JP3804276B2 - Solar power system - Google Patents

Solar power system Download PDF

Info

Publication number
JP3804276B2
JP3804276B2 JP18510498A JP18510498A JP3804276B2 JP 3804276 B2 JP3804276 B2 JP 3804276B2 JP 18510498 A JP18510498 A JP 18510498A JP 18510498 A JP18510498 A JP 18510498A JP 3804276 B2 JP3804276 B2 JP 3804276B2
Authority
JP
Japan
Prior art keywords
circuit
ground fault
detection
inductor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18510498A
Other languages
Japanese (ja)
Other versions
JP2000023370A (en
Inventor
潔 後藤
洋一 国本
博昭 小新
忠吉 向井
弘忠 東浜
裕明 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18510498A priority Critical patent/JP3804276B2/en
Publication of JP2000023370A publication Critical patent/JP2000023370A/en
Application granted granted Critical
Publication of JP3804276B2 publication Critical patent/JP3804276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池を電源とし、太陽電池の直流電圧を交流電圧に変換して供給する太陽光発電システムに関するものである。
【0002】
【従来の技術】
従来より、太陽電池からなる直流電源を用いた数kW程度の小容量の分散電源を備え、分散電源と商用電力系統とを連系して、負荷に電力を供給する太陽光発電システムが提供されている(例えば特開平9−285015号公報参照)。
【0003】
従来の太陽光発電システムは、図5に示すように、多数の太陽電池セルを配列してパネル状とし、太陽エネルギーを直流電圧に直接変換する太陽電池1と、太陽電池1の直流電力を交流電力に変換し、解列開閉器14を介して商用電力系統3と連系し配電線に接続された各種家電製品などの負荷4に電力供給する分散電源2とを備えている。
【0004】
分散電源2では、太陽電池1の出力電圧を昇圧回路5が所定の直流電圧に昇圧し、昇圧回路5の直流電圧をインバータ回路6が交流電圧に変換した後、フィルタ回路7がインバータ回路6の出力電圧を略正弦波状の交流電圧に変換し、解列開閉器14を介して負荷4に供給する。分散電源2には、昇圧回路5およびインバータ回路6の出力電圧や、解列開閉器14のオン・オフを制御する制御回路8と、直流電路21の地絡を検出する地絡検出回路9とが設けられており、地絡検出回路9が直流電路21の地絡を検出すると、制御回路8は地絡検出回路9の検出信号に基づいて昇圧回路5およびインバータ回路6の出力を停止させるとともに、解列開閉器14をオフする。
【0005】
ここで、地絡検出回路9は、磁性材料より形成された検出コア11の貫通孔12内に太陽電池1と昇圧回路5との間を接続する直流電路21が挿通された電流センサとしての零相変流器10の出力から直流電路21の地絡を検出する。例えば、負極側の直流電路21が地絡すると、太陽電池1→昇圧回路5→インバータ回路6のスイッチング素子61(又は62)→フィルタ回路7のインダクタL1(又はL2)→解列開閉器14→商用電力系統3→地絡抵抗Rg→太陽電池1の経路(図5中に実線および破線の矢印で示す)で地絡電流Irが流れ、正極側の直流電路21に流れる電流と負極側の直流電路21に流れる電流との間に地絡電流Irの分だけ差が発生するから、この電流の差に応じた出力が検出コア11に巻回された二次巻線(図示せず)に発生する。而して、地絡検出回路9は零相変流器10の出力と所定の判定値との大小関係を比較し、零相変流器10の出力が判定値よりも大きくなると、直流電路21の地絡が発生したと判断して、制御回路8に検出信号を出力する。
【0006】
【発明が解決しようとする課題】
上記構成の太陽光発電システムでは、地絡検出回路9が、直流電路21の絶縁性能の劣化などによって流れる比較的電流値の小さい地絡電流Irを検出して、検出信号を発生できるように、地絡検出回路9の判定値は小さい値に設定されている。しかしながら、事故などによって直流電路21が地絡し、直流電路21に比較的大きな電流値の地絡電流Irが流れると、零相変流器10の検出コア11が着磁されて、検出コア11に残留磁気が残るため、零相変流器10の出力がオフセットして、地絡検出回路9が地絡を検出するときの検出レベルが変動するという問題があり、地絡検出回路9が誤動作する虞があった。
【0007】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、直流電路の地絡を検出する地絡検出回路の誤動作を無くした太陽光発電システムを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、太陽電池の直流電圧を所定の交流電圧に変換する電力変換手段を具備し解列開閉器を介して商用電力系統と連系し負荷に電力を供給する分散電源を備えた太陽光発電システムにおいて、分散電源に、磁性材料からなる検出コアの貫通孔内に直流電路が挿通された電流センサと、検出コアに巻回された巻線の出力から直流電路に流れる地絡電流を検出する地絡検出回路と、地絡検出回路が地絡電流を検出すると解列開閉器を開極させる制御回路と、少なくとも地絡電流検出後に制御回路が解列開閉器を再投入する際に検出コアを消磁する消磁回路とを設け、前記消磁回路が、太陽電池の出力電圧により充電される第1のコンデンサと、検出コアの貫通孔に挿通される直流電路に第1のコンデンサを介して接続される第1のインダクタとを備え、第1のコンデンサに蓄積された電荷を第1のインダクタを介して直流電路に放出することにより、直流電路に減衰振動電流を流して検出コアを消磁することを特徴とし、例えば直流電路が地絡し直流電路に比較的大きな地絡電流が流れて、検出コアが着磁したとしても、地絡電流検出後の解列開閉器の再投入時に消磁回路が検出コアの貫通孔に挿通された直流電路に減衰振動電流を流すことによって、検出コアの残留磁気を消磁することができ、地絡検出回路の検出レベルを一定に保つことができる。
【0011】
請求項の発明では、請求項の発明において、電力変換手段は太陽電池の直流電圧を所定の電圧値に昇圧する昇圧回路を備え、昇圧回路は、太陽電池の直流出力端間に接続された第2のインダクタおよび第2のスイッチング素子の直列回路と、第2のインダクタ及び第2のスイッチング素子の接続点にアノードが接続されたダイオードと、ダイオードを介して第2のスイッチング素子の両端間に接続された平滑用の第2のコンデンサとから構成され、第2のインダクタが減衰振動電流を流すための第1のインダクタを兼用することを特徴とし、昇圧回路を構成する第2のインダクタが減衰振動電流を流すための第1のインダクタを兼用しているので、部品点数を減らして、分散電源の小型化を図ることができる。
【0012】
【発明の実施の形態】
本発明の実施の形態を図面を参照して説明する。
(実施形態1)
本実施形態の太陽光発電システムは、図1に示すように、多数の太陽電池パネルを配列してパネル状とし、太陽エネルギーを直流電圧に直接変換する太陽電池1と、太陽電池1の直流電力を交流電力に変換し、解列開閉器14を介して商用電力系統3と連系し配電線に接続された各種家電製品などの負荷4に電力供給する分散電源2とから構成される。
【0013】
分散電源2は、太陽電池1の出力電圧を所定の直流電圧に昇圧する昇圧回路5と、第1のスイッチング素子たる4個のIGBT61〜64をブリッジ接続して構成され、昇圧回路5の出力電圧をIGBT61〜64でスイッチングすることにより交流電圧に変換するインバータ回路6と、インダクタL1,L2およびコンデンサC1,C2からなりインバータ回路6の出力電圧を平滑して略正弦波状の交流電圧を出力するフィルタ回路7と、昇圧回路5およびインバータ回路6の出力を制御する例えば1チップのマイクロコンピュータから構成される制御回路8と、磁性材料からなる検出コア11の貫通孔12内に太陽電池1と昇圧回路5との間を接続する直流電路21が挿通された電流センサたる零相変流器10と、検出コア11に巻回された二次巻線(図示せず)の出力から直流電路21の地絡を検出する地絡検出回路9と、制御回路8の出力信号に応じてオン・オフし、分散電源2から負荷4への電力供給をオン・オフする解列開閉器14とで構成される。ここに、昇圧回路5およびインバータ回路6から電力変換手段が構成される。なお図示は省略するが、インバータ回路6と商用電力系統3との間には系統保護のため解列開閉器14とは別に手動復帰型のブレーカを設けられ、単相3線式の商用電力系統3と負荷4との間には負荷4を保護するために主幹開閉器や分岐開閉器が設けられている。
【0014】
昇圧回路5は、太陽電池1の出力端子間に接続された第2のインダクタ51および第2のスイッチング素子たるIGBT52の直列回路と、第2のインダクタ51およびIGBT52の接続点にアノードが接続されたダイオード53と、IGBT52の両端間にダイオード53を介して接続される第2のコンデンサ54と、IGBT52に逆並列接続されたダイオード55とで構成される一石式の昇圧チョッパ回路からなる。
【0015】
インバータ回路6は、IGBT61,63の直列回路と、IGBT62,64の直列回路とを第2のコンデンサ54と並列に接続し、各IGBT61〜64とそれぞれ逆並列にダイオード65〜68を接続して構成され、これら4個のIGBT61〜64を用いて昇圧回路5の直流電圧をスイッチングすることにより、昇圧回路5の直流電圧を交流電圧に変換して出力する。IGBT62,64の接続点と、IGBT61,63の接続点とは、それぞれ、フィルタ回路7のインダクタL1,L2を介して、解列開閉器14の電圧線側の接点に接続され、解列開閉器14の電圧線側の接点と接地線側の接点との間はフィルタ回路7のコンデンサC1,C2を介して接続されており、インバータ回路6の出力波形はフィルタ回路7によって平滑されて略正弦波状の波形となり、解列開閉器14を介して負荷4に供給される。
【0016】
ところで、太陽電池1の出力電圧は日射量に応じて絶えず変化し、例えば0Vから300Vまで変化する。制御回路8は太陽電池1の出力電圧をモニタしており、夜間や光量不足などで太陽電池1の出力電圧が例えば150V未満の場合は解列開閉器14をオフして、分散電源2を商用電力系統3と切り離す。一方、太陽電池1の出力電圧が例えば150V以上の場合は、昇圧回路5が太陽電池1の出力電圧をIGBT52によりスイッチングして、太陽電池1の出力電圧を商用電源の実効値電圧の略1.4倍に相当する直流電圧(例えば100V単相三線式の場合は140×2=280V)まで昇圧して、インバータ回路6に出力する。ここで、IGBT52は制御回路8から制御電極(ゲート)に入力される制御信号によってオン・オフされる。制御回路8は昇圧回路5の出力電圧を図示しない検出手段により検出しており、昇圧回路5の出力電圧に応じて例えばIGBT52のオンデューティを変化させ、昇圧回路5の出力を略一定に制御する。
【0017】
また、制御回路8はIGBT61〜64の制御電極(ゲート)に制御信号を夫々出力し、昇圧回路5の直流電圧を略正弦波状の交流電圧に変換して商用電力系統3に出力させる。図2(a)〜(c)に示すように、制御回路8では、基準となる三角波状の基準発振信号Vsと、基準発振信号Vsに比べて周波数の低い正弦波状の指令信号Veとの大小関係を比較し、指令信号Veの電圧値に比べて基準発振信号Vsの電圧値が高い期間のみ信号レベルがハイになるパルス信号S1と、指令信号Veの電圧値に比べて基準発振信号Vsの電圧値が低い期間のみ信号レベルがハイになるパルス信号S2とを発生する。
【0018】
而して、制御回路8は、ブリッジ接続されたIGBT61〜64の内で対角に配置されたIGBT61,64にパルス信号S1を出力するとともに、残りのIGBT62,63にパルス信号S2を出力して、一対のIGBT61,64と他の一対のIGBT62,63とを交互にオン・オフし、昇圧回路5の直流電圧を交流電圧に変換する。ここに、制御回路8はパルス信号S1,S2のパルス幅を変調してPWM制御を行うことにより、一対のIGBT61,64のオン期間と、他の一対のIGBT62,63のオン期間とを変化させ、インバータ回路6の出力を制御する。なお、制御回路8はフィルタ回路7の出力電圧の位相が商用電力系統3の電圧位相に略一致するようにインバータ回路6の出力を制御している。
【0019】
また、分散電源2では、地絡検出回路9が直流電路21の地絡を検出すると、制御回路8が地絡検出回路9の検出信号に基づいて昇圧回路5およびインバータ回路6の出力を停止するとともに、解列開閉器14をオフして、分散電源2の連系を停止する。例えば直流電路21の負極側が地絡すると、太陽電池1→昇圧回路5→IGBT61(又は62)→インダクタL1(又はL2)→解列開閉器14→商用電力系統3→地絡抵抗Rg→太陽電池1の経路(図1中に実線および破線の矢印で示す)で地絡電流Irが流れ、正極側の直流電路21に流れる電流と負極側の直流電路21に流れる電流との間に地絡電流Irの分だけ差が発生するから、この電流の差に応じた出力が検出コア11に巻回された二次巻線に発生する。而して、地絡検出回路9は零相変流器10の出力と所定の判定値との大小関係を比較し、零相変流器10の出力が判定値よりも大きくなると、直流電路21の地絡が発生したと判断して、制御回路8に地絡の検出信号を出力する。そして、地絡検出回路9が地絡を検出すると、制御回路8は地絡検出回路9の検出信号に基づいて昇圧回路5およびインバータ回路6の出力を停止させるとともに、解列開閉器14をオフして、商用電力系統3と系統を分離する。
【0020】
ところで、直流電路21が地絡すると、比較的大きな地絡電流Irが直流電路21に流れるため、この地絡電流Irによって零相変流器10の検出コア11が着磁し、検出コア11の残留磁気によって地絡検出回路9の検出レベルが変化してしまう。そこで、本実施形態の太陽光発電システムでは、検出コア11の残留磁気を消磁するための消磁回路15を設けている。
【0021】
消磁回路15は、負極側の直流電路21における検出コア11に対して太陽電池1側の部位に一端が接続された第1のインダクタ19と、第1のインダクタ19の他端に一端が接続された第1のコンデンサ18と、第1のコンデンサ18の他端に一端が接続された抵抗17と、正極側又は負極側の直流電路21における検出コア11に対して昇圧回路5側の部位と抵抗17の他端との間をそれぞれ接続するスイッチ16a,16bとから構成される。スイッチ16a,16bは制御回路8によってそれぞれオン・オフされ、制御回路8がスイッチ16aをオンすると、第1のコンデンサ18が太陽電池1の出力電圧によって充電される。そして、地絡検出後に制御回路8が昇圧回路5およびインバータ回路6を再起動するとともに解列開閉器14を再投入する際に、制御回路8がスイッチ16bをオンし、第1のコンデンサ18に蓄積された電荷を第1のインダクタ19を介して放出し、検出コア11の貫通孔12に挿通された直流電路21に減衰振動電流を流しており、この減衰振動電流によって検出コア11の残留磁気を消磁した後、地絡検出回路9は地絡の検出を行う。
【0022】
このように、零相変流器10を用いて直流電路21の地絡を検出する際に、地絡電流によって検出コア11が着磁し、検出コア11に残留磁気が発生して、地絡検出回路9の検出レベルが変化したとしても、地絡電流検出後に制御回路8が分散電源2を再起動する際に、消磁回路15が検出コア11の残留磁気を消磁しているので、地絡検出回路9の検出レベルを一定に保つことができ、地絡検出回路9の誤動作を無くすことができる。また、制御回路8が分散電源2を初めて起動する際に、制御回路8が消磁回路15を用いて検出コア11を消磁するようにしても良く、分散電源2を初めて起動する際、および、再起動する際に消磁回路15が検出コア11を消磁して、検出コア11の残留磁気を取り除くことにより、地絡検出回路9の検出レベルを一定に保ち、地絡検出回路9の誤検出を防止することができる。
(参考例)
参考例の太陽光発電システムの回路図を図3に示す。なお、基本的な構成は実施形態1と同様であるので、同一の構成要素には同一の符号を付して、その説明を省略する。
【0023】
実施形態1では消磁回路15が直流電路21に減衰振動電流を流すことによって検出コア11の残留磁気を消磁しているが、本参考例では消磁回路15が制御回路8の制御信号に基づいて検出コア11に巻回された検出用の二次巻線(図示せず)に減衰振動電流を流すことにより、検出コア11の残留磁気を消磁している。尚、消磁回路15は、検出用の二次巻線とは別に検出コア11に巻回された二次巻線(図示せず)に減衰振動電流を流すようにしても良い。
【0024】
このように、消磁回路15は検出コア11に巻回された二次巻線に減衰振動電流を流しており、この二次巻線に減衰振動電流を流すことによって、実施形態1と同様、検出コア11の残留磁気を消磁することができる。而して、地絡電流検出時に検出コア11が地絡電流によって着磁し、地絡検出回路9の検出レベルが変化したとしても、地絡電流検出後に制御回路8が昇圧回路5およびインバータ回路6を再起動するとともに解列開閉器14を再投入する際に、制御回路8が消磁回路15を用いて検出コア11の残留磁気を消磁しているので、地絡検出回路9の検出レベルを一定に保つことができ、地絡検出回路9の誤動作を無くすことができる。
(実施形態2)
本実施形態の太陽光発電システムの回路図を図4に示す。なお、基本的な構成は実施形態1と同様であるので、同一の構成要素には同一の符号を付して、その説明を省略する。
【0025】
本実施形態では、第2のインダクタ51およびIGBT52の接続点に一端が接続された抵抗17と、抵抗17の他端に一端が接続された第1のコンデンサ18と、負極側の直流電路21における検出コア11に対して太陽電池1側の部位と第1のコンデンサ18の他端とを接続するスイッチ16cと、正極側の直流電路21における検出コア11に対して太陽電池1側の部位と第1のコンデンサ18の他端とを接続するスイッチ16dとで消磁回路15が構成され、スイッチ16c,16dは制御回路8によってオン・オフされる。ここで、制御回路8の出力信号によってスイッチ16cがオンすると、太陽電池1の出力電圧によって第1のコンデンサ18が充電される。そして、地絡電流検出後に制御回路8が昇圧回路5およびインバータ回路6を再起動するとともに、解列開閉器14を再投入する際に、制御回路8がスイッチ16dをオンすると、第1のコンデンサ18に蓄積された電荷が抵抗17および第2のインダクタ51を介して放出され、検出コア11の貫通孔12内に挿通された直流電路21に減衰振動電流が流れて、検出コア11の残留磁気が消磁される。
【0026】
このように、本実施形態では昇圧回路5を構成する第2のインダクタ51が、第1のコンデンサ18に蓄積された電荷を放出して減衰振動電流を流す第1のインダクタに兼用されているので、構成部品の数を減らすことができ、分散電源2の小型化を図ることができる。
【0027】
【発明の効果】
上述のように、請求項1の発明は、太陽電池の直流電圧を所定の交流電圧に変換する電力変換手段を具備し解列開閉器を介して商用電力系統と連系し負荷に電力を供給する分散電源を備えた太陽光発電システムにおいて、分散電源に、磁性材料からなる検出コアの貫通孔内に直流電路が挿通された電流センサと、検出コアに巻回された巻線の出力から直流電路に流れる地絡電流を検出する地絡検出回路と、地絡検出回路が地絡電流を検出すると解列開閉器を開極させる制御回路と、少なくとも地絡電流検出後に制御回路が解列開閉器を再投入する際に検出コアを消磁する消磁回路とを設け、前記消磁回路が、太陽電池の出力電圧により充電される第1のコンデンサと、検出コアの貫通孔に挿通される直流電路に第1のコンデンサを介して接続される第1のインダクタとを備え、第1のコンデンサに蓄積された電荷を第1のインダクタを介して直流電路に放出することにより、直流電路に減衰振動電流を流して検出コアを消磁することを特徴とし、例えば直流電路が地絡し直流電路に比較的大きな地絡電流が流れて、検出コアが着磁したとしても、地絡電流検出後の解列開閉器の再投入時に消磁回路が検出コアの貫通孔に挿通された直流電路に減衰振動電流を流すことによって、検出コアの残留磁気を消磁することができ、地絡検出回路の検出レベルを一定に保ち、地絡検出回路の誤動作を防止できるという効果がある。
【0030】
請求項の発明は、請求項の発明において、電力変換手段は太陽電池の直流電圧を所定の電圧値に昇圧する昇圧回路を備え、昇圧回路は、太陽電池の直流出力端間に接続された第2のインダクタおよび第2のスイッチング素子の直列回路と、第2のインダクタ及び第2のスイッチング素子の接続点にアノードが接続されたダイオードと、ダイオードを介して第2のスイッチング素子の両端間に接続された平滑用の第2のコンデンサとから構成され、第2のインダクタが減衰振動電流を流すための第1のインダクタを兼用することを特徴とし、昇圧回路を構成する第2のインダクタが減衰振動電流を流すための第1のインダクタを兼用しているので、部品点数を減らして、分散電源の小型化を図ることができるという効果がある。
【図面の簡単な説明】
【図1】 実施形態1の太陽光発電システムを示す回路図である。
【図2】(a)〜(c)は同上の動作を説明する説明図である。
【図3】 参考例の太陽光発電システムを示す回路図である。
【図4】 実施形態の太陽光発電システムを示す回路図である。
【図5】 従来の太陽光発電システムを示す回路図である。
【符号の説明】
1 太陽電池
2 分散電源
3 商用電力系統
4 負荷
8 制御回路
9 地絡検出回路
10 零相変流器
11 検出コア
12 貫通孔
15 消磁回路
21 直流電路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar power generation system that uses a solar cell as a power source and converts a DC voltage of the solar cell into an AC voltage and supplies the AC voltage.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a photovoltaic power generation system that includes a distributed power source with a small capacity of about several kW using a direct current power source composed of a solar cell, and supplies power to a load by connecting the distributed power source and a commercial power system is provided. (See, for example, JP-A-9-285015).
[0003]
As shown in FIG. 5, the conventional solar power generation system arranges a large number of solar cells into a panel shape, and converts the solar energy 1 directly into a DC voltage, and the DC power of the solar cell 1 is AC. A distributed power source 2 that converts power into electric power and supplies power to a load 4 such as various home appliances connected to a distribution line via a disconnecting switch 14 and connected to a commercial power system 3 is provided.
[0004]
In the distributed power supply 2, the booster circuit 5 boosts the output voltage of the solar cell 1 to a predetermined DC voltage, the inverter circuit 6 converts the DC voltage of the booster circuit 5 into an AC voltage, and then the filter circuit 7 is connected to the inverter circuit 6. The output voltage is converted into a substantially sinusoidal AC voltage and supplied to the load 4 via the disconnection switch 14. The distributed power source 2 includes a control circuit 8 that controls the output voltage of the booster circuit 5 and the inverter circuit 6 and the on / off of the disconnect switch 14, and a ground fault detection circuit 9 that detects a ground fault of the DC circuit 21. When the ground fault detection circuit 9 detects the ground fault of the DC circuit 21, the control circuit 8 stops the output of the booster circuit 5 and the inverter circuit 6 based on the detection signal of the ground fault detection circuit 9. Then, the disconnection switch 14 is turned off.
[0005]
Here, the ground fault detection circuit 9 is a zero as a current sensor in which a DC circuit 21 connecting the solar cell 1 and the booster circuit 5 is inserted in the through hole 12 of the detection core 11 made of a magnetic material. The ground fault of the DC circuit 21 is detected from the output of the phase current transformer 10. For example, when the DC circuit 21 on the negative electrode side is grounded, the solar cell 1 → the booster circuit 5 → the switching element 61 (or 62) of the inverter circuit 6 → the inductor L1 (or L2) of the filter circuit 7 → the disconnect switch 14 → The ground fault current Ir flows along the path of the commercial power system 3 → the ground fault resistance Rg → the solar cell 1 (indicated by solid and broken arrows in FIG. 5), and the current flowing in the positive side DC circuit 21 and the negative side DC Since there is a difference between the current flowing in the electric circuit 21 by the amount of the ground fault current Ir, an output corresponding to this current difference is generated in a secondary winding (not shown) wound around the detection core 11. To do. Thus, the ground fault detection circuit 9 compares the magnitude relationship between the output of the zero-phase current transformer 10 and a predetermined judgment value. When the output of the zero-phase current transformer 10 becomes larger than the judgment value, the DC circuit 21 And a detection signal is output to the control circuit 8.
[0006]
[Problems to be solved by the invention]
In the photovoltaic power generation system having the above configuration, the ground fault detection circuit 9 can detect the ground fault current Ir having a relatively small current value that flows due to deterioration of the insulation performance of the DC electric circuit 21 and the like, and can generate a detection signal. The determination value of the ground fault detection circuit 9 is set to a small value. However, when the DC circuit 21 is grounded due to an accident or the like and a ground fault current Ir having a relatively large current value flows through the DC circuit 21, the detection core 11 of the zero-phase current transformer 10 is magnetized, and the detection core 11. Since the residual magnetism remains, the output of the zero-phase current transformer 10 is offset, and there is a problem that the detection level when the ground fault detection circuit 9 detects the ground fault varies, and the ground fault detection circuit 9 malfunctions. There was a fear.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a solar power generation system that eliminates malfunction of a ground fault detection circuit that detects a ground fault of a DC circuit. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a power conversion means for converting a DC voltage of a solar cell into a predetermined AC voltage, which is connected to a commercial power system via a disconnect switch and connected to a load. In a photovoltaic power generation system equipped with a distributed power source for supplying power, a distributed power source includes a current sensor in which a DC circuit is inserted into a through hole of a detection core made of a magnetic material, and a winding wound around the detection core. A ground fault detection circuit for detecting a ground fault current flowing from the output to the DC circuit, a control circuit for opening the disconnecting switch when the ground fault detection circuit detects the ground fault current, and a control circuit at least after detecting the ground fault current A demagnetizing circuit for demagnetizing the detection core when the disconnecting switch is turned on again , and the demagnetization circuit is inserted into the first capacitor charged by the output voltage of the solar cell and the through hole of the detection core. The first condenser in the DC circuit A first inductor connected via the first inductor, and discharging the charge accumulated in the first capacitor to the DC circuit via the first inductor, thereby causing a damped oscillation current to flow through the DC circuit and detecting core and wherein the degaussing, for example direct current path is relatively large ground fault current flows through the ground fault and a DC path, even detecting core is magnetized, repopulation disconnection switch after ground fault current detection Sometimes, the demagnetization circuit can demagnetize the residual magnetism of the detection core by flowing a damped oscillating current through a DC circuit that is inserted into the through hole of the detection core, and the detection level of the ground fault detection circuit can be kept constant. .
[0011]
In the invention of claim 2, in the invention of claim 1 , the power conversion means includes a booster circuit that boosts the DC voltage of the solar cell to a predetermined voltage value, and the booster circuit is connected between the DC output terminals of the solar cell. A series circuit of the second inductor and the second switching element, a diode having an anode connected to a connection point of the second inductor and the second switching element, and both ends of the second switching element via the diode And a second capacitor for smoothing, wherein the second inductor also serves as the first inductor for flowing the damped oscillation current, and the second inductor constituting the booster circuit includes: Since the first inductor for flowing the damped oscillating current is also used, the number of components can be reduced and the distributed power supply can be downsized.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
As shown in FIG. 1, the solar power generation system of the present embodiment has a solar cell 1 that directly converts solar energy into a DC voltage by arranging a large number of solar cell panels into a panel shape, and the DC power of the solar cell 1. Is distributed to the commercial power system 3 through the disconnect switch 14 and supplied to the load 4 such as various home appliances connected to the distribution line.
[0013]
The distributed power source 2 is configured by bridge-connecting a booster circuit 5 that boosts the output voltage of the solar cell 1 to a predetermined DC voltage and four IGBTs 61 to 64 that are first switching elements, and the output voltage of the booster circuit 5 And an inverter circuit 6 for converting to AC voltage by switching with IGBTs 61 to 64, and a filter comprising inductors L1 and L2 and capacitors C1 and C2 for smoothing the output voltage of the inverter circuit 6 and outputting a substantially sinusoidal AC voltage A control circuit 8 composed of, for example, a one-chip microcomputer for controlling the output of the circuit 7, the booster circuit 5 and the inverter circuit 6, and the solar cell 1 and the booster circuit in the through hole 12 of the detection core 11 made of a magnetic material. 5 is wound around a detection core 11 and a zero-phase current transformer 10 which is a current sensor through which a DC electric path 21 is connected. The ground fault detection circuit 9 detects a ground fault of the DC circuit 21 from the output of the secondary winding (not shown), and is turned on / off according to the output signal of the control circuit 8, from the distributed power source 2 to the load 4. It is comprised with the disconnection switch 14 which turns on and off the electric power supply of. Here, the booster circuit 5 and the inverter circuit 6 constitute power conversion means. Although illustration is omitted, a manual return type breaker is provided between the inverter circuit 6 and the commercial power system 3 in order to protect the system, in addition to the disconnect switch 14, and a single-phase three-wire commercial power system. A main switch and a branch switch are provided between 3 and the load 4 to protect the load 4.
[0014]
The booster circuit 5 has an anode connected to a connection point between the second inductor 51 and the IGBT 52 as the second switching element connected between the output terminals of the solar cell 1 and the second inductor 51 and the IGBT 52. The booster chopper circuit is a monolithic type composed of a diode 53, a second capacitor 54 connected between both ends of the IGBT 52 via the diode 53, and a diode 55 connected in reverse parallel to the IGBT 52.
[0015]
The inverter circuit 6 is configured by connecting a series circuit of IGBTs 61 and 63 and a series circuit of IGBTs 62 and 64 in parallel with the second capacitor 54 and connecting diodes 65 to 68 in antiparallel with the IGBTs 61 to 64, respectively. Then, by switching the DC voltage of the booster circuit 5 using these four IGBTs 61 to 64, the DC voltage of the booster circuit 5 is converted into an AC voltage and output. The connection point of the IGBTs 62 and 64 and the connection point of the IGBTs 61 and 63 are connected to the contact on the voltage line side of the disconnection switch 14 via the inductors L1 and L2 of the filter circuit 7, respectively. 14 is connected to the contact on the voltage line side and the contact on the ground line side via capacitors C1 and C2 of the filter circuit 7. The output waveform of the inverter circuit 6 is smoothed by the filter circuit 7 and is substantially sinusoidal. And is supplied to the load 4 through the disconnection switch 14.
[0016]
By the way, the output voltage of the solar cell 1 constantly changes according to the amount of solar radiation, for example, changes from 0V to 300V. The control circuit 8 monitors the output voltage of the solar cell 1. When the output voltage of the solar cell 1 is less than 150 V, for example, at night or when the amount of light is insufficient, the disconnect switch 14 is turned off and the distributed power source 2 is used as a commercial power source. Disconnect from power system 3. On the other hand, when the output voltage of the solar cell 1 is, for example, 150 V or more, the booster circuit 5 switches the output voltage of the solar cell 1 by the IGBT 52, and the output voltage of the solar cell 1 is approximately 1. The voltage is boosted to a DC voltage equivalent to four times (for example, 140 × 2 = 280 V in the case of a 100 V single-phase three-wire system) and output to the inverter circuit 6. Here, the IGBT 52 is turned on / off by a control signal input from the control circuit 8 to the control electrode (gate). The control circuit 8 detects the output voltage of the booster circuit 5 by detection means (not shown), and changes the on-duty of the IGBT 52, for example, in accordance with the output voltage of the booster circuit 5, thereby controlling the output of the booster circuit 5 to be substantially constant. .
[0017]
The control circuit 8 outputs control signals to the control electrodes (gates) of the IGBTs 61 to 64, respectively, converts the DC voltage of the booster circuit 5 into a substantially sinusoidal AC voltage, and outputs it to the commercial power system 3. As shown in FIGS. 2A to 2C, in the control circuit 8, the magnitude of the reference triangular wave reference oscillation signal Vs and the sine wave command signal Ve having a frequency lower than that of the reference oscillation signal Vs is large. The relationship is compared, and the pulse signal S1 whose signal level is high only during the period when the voltage value of the reference oscillation signal Vs is higher than the voltage value of the command signal Ve and the reference oscillation signal Vs compared to the voltage value of the command signal Ve. A pulse signal S2 whose signal level is high only during a period when the voltage value is low is generated.
[0018]
Thus, the control circuit 8 outputs the pulse signal S1 to the IGBTs 61 and 64 diagonally arranged among the bridge-connected IGBTs 61 to 64, and outputs the pulse signal S2 to the remaining IGBTs 62 and 63. The pair of IGBTs 61 and 64 and the other pair of IGBTs 62 and 63 are alternately turned on / off to convert the DC voltage of the booster circuit 5 into an AC voltage. Here, the control circuit 8 performs PWM control by modulating the pulse widths of the pulse signals S1 and S2, thereby changing the on period of the pair of IGBTs 61 and 64 and the on period of the other pair of IGBTs 62 and 63. The output of the inverter circuit 6 is controlled. The control circuit 8 controls the output of the inverter circuit 6 so that the phase of the output voltage of the filter circuit 7 substantially matches the voltage phase of the commercial power system 3.
[0019]
In the distributed power supply 2, when the ground fault detection circuit 9 detects a ground fault of the DC circuit 21, the control circuit 8 stops the output of the booster circuit 5 and the inverter circuit 6 based on the detection signal of the ground fault detection circuit 9. At the same time, the disconnection switch 14 is turned off, and the interconnection of the distributed power supply 2 is stopped. For example, when the negative electrode side of the DC circuit 21 is grounded, the solar cell 1 → the booster circuit 5 → the IGBT 61 (or 62) → the inductor L1 (or L2) → the disconnect switch 14 → the commercial power system 3 → the ground resistance Rg → the solar cell. The ground fault current Ir flows through a single path (indicated by solid and broken arrows in FIG. 1), and the ground fault current is between the current flowing in the positive-side DC circuit 21 and the current flowing in the negative-side DC circuit 21. Since a difference is generated by Ir, an output corresponding to the current difference is generated in the secondary winding wound around the detection core 11. Thus, the ground fault detection circuit 9 compares the magnitude relationship between the output of the zero-phase current transformer 10 and a predetermined judgment value. When the output of the zero-phase current transformer 10 becomes larger than the judgment value, the DC circuit 21 The ground fault detection signal is output to the control circuit 8. When the ground fault detection circuit 9 detects a ground fault, the control circuit 8 stops the outputs of the booster circuit 5 and the inverter circuit 6 based on the detection signal of the ground fault detection circuit 9 and turns off the disconnection switch 14. Then, the commercial power system 3 and the system are separated.
[0020]
By the way, when the DC circuit 21 is grounded, a relatively large ground fault current Ir flows through the DC circuit 21, so that the detection core 11 of the zero-phase current transformer 10 is magnetized by this ground fault current Ir. The detection level of the ground fault detection circuit 9 changes due to the residual magnetism. Therefore, in the photovoltaic power generation system of the present embodiment, a degaussing circuit 15 for demagnetizing the residual magnetism of the detection core 11 is provided.
[0021]
The degaussing circuit 15 has one end connected to a part on the solar cell 1 side with respect to the detection core 11 in the DC circuit 21 on the negative electrode side, and one end connected to the other end of the first inductor 19. The first capacitor 18, the resistor 17 having one end connected to the other end of the first capacitor 18, the portion on the booster circuit 5 side and the resistance with respect to the detection core 11 in the DC circuit 21 on the positive electrode side or the negative electrode side 17 is composed of switches 16a and 16b that connect the other end of 17 respectively. The switches 16a and 16b are turned on and off by the control circuit 8, respectively. When the control circuit 8 turns on the switch 16a, the first capacitor 18 is charged by the output voltage of the solar cell 1. Then, when the control circuit 8 restarts the booster circuit 5 and the inverter circuit 6 and detects the disconnection switch 14 again after the ground fault is detected, the control circuit 8 turns on the switch 16b and turns on the first capacitor 18. The accumulated electric charge is discharged through the first inductor 19, and a damped oscillating current is caused to flow through the DC circuit 21 inserted through the through hole 12 of the detection core 11, and the residual magnetism of the detection core 11 is caused by this damped oscillating current. Is demagnetized, the ground fault detection circuit 9 detects the ground fault.
[0022]
Thus, when the ground fault of the DC circuit 21 is detected using the zero-phase current transformer 10, the detection core 11 is magnetized by the ground fault current, and the residual magnetism is generated in the detection core 11, and the ground fault is generated. Even if the detection level of the detection circuit 9 changes, when the control circuit 8 restarts the distributed power supply 2 after detecting the ground fault current, the demagnetization circuit 15 demagnetizes the residual magnetism of the detection core 11. The detection level of the detection circuit 9 can be kept constant, and malfunction of the ground fault detection circuit 9 can be eliminated. Further, when the control circuit 8 starts up the distributed power source 2 for the first time, the control circuit 8 may use the degaussing circuit 15 to demagnetize the detection core 11, and when the distributed power source 2 is started up for the first time, The degaussing circuit 15 demagnetizes the detection core 11 when starting up, and the residual magnetism of the detection core 11 is removed, so that the detection level of the ground fault detection circuit 9 is kept constant and erroneous detection of the ground fault detection circuit 9 is prevented. can do.
(Reference example)
A circuit diagram of a photovoltaic power generation system of a reference example is shown in FIG. Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
[0023]
In the first embodiment, the demagnetization circuit 15 demagnetizes the residual magnetism of the detection core 11 by causing a damped oscillation current to flow in the DC circuit 21. However, in this reference example , the demagnetization circuit 15 detects based on the control signal of the control circuit 8. The residual magnetism of the detection core 11 is demagnetized by passing a damped oscillation current through a secondary winding for detection (not shown) wound around the core 11. Note that the degaussing circuit 15 may cause a damped oscillation current to flow in a secondary winding (not shown) wound around the detection core 11 separately from the secondary winding for detection.
[0024]
In this way, the degaussing circuit 15 passes a damped oscillating current through the secondary winding wound around the detection core 11. By passing the damped oscillating current through the secondary winding, the demagnetizing circuit 15 detects the same as in the first embodiment. The residual magnetism of the core 11 can be demagnetized. Thus, even when the detection core 11 is magnetized by the ground fault current when the ground fault current is detected and the detection level of the ground fault detection circuit 9 is changed, the control circuit 8 causes the booster circuit 5 and the inverter circuit after the ground fault current is detected. 6 and when the disconnect switch 14 is turned on again, the control circuit 8 uses the demagnetization circuit 15 to demagnetize the residual magnetism of the detection core 11, so that the detection level of the ground fault detection circuit 9 is set. It can be kept constant, and malfunction of the ground fault detection circuit 9 can be eliminated.
(Embodiment 2)
A circuit diagram of the photovoltaic power generation system of the present embodiment is shown in FIG. Since the basic configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
[0025]
In the present embodiment, in the resistor 17 having one end connected to the connection point of the second inductor 51 and the IGBT 52, the first capacitor 18 having one end connected to the other end of the resistor 17, and the DC circuit 21 on the negative electrode side A switch 16c that connects the part on the solar cell 1 side to the detection core 11 and the other end of the first capacitor 18, and a part on the solar cell 1 side relative to the detection core 11 in the DC circuit 21 on the positive electrode side. A demagnetizing circuit 15 is configured by a switch 16 d connecting the other end of one capacitor 18, and the switches 16 c and 16 d are turned on and off by the control circuit 8. Here, when the switch 16 c is turned on by the output signal of the control circuit 8, the first capacitor 18 is charged by the output voltage of the solar cell 1. Then, after the ground fault current is detected, the control circuit 8 restarts the booster circuit 5 and the inverter circuit 6, and when the control circuit 8 turns on the switch 16d when the disconnecting switch 14 is turned on again, the first capacitor 18 is discharged through the resistor 17 and the second inductor 51, and a damped oscillating current flows through the DC circuit 21 inserted into the through hole 12 of the detection core 11, thereby causing the residual magnetism of the detection core 11 to remain. Is demagnetized.
[0026]
Thus, in the present embodiment, the second inductor 51 constituting the booster circuit 5 is also used as the first inductor that discharges the electric charge accumulated in the first capacitor 18 and flows the damped oscillation current. Thus, the number of components can be reduced, and the size of the distributed power source 2 can be reduced.
[0027]
【The invention's effect】
As described above, the invention of claim 1 includes power conversion means for converting a DC voltage of a solar cell into a predetermined AC voltage, and is connected to a commercial power system via a disconnect switch to supply power to a load. In a photovoltaic power generation system equipped with a distributed power source, a direct current is output from the output of a current sensor in which a DC circuit is inserted into a through hole of a detection core made of a magnetic material and a winding wound around the detection core. A ground fault detection circuit that detects a ground fault current flowing in the electric circuit, a control circuit that opens the disconnect switch when the ground fault detection circuit detects a ground fault current, and a control circuit that opens and closes at least after detecting the ground fault current A demagnetizing circuit that demagnetizes the detection core when the detector is turned on again , and the demagnetization circuit is connected to a first capacitor that is charged by the output voltage of the solar cell and a DC circuit that is inserted through the through hole of the detection core. Connected via first capacitor And a first inductor, by releasing the charge accumulated in the first capacitor to the DC path through the first inductor, to demagnetize the detecting core by passing a damped oscillation current to a direct current path For example, even if a DC circuit is grounded and a relatively large grounding current flows in the DC circuit and the detection core is magnetized, the degaussing circuit detects when the disconnecting switch is turned on again after detecting the grounding current By passing a damped oscillating current through a DC circuit inserted through the core's through hole, the residual magnetism of the detection core can be demagnetized, the detection level of the ground fault detection circuit is kept constant, and malfunctions of the ground fault detection circuit are prevented. There is an effect that it can be prevented.
[0030]
According to a second aspect of the present invention, in the first aspect of the invention, the power conversion means includes a booster circuit that boosts the DC voltage of the solar cell to a predetermined voltage value, and the booster circuit is connected between the DC output terminals of the solar cell. A series circuit of the second inductor and the second switching element, a diode having an anode connected to a connection point of the second inductor and the second switching element, and both ends of the second switching element via the diode And a second capacitor for smoothing, wherein the second inductor also serves as the first inductor for flowing the damped oscillation current, and the second inductor constituting the booster circuit includes: Since the first inductor for passing the damped oscillation current is also used, there is an effect that the number of parts can be reduced and the distributed power supply can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a photovoltaic power generation system according to a first embodiment.
FIGS. 2A to 2C are explanatory diagrams for explaining the operation described above. FIG.
FIG. 3 is a circuit diagram showing a photovoltaic power generation system of a reference example .
FIG. 4 is a circuit diagram showing a photovoltaic power generation system according to a second embodiment.
FIG. 5 is a circuit diagram showing a conventional photovoltaic power generation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Distributed power supply 3 Commercial power system 4 Load 8 Control circuit 9 Ground fault detection circuit 10 Zero phase current transformer 11 Detection core 12 Through-hole 15 Demagnetization circuit 21 DC electric circuit

Claims (2)

太陽電池の直流電圧を所定の交流電圧に変換する電力変換手段を具備し解列開閉器を介して商用電力系統と連系し負荷に電力を供給する分散電源を備えた太陽光発電システムにおいて、分散電源に、磁性材料からなる検出コアの貫通孔内に直流電路が挿通された電流センサと、検出コアに巻回された巻線の出力から直流電路に流れる地絡電流を検出する地絡検出回路と、地絡検出回路が地絡電流を検出すると解列開閉器を開極させる制御回路と、少なくとも地絡電流検出後に制御回路が解列開閉器を再投入する際に検出コアを消磁する消磁回路とを設け、前記消磁回路が、太陽電池の出力電圧により充電される第1のコンデンサと、検出コアの貫通孔に挿通される直流電路に第1のコンデンサを介して接続される第1のインダクタとを備え、第1のコンデンサに蓄積された電荷を第1のインダクタを介して直流電路に放出することにより、直流電路に減衰振動電流を流して検出コアを消磁することを特徴とする太陽光発電システム。In a solar power generation system including a distributed power source that includes a power conversion unit that converts a DC voltage of a solar cell into a predetermined AC voltage and that supplies power to a load connected to a commercial power system via a disconnect switch. A ground fault detection that detects a ground fault current that flows in the DC circuit from the output of the winding wound around the detection core and the current sensor in which the DC circuit is inserted into the through hole of the detection core made of magnetic material. A circuit, a control circuit that opens the disconnect switch when the ground fault detection circuit detects a ground fault current, and at least the control circuit demagnetizes the detection core when the control circuit is turned on again after detecting the ground fault current A demagnetizing circuit is provided , and the demagnetizing circuit is connected to the first capacitor charged by the output voltage of the solar cell, and the first capacitor connected to the direct current circuit inserted through the through hole of the detection core via the first capacitor. Inductor and By releasing the charge accumulated in the first capacitor to the DC path through the first inductor, photovoltaic system characterized by demagnetizing the detecting core by passing a damped oscillation current to a direct current path. 電力変換手段は太陽電池の直流電圧を所定の電圧値に昇圧する昇圧回路を備え、昇圧回路は、太陽電池の直流出力端間に接続された第2のインダクタおよび第2のスイッチング素子の直列回路と、第2のインダクタ及び第2のスイッチング素子の接続点にアノードが接続されたダイオードと、ダイオードを介して第2のスイッチング素子の両端間に接続された平滑用の第2のコンデンサとから構成され、第2のインダクタが減衰振動電流を流すための第1のインダクタを兼用することを特徴とする請求項1記載の太陽光発電システム The power conversion means includes a booster circuit that boosts the DC voltage of the solar battery to a predetermined voltage value. The booster circuit is a series circuit of a second inductor and a second switching element connected between the DC output terminals of the solar battery. And a diode having an anode connected to a connection point between the second inductor and the second switching element, and a second capacitor for smoothing connected between both ends of the second switching element via the diode. The solar power generation system according to claim 1, wherein the second inductor also serves as the first inductor for flowing the damped oscillation current .
JP18510498A 1998-06-30 1998-06-30 Solar power system Expired - Fee Related JP3804276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18510498A JP3804276B2 (en) 1998-06-30 1998-06-30 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18510498A JP3804276B2 (en) 1998-06-30 1998-06-30 Solar power system

Publications (2)

Publication Number Publication Date
JP2000023370A JP2000023370A (en) 2000-01-21
JP3804276B2 true JP3804276B2 (en) 2006-08-02

Family

ID=16164933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18510498A Expired - Fee Related JP3804276B2 (en) 1998-06-30 1998-06-30 Solar power system

Country Status (1)

Country Link
JP (1) JP3804276B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206998B2 (en) * 2004-12-28 2009-01-14 オムロン株式会社 Power conditioner and its self-diagnosis method
JP6429153B2 (en) 2015-04-22 2018-11-28 パナソニックIpマネジメント株式会社 Shut-off device
JP6319929B1 (en) * 2017-03-24 2018-05-09 竹内マネージメント株式会社 DC ground fault detection device, solar power generation system, and program
KR102100481B1 (en) * 2019-08-07 2020-04-13 금수티아이 주식회사 solar photovoltatic generation system connected street light
CN114325434A (en) * 2021-12-21 2022-04-12 上海磐动电气科技有限公司 Fuel cell electrochemical impedance spectrum detection device and detection method

Also Published As

Publication number Publication date
JP2000023370A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US7944091B2 (en) Apparatus for feeding electrical energy into a power grid and DC voltage converter for such an apparatus
US8116103B2 (en) Device for feeding electric energy into a power grid and DC converter for such a device
KR101029163B1 (en) Inverter for feeding elecric energy into a power supply system
US20220355686A1 (en) Vehicle and energy conversion device and power system thereof
JP3221828B2 (en) Power conversion method and power conversion device
US20050190583A1 (en) Soft-switching half-bridge inverter power supply system
KR20110059535A (en) Serial resonance type converter circuit
US20060214513A1 (en) Converting device with power factor correcting and DC/DC converting functions
US7522437B2 (en) Inverter circuit and control circuit thereof
JP2004215439A (en) System cooperation inverter arrangement
Burlaka et al. Bidirectional single stage isolated DC-AC converter
JP3804276B2 (en) Solar power system
JP3542344B2 (en) Power storage system
JP4405654B2 (en) Power converter and power generator
JPH09215205A (en) Power conversion apparatus
KR20130049095A (en) Photovoltaic power generating apparatus and controlling method of the same in grid-connected system
JPH11113191A (en) Uninterruptible power-supply apparatus and its charging control method
JP2004112954A (en) Power storage device
JP3454345B2 (en) Inverter device
JP3563967B2 (en) Solar power system
KR101707989B1 (en) Grid-connected photovoltaic power generation inverter and photovoltaic system having the inverter
JP2002165369A (en) Power system interconnection inverter
JP3635515B2 (en) Power circuit
KR200194413Y1 (en) Battery charger of zero switching type
JP3533090B2 (en) Solar power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees