the microcomputer 16. In order to take the average of the instantaneous power for one cycle, the number of samplings in one cycle is required. In order to obtain the number of samplings in one cycle, there are a method for obtaining the number of samplings between the zero-cross points of the signal (the point at which the sign of the AD converted value changes from “−” to “+”), and the frequency in advance because it is a commercial frequency. There is a method of determining the number of times of sampling because it is determined.
[0010]
In this embodiment, a case where a commercial frequency of 50 Hz is sampled at 10 kHz is taken as an example, and the number of samples in one cycle is 200 times. That is, in the case of this example, the effective power value can be obtained by calculating the sum of the calculated instantaneous power for 200 samples and dividing by 200. This calculated value is stored in a memory on the microcomputer 16 as a measured effective power value. Next, the effective power value stored in the memory is read, output as a transmission signal, and sent to the modulation circuit 17.
[0011]
The modulation circuit 17 modulates a transmission signal with a signal having a frequency higher than the commercial frequency (for example, 150 kHz), and a power line through a clamp diode 18 for protection, a limiter resistor 19 and a transformer (PT 2 in the figure). 1 superimposes the transmission signal. By sharing the transformer with PT2, the cost can be reduced.
[0012]
Next, the case where the measured power effective value is transmitted will be described with reference to the power monitoring system of FIG. In the figure, the power of each load 11 is monitored by polling each power monitoring device 10 from the controller 12 and requesting a measured value. Each power monitoring device 10 has an individual address such as # 0 to # 2, and when the controller 12 receives a data request for the address of its own station, the measured power effective value is transmitted. To do.
[0013]
Therefore, the transmission / reception selection signal in the microcomputer 16 of FIG. 2 is normally set to reception, and when a request is made for the address of the own station (reception signal input port), the transmission / reception selection signal Is switched to transmission. Then, effective power value data is transmitted from the transmission signal output port of the microcomputer 16. Here, a UART port built in the microcomputer 16 is used as the transmission signal output port and the reception signal input port.
[0014]
Further, the modulation circuit 17 can be easily realized by using an IC that realizes power line communication such as LM1893 manufactured by National Semiconductor, for example. In this case, for example, data can be transmitted by FSK modulation of 150 kHz, and communication can be performed at a transmission rate as low as about 360 baud.
[0015]
Therefore, in the present invention, when configuring a power monitoring device, by superimposing a transmission signal on the power line to be monitored, the communication line for transmitting the power data can be omitted, and the installation cost and maintenance cost of the communication line can be eliminated. The effect of being able to be obtained. Further, the transformer for superimposing the transmission signal also serves as a power measurement transformer, so that an effect of reducing the cost of the transformer can be obtained.
[0016]
【The invention's effect】
As described above, according to the present invention, since the power line is used as the communication line, there is an effect that the installation cost of the communication line and the maintenance cost of the communication line become unnecessary.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of the present invention.
FIG. 2 is a diagram showing an embodiment of the present invention.
FIG. 3 is a diagram showing an embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a conventional example.
FIG. 5 is a diagram illustrating a conventional example.
[Explanation of symbols]
1 Power line 2 PT
3 CT
4 1st level converter 5 2nd level converter 6 Electric power measurement means 7 Conversion means 8 Modulator
10 Power monitoring device
11 Load
12 Controller
13,14 Low-pass filter
16 Micro computer
17 Modulation circuit
18 Clamp diode
19 Limiter resistance

Claims (2)

電力線に設置されたPTと、
前記電力線に設置されたCTと、
前記PTの出力をレベル変換する第1のレベル変換器と、
前記CTの出力をレベル変換する第2のレベル変換器と、
第1のレベル変換器および第2のレベル変換器の出力を用いて電力値を計測する電力計測手段と、
計測された電力値を送信データに変換する変換手段と、
換された送信データを変調し、前記PTを介し前記電力線に重畳して入力する変調装置と、
を備えたことを特徴とする電力監視装置。
PT installed on the power line,
And CT installed in the power line,
A first level converter for level converting the output of the PT;
A second level converter for level converting the output of the CT;
Power measuring means for measuring a power value using outputs of the first level converter and the second level converter;
Conversion means for converting the measured power value into transmission data;
Modulates transmission data is converted, a modulation device for inputting superimposed on the power line via the PT,
A power monitoring apparatus comprising:
請求項1記載の電力監視装置において、
前記PTと第1のレベル変換器との間および、前記CTと第2のレベル変換器との間にローパス・フィルタを接続したことを特徴とする電力監視装置。
The power monitoring device according to claim 1,
Between the PT and the first level converter, and, between the CT and the second level converter, power monitoring apparatus characterized by connecting a low-pass filter.
JP15759099A 1999-06-04 1999-06-04 Power monitoring device Expired - Fee Related JP3871100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15759099A JP3871100B2 (en) 1999-06-04 1999-06-04 Power monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15759099A JP3871100B2 (en) 1999-06-04 1999-06-04 Power monitoring device

Publications (2)

Publication Number Publication Date
JP2000350385A JP2000350385A (en) 2000-12-15
JP3871100B2 true JP3871100B2 (en) 2007-01-24

Family

ID=15653043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15759099A Expired - Fee Related JP3871100B2 (en) 1999-06-04 1999-06-04 Power monitoring device

Country Status (1)

Country Link
JP (1) JP3871100B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135265A (en) * 2005-11-08 2007-05-31 Hanshin Electric Co Ltd Electric power consumption monitoring method and electric power consumption monitoring system
US20080283118A1 (en) * 2007-05-17 2008-11-20 Larankelo, Inc. Photovoltaic ac inverter mount and interconnect
JP5662908B2 (en) * 2011-08-29 2015-02-04 株式会社日立製作所 Digital protection relay
JP5892768B2 (en) * 2011-10-31 2016-03-23 三菱電機株式会社 Power measuring apparatus, power measuring system, and power measuring method
JP6403044B2 (en) * 2014-04-07 2018-10-10 パナソニックIpマネジメント株式会社 Power meter, power meter for distribution board and distribution board using the same
DE102015120319A1 (en) * 2015-11-24 2017-05-24 Phoenix Contact Gmbh & Co. Kg Inductive current measuring transducer

Also Published As

Publication number Publication date
JP2000350385A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
JP6566525B2 (en) Grid frequency response
US7126493B2 (en) Utility meter with external signal-powered transceiver
RO130016B1 (en) Apparatus and method for digital signal processing for plc communications using power distribution lines
JPH0337794A (en) Communication system for field measuring instrument
TWI751241B (en) Apparatus, method and computer program for determining inertia characteristic of synchronous area of electric power grid
CN102597704B (en) Field device for process instrumentation
JP3871100B2 (en) Power monitoring device
JP2009276354A (en) Current-measuring device and current measurement method
NL2022301B1 (en) Vibration sensing device
US8589095B2 (en) Power measuring device
EP2257767A2 (en) A power measurement system, method and/or units
US6430210B1 (en) Receiver for detecting an amplitude modulated signal insinuated on an GHM signal
JP4384281B2 (en) Current measuring apparatus and current measuring method
CN208520415U (en) A kind of distribution line temperature-load current integration monitoring device
US8013467B2 (en) Method and device for optimizing signal power on a wired communications network
KR100507851B1 (en) Remote meter reading system with power line communication
KR20050081976A (en) A automatic meter reading/controling system and method using wideband power line communication
US6968276B2 (en) System for processing measuring signals from a sensor
KR200349315Y1 (en) A automatic meter reading/controling system using wideband power line communication
JP2015032946A (en) Automatic meter reading system
JPH031699A (en) Operation monitor method for human waste treatment
JPH06289069A (en) Power managing apparatus
KR200317164Y1 (en) Remote meter reading system with power line communication
JP3055162U (en) Power management device
JP4707807B2 (en) Signal transmission device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees