JP3794553B2 - Lithium secondary battery electrode and lithium secondary battery - Google Patents

Lithium secondary battery electrode and lithium secondary battery Download PDF

Info

Publication number
JP3794553B2
JP3794553B2 JP2001270373A JP2001270373A JP3794553B2 JP 3794553 B2 JP3794553 B2 JP 3794553B2 JP 2001270373 A JP2001270373 A JP 2001270373A JP 2001270373 A JP2001270373 A JP 2001270373A JP 3794553 B2 JP3794553 B2 JP 3794553B2
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
active material
positive electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001270373A
Other languages
Japanese (ja)
Other versions
JP2003077458A (en
Inventor
雅也 中村
博彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001270373A priority Critical patent/JP3794553B2/en
Publication of JP2003077458A publication Critical patent/JP2003077458A/en
Application granted granted Critical
Publication of JP3794553B2 publication Critical patent/JP3794553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池用電極及びその電極を用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、ビデオカメラや携帯型電話機等のコードレス電子機器の発達はめざましく、これら民生用途の電源として電池電圧が高く、高エネルギー密度を有したリチウム二次電池が注目され、実用化が進んでいる。
【0003】
上記リチウム二次電池の正極活物質としては主として4V程度の電池電圧を示し高容量(高エネルギー密度)なLiCoO2、LiNiO2、LiMn24等のリチウム遷移金属複合酸化物が用いられ一部実用化されている。更には上記リチウム遷移金属複合酸化物と軽量かつ理論容量の高いポリアニリン等の高分子系活物質を複合した系(特開平10−188985等)も検討されている。尚、負極活物質としてはリチウムを電気化学的に吸蔵、放出し得る材料で、デンドライト状リチウムが発生しない炭素材料が主に用いられ、一部実用化されている。
【0004】
また民生用途とは別に、環境問題等を背景として自動車分野でも電気自動車やハイブリッド自動車の開発がなされており、車載用電源としてリチウム二次電池が注目され、検討されている。
【0005】
しかし車載用の電源として用いる場合、民生用途と比較して使用条件が厳しくなる。すなわち高エネルギー密度の要求に加えて、室温下での高出力特性、更には寒冷地でのエンジン始動の必要性から低温下(−30℃程度)での数秒間の高い出力特性まで要求される。
【0006】
これに対し、例えば室温での高出力化等の特性の改善を解決するために、電極薄膜化による低抵抗化等が試みられ、ある程度、特性改善したリチウム二次電池の提供が可能となっている。
【0007】
【発明が解決しようとする課題】
しかしながら上記従来技術のリチウム二次電池では、低温下においては、電池材料自体に起因した大きな内部抵抗増加(特に固液界面での電荷移動抵抗の増加が著しい)が生じるため、充分な短時間出力特性が得られず、要求される特性を満足することは非常に難しい。
【0008】
本発明は、上記した従来技術の問題点に鑑みてなされたものであり、簡便かつ安価に、低温での短時間出力特性を満足するリチウム二次電池用電極及びリチウム二次電池を提供することを解決すべき課題とする。
【0009】
【課題を解決するための手段】
本発明者らは上記課題を解決する目的で鋭意研究を重ねた結果、リチウムイオンを吸蔵乃至は放出できる活物質と特定のキャパシタ材料とを特定の条件にて混在させることにより、簡便かつ安価に、低温での短時間出力特性(以後、低温出力と呼ぶ)を満足するリチウム二次電池用正極又は負極を見出した。以下説明する。
【0010】
リチウム二次電池を大電流で放電した場合、電池内部の抵抗により大きく電圧が降下する。特に−30℃程度の低温下では抵抗が著しく増加し、大電流で放電を開始した瞬間に電池の作動下限電圧まで電圧降下するため、ほとんど出力が得られない。
【0011】
活物質として正極にリチウム複合酸化物、負極に炭素材料を用いたリチウム二次電池を例に挙げると、充放電反応(電池反応)に伴い電解液中のリチウムイオンが活物質内外に吸蔵、脱離する。この吸蔵、脱離による反応はスピードが遅く、大電流で放電すると大きな反応抵抗を生じると考えられる。特に低温下では活物質の結晶格子の収縮や活物質への電解液の濡れ性の低下等の影響により抵抗増加が顕著となると考えられる。
【0012】
そこで低温出力向上の手段として、リチウム二次電池と充放電時の高速応答性に優れた反応抵抗が小さいと考えられるキャパシタとを混在させる方法に着目した。
【0013】
キャパシタと電池との併用については、低温下での電池の特性低下を改善する目的で検討されている(「大容量キャパシタ技術と材料」P144、シーエムシー)が、2つのデバイスで電源を構成した場合、部品点数の増加、電源質量や体積の増加等のため、限られたスペースの有効利用が必須である車載用電源としては好ましくなかった。
【0014】
そのために、リチウム二次電池内部で活物質とキャパシタ材料とを混在させる方法に想到した。この方法を採用すれば、電池材料による大きな反応抵抗と等価回路上で並列にキャパシタ成分が存在するため、大電流放電時における電圧過度応答特性が変化する。すなわち、キャパシタ容量の大きな材料を電極内に混在させれば、時定数増加に伴い電池電圧の降下スピードが鈍り、低温下での短時間出力が向上する。
【0015】
高エネルギー密度、高サイクル特性達成の目的でリチウム二次電池内部でリチウム二次電池正極に電気二重層キャパシタの材料として用いられる活性炭を配合した系(特開2001−110418号公報)が検討されている。しかし、本来のリチウム二次電池の容量を低下させない範囲での電気二重層キャパシタ材料の配合ではキャパシタ容量の絶対値が低く、低温での短時間出力特性においては、若干の特性改善はみられるものの、充分な特性は得られていない。
【0016】
そこで、リチウム二次電池由来の容量の低下を抑制しながら、電極内にキャパシタとして大きな容量をもつキャパシタ材料を含有するべく鋭意研究を重ねた結果、通常はサブミリオーダーから数十μmオーダーである活性炭からなるキャパシタ材料について、その平均粒径を活物質の平均粒径(活物質の平均粒径は特に限定しないが数十μmオーダーよりも遙かに小さい)以下に制御することでリチウム二次電池の活物質の量を減少させることなく、高容量のキャパシタ材料を含有できることを見出した。
【0017】
キャパシタ材料は、平均粒径が小さくなることでキャパシタ材料に由来する電気容量が増加する。これは、活性炭の細孔形状が複雑(ランダム)であり、活性炭をキャパシタ材料として用いた場合、充放電に伴う電解質イオンの動きが制限される結果、活性炭の表層付近の細孔のみがキャパシタ反応に関与するからである。この傾向は電解液の粘度、濡れ性等が低下する低温において顕著である。そのために、活性炭の平均粒径が小さくなると比表面積も増加して、キャパシタ反応により充放電できる容量が相対的に増加する。
【0018】
また、キャパシタ材料の平均粒径が活物質と比較して相対的に小さいことで、大量にキャパシタ材料を含有させても、活物質間の接触面積を充分維持しリチウム二次電池の機能を充分保ったまま、キャパシタとしての作用を付与することができる。
【0019】
そして合材としては、活物質と、キャパシタ材料と、結着材と、のみからなることが好ましい(請求項2)。すなわちリチウム二次電池の活物質間の電子導電性を補うために含有させている炭素質材料からなる導電助材を置き換えることで本来のリチウム二次電池の容量低下を抑制しながらキャパシタ材料を含有させることができる。
【0020】
前述したように、キャパシタ材料の平均粒径が活物質と比較して相対的に小さいことで、通常は導電材としての作用が期待できない活性炭からなるキャパシタ材料を大量に含有させても、活物質間の接触面積を充分維持できる結果、活性炭からなるキャパシタ材料のみでも導電材として充分に作用する。
【0021】
特に、活性炭の平均粒径が主活物質の平均粒径の60%以下であると、顕著に低温特性を向上できることを見出した(請求項3)。
【0022】
また、上記課題を解決する本発明のリチウム二次電池は、上述した電極を正極又は負極に適用したことを特徴とする(請求項4)。
【0023】
【発明の実施の形態】
以下に本発明のリチウム二次電池用電極及びリチウム二次電池について実施形態に基づいて説明する。なお。本発明は、以下の実施形態により限定されるものではない。
【0024】
(リチウム二次電池用電極)
本実施形態のリチウム二次電池用電極は、活物質と活性炭からなるキャパシタ材料とを含む合材と、その他必要に応じた要素とからなる。キャパシタ材料の平均粒径は活物質の平均粒径以下である。活物質はリチウムイオンを吸蔵乃至は放出できる物質である。本電極は活物質の種類を正極活物質とすると正極に、負極活物質とすると負極になる。以下、正極と負極とに分けてそれぞれ説明する。
【0025】
〈正極〉
正極として作用する本リチウム二次電池用電極は、活物質としての正極活物質とキャパシタ材料とを含む合材を有する。
【0026】
正極活物質としては、少なくとも1種以上のリチウム含有複合酸化物が好ましい。リチウム含有複合酸化物は、電子とリチウムイオンの拡散性能にすぐれるなど活物質としての性能に優れる。そのため、このようなリチウムおよび遷移金属の複合酸化物を正極の活物質に用いれば、高い充放電効率と良好なサイクル特性とが得られる。
【0027】
正極活物質としては、1種以上の層状構造のリチウム含有複合酸化物であることがさらに好ましい。層状構造のリチウムニッケルコバルトアルミ含有複合酸化物、リチウムマンガンアルミ含有複合酸化物またはリチウムマンガンクロム含有複合酸化物を含むことが好ましい。
【0028】
これは、一定電圧回路(例えば、4.2V〜3V)で充放電を行う場合、スピネル構造のリチウムマンガン含有複合酸化物等は充放電電圧が高電位側に偏っているため(平均充放電電圧:約4V)、放電により高出力密度は得られるものの、充電による回生密度が小さくなってしまうのに対して、層状構造の材料を用いると、充放電時の構造変化の影響と考えられるが、充放電による電圧の偏りが少なく(平均電圧:約3.8V以下)、バランスよく高出力密度および高回生密度を得ることができる。また、層状構造のリチウムニッケル含有複合酸化物、リチウムマンガン含有複合酸化物は、その組成の一部をアルミやクロム等の他元素で置換することがより好ましい。活物質内部の電子状態が変化し結晶構造が強化される高温環境下での無機正極活物質の劣化が小さくなるからである。
【0029】
また、その他にも必要に応じて一般的なリチウム含有複合酸化物を1種以上、混合して用いることもできる。例えば、Li(1-X)NiO2、Li(1-X)MnO2、Li(1-X)CoO2や、各々にLi、Al、Crなどの金属を添加または置換した材料等である。この正極活物質の例示におけるxは0〜1の数を示す。なお、これらの正極活物質は単独で用いるばかりでなくこれらの正極活物質を複数混合してもよい。
【0030】
正極活物質にはBET比表面積が1.5m2/g以下、好ましくは1.0m2/g以下であることが好ましい。一定以下の比表面積にすることにより、正極活物質と電解液による副反応を抑制することができるため、長寿命化が可能となる。正極活物質の比表面積の制御方法としては特に制限されるものではないが、比表面積は原材料の比表面積に大きく影響を受けるため、所定の条件で原材料を粉砕及び/又は分級し制御することが好ましい。なお、焼成し作製した後に粉砕および/又は分級してもよい。
【0031】
キャパシタ材料としては、活性炭が採用できる。活性炭は比表面積が数百〜数千m2/g程度ある吸着性の強い、大部分が炭素質の炭をいい、木材、褐炭、泥炭などを活性化剤としての薬品(塩化亜鉛,リン酸など)で処理して乾留するか、あるいは木炭などを水蒸気で活性化したものである。やしの実の殻から作られるやし殻活性炭が代表的である。キャパシタ材料は、合材の質量に対して5〜20質量%程度含有させることが好ましい。キャパシタ材料の平均粒径は活物質の平均粒径以下である。キャパシタ材料の平均粒径は粉砕、篩分け等により制御できる。具体的に好ましいキャパシタ材料の平均粒径は1〜10μm程度であり、さらに好ましくは6μm以下程度である。
【0032】
正極は、正極活物質及びキャパシタ材料と、必要に応じて加えられる導電助材及び結着材とを混合して得られたペースト状の正極合材を金属箔製等からなる集電体に塗布されてなるものを用いることが好ましい。なお、キャパシタ材料によって、導電助材をある程度またはすべてを代替することができる。
【0033】
〈負極〉
負極として作用する本リチウム二次電池用電極は、活物質としての負極活物質とキャパシタ材料とを含む合材を有する。
【0034】
負極活物質については、リチウムイオンを吸蔵・放出することができれば、特に限定されるものではない。公知の材料を用いることができる。例えば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そして、リチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料が好ましい。負極活物質としては、比表面積が比較的大きく、吸蔵・放出速度が速いため特に室温での出力・回生密度に対して良好となる。
【0035】
負極活物質はBET比表面積が3.5m2/g以下、好ましくは3.0m2/g以下であることが好ましい。一定以下の比表面積にすることにより、負極活物質と電解液による副反応を抑制することができるため、長寿命化が可能となる。 負極活物質の比表面積の制御方法としては特に制限されるものではないが、比表面積は原材料の比表面積に大きく影響を受けるため、所定の条件で原材料を粉砕及び/又は分級し制御することが好ましい。なお、焼成し作製した後に粉砕および/又は分級してもよい。
【0036】
キャパシタ材料としては、正極で説明した活性炭が、その平均粒径を負極活物質の平均粒径以下とすることでそのまま適用できるのでここでの説明は省略する。
【0037】
負極は、活物質、キャパシタ材料、必要に応じて導電助材や結着材を混合して得られたペースト状の負極合材が集電体に塗布されてなるものを用いることが好ましい。
【0038】
(リチウム電池)
本実施形態のリチウム二次電池用電極は、少なくとも一方が本実施形態の電極である正極及び負極と、電解液等その他必要に応じた要素とからなる。本実施形態のリチウム二次電池は、特にその形状に制限を受けず、コイン型、円筒型、角型等、種々の形状の電池として使用できる。本実施形態では、円筒型のリチウム二次電池に基づいて説明を行う。
【0039】
本実施形態のリチウム二次電池は、正極および負極をシート形状として両者をセパレ−タを介して積層し渦巻き型に多数回巻き回した巻回体を空隙を満たす電解液とともに所定の円筒状ケース内に収納したものである。正極と正極端子部とについて、そして負極と負極端子部とについては、それぞれ電気的に接合されている。
【0040】
正極又は/及び負極は前述した本実施形態の電極を用いる。正極のみ上記形態の電極を用いる場合、負極は一般的なリチウム二次電池の公知の材料及び構成を用いることができる。また、負極のみ上記形態の電極を用いる場合、正極は一般的なリチウム二次電池の公知の材料および構成を用いることができる。
【0041】
電解液は、有機溶媒に電解質を溶解させたものである。
【0042】
有機溶媒は、通常リチウム二次電池の電解液に用いられる有機溶媒であれば特に限定されるものではなく、例えばカーボネート類、ハロゲン炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニレンカーボネート等及びそれらの混合溶媒が適当である。
【0043】
例に挙げたこれらの有機溶媒のうち、特にカーボネート類、エーテル類からなる群より選ばれた1種以上の非水溶媒を用いることにより、電解質の溶解性、誘導率および粘度が優れ、電池の充放電効率が高くなるので好ましい。
【0044】
電解質は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、その無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO2CF32、LiN(SO2268、LiN(SO2CF3)(SO249)等から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも一種であることが望ましい。
【0045】
この電解質により、電池性能をさらに優れたものとすることができ、かつその電池性能を室温以外の温度域においてもさらに高く維持することができる。
【0046】
電解質の濃度についても特に限定されるものではなく、用途に応じ、電解質および有機溶媒の種類を考慮して適正に選択することが好ましい。
【0047】
セパレ−タは、正極および負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いれば良い。なおセパレ−タは、正極と負極との絶縁を担保するため、正極および負極よりもさらに大きいものとするのが好ましい。
【0048】
ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。
【0049】
ガスケットは、ケースと正極の両端子部の間の電気的な絶縁と、ケース内の密閉性とを担保するものである。例えば、電解液にたいして、化学的、電気的に安定であるポリプロピレンのような高分子等から構成できる。
【0050】
【実施例】
以下に本発明のリチウム二次電池用正極、負極およびリチウム二次電池について実施例にもとづいて説明する。以下に示す「%」とは特に断りのない限り質量百分率である。
(リチウム二次電池の作製)
〈正極〉
各試験例において、正極活物質としてのリチウム含有複合酸化物である層状構造のLiNi0.5Co0.4Al0.12(平均BET比表面積1.5m2/g)、キャパシタ材料としての活性炭(平均BET比表面積2000m2/g)、導電助剤としての炭素材料(グラファイト)及び結着材としてのPVDFを表1で示す構成で溶剤のN−メチル−2−ピロリドン中に混合してペーストを作製し、このペーストをAl箔集電体上に所定の質量、膜厚で塗布し、乾燥後直径14mmの円板状に打ち抜き、加圧成形した後、真空乾燥することで正極を作製した。
【0051】
〈負極〉
各試験例において、負極活物質としてのメソフェーズ系カーボン(平均BET比表面積3.5m2/g)、キャパシタ材料としての活性炭(平均BET比表面積2000m2/g)、キャパシタ材料の対照材料としての炭素材料(グラファイト)及び結着材としてのPVDFを表1で示す構成で、溶剤のN−メチル−2−ピロリドン中に混合してペーストを作製し、このペーストをCu箔集電体上に所定の質量、膜厚で塗布し、乾燥後直径15mmの円板状に打ち抜き、加圧成形した後、真空乾燥することで負極を製作した。
【0052】
〈非水電解液〉
エチレンカーボネートとジエチルカーボネートとの体積比3:7の混合溶媒に、LiPF6を1モル/リットル溶解させた電解液を調制した。
【0053】
〈電池の組み立て〉
上記の正極、負極及び電解液を使用して、直径20mm、厚み約3mmの偏平形の本発明電池を組み立てた。尚、セパレ−タにはポリエチレン製の微多孔膜を使用した。
(正極活物質の特性評価及びリチウム二次電池の高温特性評価)
〈充放電容量評価〉
試験例にて得られた電池の充放電容量を評価した。条件としては、室温にて充電を1.1mA/cm2の一定電流で4.1Vまでおこない、その後、4.1Vの定電圧で合計4時間行った。そして放電は0.3mA/cm2の一定電流で3Vまでおこない、これを5サイクル繰り返した。表1に5サイクル目の放電容量を示した。
【0054】
〈低温出力密度評価〉
各試験例の電池を用い、低温での出力特性の評価をおこなった。まず、室温にて充電を1.1mA/cm2の一定電流で行い、電池の充電状態をSOC40%(SOC:State of Charge)に調製した。−30℃で一定に保った恒温槽内に電池をセットした。そして電池の作動下限電圧を3Vとし、電池の放電電流を変化させ、それぞれ10秒間のパルス放電を行った。各放電電流値に対して2秒経過後の電圧の値をプロットし、電流−電圧直線を求め、そこから低温出力密度を算出した。表1には試験例1(従来の電池)に対する低温出力密度の比率で示した。
(リチウム二次電池の特性評価結果)
試験例1〜12はすべて活物質の量を固定しているため、電池容量の変化はほとんどなかった。
【0055】
試験例2〜6では、正極に対して、試験例7〜11では負極に対して、それぞれ平均粒径の違う活性炭を含有させた。正極、負極ともに、活性炭の平均粒径が活物質の平均粒径以下である試験例4〜6、9〜11では、低温出力の値が試験例1よりも大幅に向上した。低温出力の値の向上は、活性炭の平均粒径が小さくなるにつれて大きくなった。特に正極、負極共に、活性炭の平均粒径が活物質の平均粒径の60%以下である試験例5、6、10、11では、低温出力が非常に大きく向上することを確認できた。
【0056】
試験例12に正極、負極ともに平均粒径の小さい活性炭を含有した電極を用いて評価した結果、さらに低温出力が向上することを確認できた。
【0057】
また、試験例4〜6、9〜12の電池では正負いずれかの電極について、活性炭で導電助剤である炭素材料をすべて置換しているが、他の電池特性への悪影響なしに低温出力の値の向上が認められたことから、平均粒径が制御された活性炭は導電助剤としての作用を充分に果たすことが明らかとなった。
【0058】
なお、正負の活物質及び活性炭の平均粒径はレーザ回折式粒度分測定装置により測定した。
【0059】
【表1】

Figure 0003794553
【0060】
【発明の効果】
本発明のリチウム二次電池用電極及びリチウム二次電池によると、簡便かつ安価に、低温での短時間出力特性を満足することができるという効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery using the electrode.
[0002]
[Prior art]
In recent years, the development of cordless electronic devices such as video cameras and mobile phones has been remarkable, and lithium secondary batteries having high battery voltage and high energy density have been attracting attention as a power source for consumer use, and their practical application is progressing.
[0003]
As the positive electrode active material of the lithium secondary battery, a lithium transition metal composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc., which shows a battery voltage of about 4 V and has a high capacity (high energy density) is used. It has been put into practical use. Furthermore, a system (JP-A-10-188985 and the like) in which the above lithium transition metal composite oxide is combined with a light-weight and high-molecular-weight active material such as polyaniline having a high theoretical capacity has been studied. The negative electrode active material is a material that can electrochemically occlude and release lithium, and a carbon material that does not generate dendritic lithium is mainly used, and is partially put into practical use.
[0004]
Apart from consumer applications, electric vehicles and hybrid vehicles have also been developed in the automobile field against the background of environmental problems, and lithium secondary batteries have attracted attention and are being studied as in-vehicle power supplies.
[0005]
However, when used as an on-vehicle power source, the use conditions are severer compared to consumer applications. That is, in addition to the demand for high energy density, high output characteristics at room temperature, as well as high output characteristics for several seconds at low temperatures (about -30 ° C) due to the necessity of starting the engine in cold regions. .
[0006]
On the other hand, for example, in order to solve the improvement in characteristics such as higher output at room temperature, it is attempted to reduce the resistance by thinning the electrode, and it is possible to provide a lithium secondary battery with improved characteristics to some extent. Yes.
[0007]
[Problems to be solved by the invention]
However, in the above-described prior art lithium secondary battery, a large increase in internal resistance due to the battery material itself (especially a significant increase in charge transfer resistance at the solid-liquid interface) occurs at low temperatures. It is very difficult to satisfy the required characteristics because the characteristics cannot be obtained.
[0008]
The present invention has been made in view of the above-mentioned problems of the prior art, and provides an electrode for a lithium secondary battery and a lithium secondary battery that satisfy a short-time output characteristic at a low temperature simply and inexpensively. Is a problem to be solved.
[0009]
[Means for Solving the Problems]
As a result of intensive research aimed at solving the above-mentioned problems, the present inventors have made it easy and inexpensive by mixing an active material capable of inserting or extracting lithium ions and a specific capacitor material under specific conditions. The present inventors have found a positive electrode or a negative electrode for a lithium secondary battery that satisfies short-time output characteristics at low temperatures (hereinafter referred to as low-temperature output). This will be described below.
[0010]
When a lithium secondary battery is discharged with a large current, the voltage drops greatly due to the resistance inside the battery. In particular, at a low temperature of about −30 ° C., the resistance increases remarkably, and the voltage drops to the operating lower limit voltage of the battery at the moment when discharging starts with a large current, so that almost no output can be obtained.
[0011]
For example, a lithium secondary battery using a lithium composite oxide for the positive electrode and a carbon material for the negative electrode as an active material will cause lithium ions in the electrolyte to occlude and desorb in and out of the active material during the charge / discharge reaction (battery reaction). Release. The reaction by this occlusion and desorption is slow, and it is considered that a large reaction resistance occurs when discharged with a large current. In particular, at a low temperature, it is considered that the increase in resistance becomes significant due to the influence of the shrinkage of the crystal lattice of the active material and the decrease in the wettability of the electrolyte to the active material.
[0012]
Therefore, as a means for improving the low-temperature output, attention was focused on a method of mixing a lithium secondary battery and a capacitor considered to have a small reaction resistance excellent in high-speed response at the time of charge and discharge.
[0013]
The combined use of capacitors and batteries has been studied for the purpose of improving the deterioration of battery characteristics at low temperatures ("Large-Capacity Capacitor Technology and Materials" P144, CMC). In this case, it is not preferable as an in-vehicle power source in which effective use of a limited space is indispensable due to an increase in the number of parts and an increase in mass and volume of the power source.
[0014]
For that purpose, the inventors have come up with a method of mixing an active material and a capacitor material inside a lithium secondary battery. When this method is adopted, a large reaction resistance due to the battery material and a capacitor component exist in parallel on the equivalent circuit, so that the voltage transient response characteristic during large current discharge changes. That is, if a material having a large capacitor capacity is mixed in the electrode, the battery voltage drop speed decreases with an increase in the time constant, and the short-time output at low temperatures improves.
[0015]
In order to achieve high energy density and high cycle characteristics, a system (Japanese Patent Laid-Open No. 2001-110418) in which activated carbon used as a material for an electric double layer capacitor is incorporated in a lithium secondary battery positive electrode inside a lithium secondary battery has been studied. Yes. However, the composition of the electric double layer capacitor material within the range that does not decrease the capacity of the original lithium secondary battery has a low absolute value of the capacitor capacity, and there is a slight improvement in the short-time output characteristics at low temperatures. However, sufficient characteristics have not been obtained.
[0016]
Therefore, as a result of intensive research to include a capacitor material having a large capacity as a capacitor in the electrode while suppressing the decrease in capacity derived from the lithium secondary battery, activated carbon that is usually in the order of sub-millimeters to several tens of micrometers The lithium secondary battery is controlled by controlling the average particle size of the capacitor material to be equal to or less than the average particle size of the active material (the average particle size of the active material is not particularly limited but is much smaller than several tens of micrometers). It has been found that a high-capacity capacitor material can be contained without reducing the amount of the active material.
[0017]
In the capacitor material, the electric capacity derived from the capacitor material increases as the average particle size decreases. This is because the pore shape of the activated carbon is complicated (random), and when activated carbon is used as a capacitor material, the movement of electrolyte ions associated with charge and discharge is restricted, so that only the pores near the surface layer of the activated carbon react with the capacitor. Because it is involved in. This tendency is remarkable at low temperatures where the viscosity, wettability and the like of the electrolytic solution are lowered. Therefore, when the average particle size of the activated carbon is reduced, the specific surface area is also increased, and the capacity that can be charged and discharged by the capacitor reaction is relatively increased.
[0018]
In addition, since the average particle size of the capacitor material is relatively small compared to the active material, even if a large amount of capacitor material is contained, the contact area between the active materials is sufficiently maintained, and the function of the lithium secondary battery is sufficient. An action as a capacitor can be imparted while keeping the same.
[0019]
And as a compound material, it is preferable to consist only of an active material, a capacitor material, and a binder (Claim 2). In other words, the capacitor material is contained while suppressing the decrease in capacity of the original lithium secondary battery by replacing the conductive auxiliary material made of carbonaceous material that is included to supplement the electronic conductivity between the active materials of the lithium secondary battery. Can be made.
[0020]
As described above, since the average particle size of the capacitor material is relatively small compared to the active material, even if a large amount of capacitor material made of activated carbon, which cannot normally be expected to act as a conductive material, is contained, the active material As a result of sufficiently maintaining the contact area between them, only the capacitor material made of activated carbon sufficiently acts as a conductive material.
[0021]
In particular, it has been found that when the average particle size of the activated carbon is 60% or less of the average particle size of the main active material, the low temperature characteristics can be remarkably improved (Claim 3).
[0022]
Moreover, the lithium secondary battery of the present invention that solves the above-described problems is characterized in that the above-described electrode is applied to a positive electrode or a negative electrode (claim 4).
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an electrode for a lithium secondary battery and a lithium secondary battery of the present invention will be described based on embodiments. Note that. The present invention is not limited to the following embodiments.
[0024]
(Electrode for lithium secondary battery)
The electrode for a lithium secondary battery according to the present embodiment is composed of a composite material including an active material and a capacitor material made of activated carbon, and other elements as necessary. The average particle size of the capacitor material is less than or equal to the average particle size of the active material. The active material is a material that can occlude or release lithium ions. This electrode becomes a positive electrode when the type of the active material is a positive electrode active material, and becomes a negative electrode when the type of the active material is a negative electrode active material. Hereinafter, description will be made separately for the positive electrode and the negative electrode.
[0025]
<Positive electrode>
The electrode for a lithium secondary battery acting as a positive electrode has a composite material including a positive electrode active material as an active material and a capacitor material.
[0026]
As the positive electrode active material, at least one lithium-containing composite oxide is preferable. The lithium-containing composite oxide has excellent performance as an active material, such as excellent diffusion performance of electrons and lithium ions. Therefore, when such a composite oxide of lithium and transition metal is used for the active material of the positive electrode, high charge / discharge efficiency and good cycle characteristics can be obtained.
[0027]
The positive electrode active material is more preferably a lithium-containing composite oxide having one or more layered structures. It is preferable to include a lithium nickel cobalt aluminum-containing composite oxide, a lithium manganese aluminum-containing composite oxide, or a lithium manganese chromium-containing composite oxide having a layered structure.
[0028]
This is because when charge / discharge is performed with a constant voltage circuit (for example, 4.2 V to 3 V), the charge / discharge voltage of the spinel-structured lithium manganese-containing composite oxide or the like is biased toward the high potential side (average charge / discharge voltage). : About 4V) Although high output density can be obtained by discharging, the regenerative density by charging is reduced, but using a layered material is considered to be the effect of structural change during charging and discharging, There is little voltage deviation due to charging / discharging (average voltage: about 3.8 V or less), and high power density and high regenerative density can be obtained in a well-balanced manner. In addition, it is more preferable that a part of the composition of the layered lithium nickel-containing composite oxide and lithium manganese-containing composite oxide is replaced with other elements such as aluminum and chromium. This is because the deterioration of the inorganic positive electrode active material in a high temperature environment where the electronic state inside the active material changes and the crystal structure is strengthened is reduced.
[0029]
In addition, one or more general lithium-containing composite oxides can be mixed and used as necessary. Examples thereof include Li (1-X) NiO 2 , Li (1-X) MnO 2 , Li (1-X) CoO 2, and materials obtained by adding or replacing metals such as Li, Al, and Cr. X in the example of this positive electrode active material shows the number of 0-1. In addition, these positive electrode active materials may be used alone, or a plurality of these positive electrode active materials may be mixed.
[0030]
The positive electrode active material has a BET specific surface area of 1.5 m 2 / g or less, preferably 1.0 m 2 / g or less. By setting the specific surface area to a certain value or less, side reactions caused by the positive electrode active material and the electrolytic solution can be suppressed, so that the life can be extended. The method for controlling the specific surface area of the positive electrode active material is not particularly limited. However, since the specific surface area is greatly influenced by the specific surface area of the raw material, the raw material can be pulverized and / or classified under predetermined conditions. preferable. In addition, after baking and producing, you may grind | pulverize and / or classify | categorize.
[0031]
Activated carbon can be used as the capacitor material. Activated carbon is a highly adsorbent with a specific surface area of several hundred to several thousand m 2 / g, mostly carbonaceous charcoal, and chemicals such as wood, lignite and peat (Zinc chloride, phosphoric acid) Etc.) or charcoal activated with steam. A typical example is coconut shell activated carbon made from coconut shells. The capacitor material is preferably contained in an amount of about 5 to 20% by mass with respect to the mass of the composite material. The average particle size of the capacitor material is less than or equal to the average particle size of the active material. The average particle size of the capacitor material can be controlled by crushing, sieving or the like. Specifically, the average particle diameter of the capacitor material is preferably about 1 to 10 μm, more preferably about 6 μm or less.
[0032]
For the positive electrode, a paste-like positive electrode mixture obtained by mixing a positive electrode active material and a capacitor material with a conductive additive and a binder added as necessary is applied to a current collector made of metal foil or the like. It is preferable to use what is formed. The capacitor material can replace the conductive auxiliary material to some extent or all.
[0033]
<Negative electrode>
The electrode for a lithium secondary battery acting as a negative electrode has a composite material including a negative electrode active material as an active material and a capacitor material.
[0034]
The negative electrode active material is not particularly limited as long as it can occlude and release lithium ions. Known materials can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. An electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material, is preferable. As the negative electrode active material, the specific surface area is relatively large and the occlusion / release rate is fast, so that the negative electrode active material is particularly good for the output / regeneration density at room temperature.
[0035]
The negative electrode active material has a BET specific surface area of 3.5 m 2 / g or less, preferably 3.0 m 2 / g or less. By setting the specific surface area to a certain value or less, side reactions caused by the negative electrode active material and the electrolytic solution can be suppressed, so that the life can be extended. The method for controlling the specific surface area of the negative electrode active material is not particularly limited. However, since the specific surface area is greatly affected by the specific surface area of the raw material, the raw material can be pulverized and / or classified and controlled under predetermined conditions. preferable. In addition, after baking and producing, you may grind | pulverize and / or classify | categorize.
[0036]
As the capacitor material, the activated carbon described in the positive electrode can be applied as it is by setting the average particle size to be equal to or less than the average particle size of the negative electrode active material, and thus description thereof is omitted here.
[0037]
As the negative electrode, it is preferable to use a material obtained by applying an active material, a capacitor material, and, if necessary, a paste-like negative electrode mixture obtained by mixing a conductive additive or a binder to a current collector.
[0038]
(Lithium battery)
The electrode for a lithium secondary battery according to the present embodiment includes a positive electrode and a negative electrode, at least one of which is the electrode according to the present embodiment, and other elements as required, such as an electrolytic solution. The lithium secondary battery of this embodiment is not particularly limited by its shape, and can be used as a battery having various shapes such as a coin shape, a cylindrical shape, and a square shape. In the present embodiment, description will be made based on a cylindrical lithium secondary battery.
[0039]
The lithium secondary battery according to the present embodiment has a predetermined cylindrical case together with an electrolyte solution that fills a gap with a wound body in which a positive electrode and a negative electrode are formed into a sheet shape and both are laminated via a separator and wound in a spiral shape. It is stored inside. The positive electrode and the positive electrode terminal portion, and the negative electrode and the negative electrode terminal portion are electrically joined to each other.
[0040]
As the positive electrode and / or the negative electrode, the electrode of this embodiment described above is used. In the case where the electrode of the above form is used only for the positive electrode, a known material and configuration of a general lithium secondary battery can be used for the negative electrode. Moreover, when using the electrode of the said form only for a negative electrode, the well-known material and structure of a general lithium secondary battery can be used for a positive electrode.
[0041]
The electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.
[0042]
The organic solvent is not particularly limited as long as it is an organic solvent usually used for an electrolyte solution of a lithium secondary battery. For example, carbonates, halogen hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds Etc. can be used. In particular, propylene carbonate, ethylene carbonate, 1,2 dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, vinylene carbonate, and a mixed solvent thereof are suitable.
[0043]
Among these organic solvents mentioned in the examples, by using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers, the solubility, induction rate and viscosity of the electrolyte are excellent, and the battery It is preferable because the charge / discharge efficiency is increased.
[0044]
The type of the electrolyte is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ). 2 and organic salts selected from LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 6 ) 8 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and the like, and derivatives of the organic salts It is desirable to be at least one of the above.
[0045]
With this electrolyte, the battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature.
[0046]
The concentration of the electrolyte is not particularly limited, and it is preferable to appropriately select the electrolyte and the organic solvent in consideration of the use.
[0047]
The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene or polypropylene) may be used. The separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.
[0048]
The case is not particularly limited and can be made of a known material and form.
[0049]
The gasket secures electrical insulation between the case and both terminal portions of the positive electrode and airtightness in the case. For example, it can be composed of a polymer such as polypropylene that is chemically and electrically stable to the electrolyte.
[0050]
【Example】
The positive electrode for lithium secondary batteries, a negative electrode, and a lithium secondary battery of this invention are demonstrated based on an Example below. "%" Shown below is a mass percentage unless otherwise specified.
(Production of lithium secondary battery)
<Positive electrode>
In each test example, LiNi 0.5 Co 0.4 Al 0.1 O 2 (average BET specific surface area 1.5 m 2 / g) having a layered structure which is a lithium-containing composite oxide as a positive electrode active material, activated carbon (average BET ratio) as a capacitor material Surface area 2000 m 2 / g), carbon material (graphite) as a conductive aid and PVDF as a binder were mixed in a solvent N-methyl-2-pyrrolidone with the constitution shown in Table 1 to prepare a paste, This paste was applied on an Al foil current collector with a predetermined mass and film thickness, dried, punched into a disk shape having a diameter of 14 mm, press-molded, and then vacuum-dried to produce a positive electrode.
[0051]
<Negative electrode>
In each test example, mesophase-based carbon (average BET specific surface area 3.5 m 2 / g) as a negative electrode active material, activated carbon (average BET specific surface area 2000 m 2 / g) as a capacitor material, carbon as a reference material for the capacitor material A material (graphite) and PVDF as a binder are shown in Table 1 and mixed in a solvent N-methyl-2-pyrrolidone to prepare a paste, and this paste is placed on a Cu foil current collector. After coating with a mass and a film thickness, after drying, it was punched into a disk shape having a diameter of 15 mm, press-molded, and then vacuum dried to produce a negative electrode.
[0052]
<Non-aqueous electrolyte>
An electrolyte solution in which 1 mol / liter of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 was prepared.
[0053]
<Assembly of battery>
Using the above positive electrode, negative electrode and electrolyte, a flat battery of the present invention having a diameter of 20 mm and a thickness of about 3 mm was assembled. Note that a polyethylene microporous film was used as the separator.
(Characteristic evaluation of positive electrode active material and high temperature characteristic evaluation of lithium secondary battery)
<Evaluation of charge / discharge capacity>
The charge / discharge capacity of the battery obtained in the test example was evaluated. As conditions, charging was performed at room temperature up to 4.1 V with a constant current of 1.1 mA / cm 2 , and thereafter, a constant voltage of 4.1 V was performed for a total of 4 hours. Then, discharging was performed at a constant current of 0.3 mA / cm 2 up to 3 V, and this was repeated for 5 cycles. Table 1 shows the discharge capacity at the fifth cycle.
[0054]
<Low temperature output density evaluation>
Using the batteries of each test example, the output characteristics at low temperatures were evaluated. First, the battery was charged at a constant current of 1.1 mA / cm 2 at room temperature, and the state of charge of the battery was adjusted to 40% SOC (SOC: State of Charge). The battery was set in a thermostat kept constant at −30 ° C. Then, the operation lower limit voltage of the battery was set to 3 V, the discharge current of the battery was changed, and pulse discharge was performed for 10 seconds respectively. The voltage value after the elapse of 2 seconds was plotted against each discharge current value to obtain a current-voltage straight line, and the low-temperature output density was calculated therefrom. Table 1 shows the ratio of the low-temperature output density to Test Example 1 (conventional battery).
(Characteristic evaluation results of lithium secondary battery)
In all of Test Examples 1 to 12, since the amount of the active material was fixed, there was almost no change in the battery capacity.
[0055]
In Test Examples 2 to 6, activated carbons having different average particle diameters were added to the positive electrode and in Test Examples 7 to 11 to the negative electrode, respectively. In Test Examples 4 to 6 and 9 to 11 in which the average particle diameter of the activated carbon is equal to or less than the average particle diameter of the active material for both the positive electrode and the negative electrode, the value of the low-temperature output is significantly improved as compared with Test Example 1. The improvement in the low-temperature output value increased as the average particle size of the activated carbon decreased. In particular, in Test Examples 5, 6, 10, and 11 in which the average particle diameter of the activated carbon was 60% or less of the average particle diameter of the active material for both the positive electrode and the negative electrode, it was confirmed that the low-temperature output was greatly improved.
[0056]
As a result of evaluating the test example 12 using an electrode containing activated carbon having a small average particle diameter for both the positive electrode and the negative electrode, it was confirmed that the low-temperature output was further improved.
[0057]
Further, in the batteries of Test Examples 4 to 6 and 9 to 12, the carbon material that is the conductive auxiliary agent is replaced with activated carbon for any of the positive and negative electrodes, but the low temperature output is not adversely affected on other battery characteristics. From the fact that the value was improved, it was revealed that the activated carbon having a controlled average particle diameter sufficiently fulfilled the function as a conductive additive.
[0058]
The average particle size of the positive and negative active materials and the activated carbon was measured with a laser diffraction particle size analyzer.
[0059]
[Table 1]
Figure 0003794553
[0060]
【The invention's effect】
The electrode for a lithium secondary battery and the lithium secondary battery of the present invention have an effect that a short time output characteristic at a low temperature can be satisfied easily and inexpensively.

Claims (4)

リチウムイオンを吸蔵乃至は放出できる活物質と、該活物質の平均粒径以下の平均粒径をもつ活性炭からなるキャパシタ材料と、をもつ合材を有することを特徴とするリチウム二次電池用電極。An electrode for a lithium secondary battery, comprising: a composite material comprising an active material capable of inserting or extracting lithium ions; and a capacitor material made of activated carbon having an average particle size equal to or less than the average particle size of the active material. . 前記合材は、前記活物質と、前記キャパシタ材料と、結着材と、のみからなる請求項1に記載のリチウム二次電池用電極。The lithium secondary battery electrode according to claim 1, wherein the composite material includes only the active material, the capacitor material, and a binder. 前記キャパシタ材料の平均粒径が前記活物質の平均粒径の60%以下である請求項1又は2に記載のリチウム二次電池電極。The lithium secondary battery electrode according to claim 1 or 2, wherein an average particle diameter of the capacitor material is 60% or less of an average particle diameter of the active material. リチウムイオンを吸蔵乃至は放出できる電極を有するリチウム二次電池であって、
前記電極は、請求項1〜3のいずれかに記載のリチウム二次電池用電極であるリチウム二次電池。
A lithium secondary battery having an electrode capable of inserting or extracting lithium ions,
The said electrode is a lithium secondary battery which is an electrode for lithium secondary batteries in any one of Claims 1-3.
JP2001270373A 2001-09-06 2001-09-06 Lithium secondary battery electrode and lithium secondary battery Expired - Fee Related JP3794553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270373A JP3794553B2 (en) 2001-09-06 2001-09-06 Lithium secondary battery electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270373A JP3794553B2 (en) 2001-09-06 2001-09-06 Lithium secondary battery electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003077458A JP2003077458A (en) 2003-03-14
JP3794553B2 true JP3794553B2 (en) 2006-07-05

Family

ID=19096036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270373A Expired - Fee Related JP3794553B2 (en) 2001-09-06 2001-09-06 Lithium secondary battery electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3794553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381638B2 (en) 2015-08-27 2019-08-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929580B2 (en) * 2003-10-30 2012-05-09 株式会社Gsユアサ Lithium ion secondary battery
JP2006128049A (en) * 2004-11-01 2006-05-18 Toshiba Corp Electronic component for storage of electricity
JP2006172775A (en) * 2004-12-14 2006-06-29 Hitachi Ltd Energy storage device, its module and automobile using it
JP4876515B2 (en) * 2005-09-30 2012-02-15 株式会社デンソー ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY
AR064292A1 (en) 2006-12-12 2009-03-25 Commw Scient Ind Res Org ENHANCED ENERGY STORAGE DEVICE
AR067238A1 (en) 2007-03-20 2009-10-07 Commw Scient Ind Res Org OPTIMIZED DEVICES FOR ENERGY STORAGE
US8284540B2 (en) 2007-07-04 2012-10-09 Nippon Oil Corporation Process of producing activated carbon for electric double layer capacitor electrode
JP5196909B2 (en) * 2007-08-23 2013-05-15 株式会社豊田中央研究所 Non-aqueous electrolyte lithium ion secondary battery
CA2759689A1 (en) 2009-04-23 2010-10-28 The Furukawa Battery Co., Ltd. Method for producing negative plate for use in lead-acid battery and lead-acid battery
MX2012002415A (en) 2009-08-27 2012-06-25 Commw Scient Ind Res Org Electrical storage device and electrode thereof.
JP5711483B2 (en) 2009-08-27 2015-04-30 古河電池株式会社 Method for producing negative electrode plate of composite capacitor for lead storage battery and lead storage battery
JP5797384B2 (en) 2009-08-27 2015-10-21 古河電池株式会社 Composite capacitor negative electrode plate for lead acid battery and lead acid battery
KR101107079B1 (en) 2010-05-06 2012-01-20 삼성에스디아이 주식회사 Negative electrode for energy storage device and energy storage device including same
KR101147200B1 (en) 2010-05-25 2012-05-25 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery
WO2012001988A1 (en) 2010-07-01 2012-01-05 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US9172083B2 (en) 2010-07-23 2015-10-27 Toyota Jidosha Kabushik Kaisha Lithium ion secondary battery
JP2012133959A (en) 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The Composite capacitor negative electrode plate for lead storage battery, and lead storage battery
KR101711987B1 (en) 2012-04-30 2017-03-03 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery
US10074848B2 (en) 2013-07-02 2018-09-11 Samsung Sdi Co., Ltd. Rechargeable lithium battery with controlled particle size ratio of activated carbon to positive active material
EP3420607A1 (en) 2016-02-23 2019-01-02 Maxwell Technologies, Inc. Elemental metal and carbon mixtures for energy storage devices
CN110537269B (en) * 2017-02-21 2023-07-07 特斯拉公司 Pre-lithiated energy storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090971A (en) * 1998-09-14 2000-03-31 Asahi Glass Co Ltd Secondary power source
JP2001110418A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and the lithium secondary battery
AU2002212716B2 (en) * 2000-11-17 2006-10-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381638B2 (en) 2015-08-27 2019-08-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP2003077458A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
JP3794553B2 (en) Lithium secondary battery electrode and lithium secondary battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
CN112313819B (en) Method of manufacturing negative electrode for lithium secondary battery and method of manufacturing lithium secondary battery
JP5286200B2 (en) Lithium ion secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2009076372A (en) Non-aqueous secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2007184261A (en) Lithium-ion secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3968772B2 (en) Non-aqueous electrolyte battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP2010146808A (en) Nonaqueous electrolyte secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2003168420A (en) Electrode for lithium battery and lithium battery
JP4821075B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP4029315B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JP3346739B2 (en) Non-aqueous electrolyte secondary battery
JP3956672B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2003168436A (en) Positive electrode for lithium battery and lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees