JP3719285B2 - Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus - Google Patents

Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus Download PDF

Info

Publication number
JP3719285B2
JP3719285B2 JP07817396A JP7817396A JP3719285B2 JP 3719285 B2 JP3719285 B2 JP 3719285B2 JP 07817396 A JP07817396 A JP 07817396A JP 7817396 A JP7817396 A JP 7817396A JP 3719285 B2 JP3719285 B2 JP 3719285B2
Authority
JP
Japan
Prior art keywords
power supply
distributed power
voltage
equivalent
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07817396A
Other languages
Japanese (ja)
Other versions
JPH09243682A (en
Inventor
文政 阿南
清美 山崎
昭夫 辻
孝幸 鳥飼
裕 山下
Original Assignee
株式会社キューキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キューキ filed Critical 株式会社キューキ
Priority to JP07817396A priority Critical patent/JP3719285B2/en
Publication of JPH09243682A publication Critical patent/JPH09243682A/en
Application granted granted Critical
Publication of JP3719285B2 publication Critical patent/JP3719285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電力系統特に商用電力系統の等価インピーダンス推定ならびにこのように推定された等価インピーダンスに基づいて、商用電力系統に連系された自家用発電設備などの分散電源の単独運転検出を行う電力系統監視方法に関する。さらに具体的には、電力系統に連系された分散電源の出力端子から見た電力系統の等価線路インピーダンスおよび/または電力系統の等価電源電圧を推定ならびに推定された前記等価インピーダンスおよび/または等価電源電圧に基づいて、分散電源が連系している商用電力系統やその上位系統の引出口の遮断器が開放された状態で、分散電源が単独で運転(発電)を継続している事を検出する電力系統監視方法に関する。
【0002】
【従来の技術】
エネルギの有効活用や電力供給事情改善の観点から、小水力発電、ゴミ焼却発電、風力発電、燃料電池、太陽電池などの自家用発電設備すなわち分散電源を商用電力系統に連系することが認可されるようになり、実用に供されるようになってきた。このような連系電力系統では、分散電源が連系している商用電力系統やその上位系統に事故が発生した場合や、系統の保守・修理・復旧作業などの際には、その引出口の遮断器が開放される。このような状態で、分散電源が解列されることなしに、商用電源から分離された部分系列内で単独運転(発電)を継続していると、本来は無電圧であるはずの商用電力線が充電されることになり、安全確保の面で問題がある。したがって、系統の保守・修理・復旧作業などの際における分散電源の単独運転は確実に検出され、防止されなければならない。
【0003】
分散電源から電力系統へ向かう電力潮流が許されない発電設備、すなわち逆潮流のない連系の場合は、分散電源の受電点に逆電力継電器などを設置することによって逆潮流を検知し、自動的に分散電源を系統から解列する事ができる。しかし逆潮流が許容される連系の場合は、定常運転中にも分散電源から電力系統へ向かう電力潮流が存在するから逆電力継電器などは使用できない。
【0004】
電力系統の事故、保守・修理などの理由で当該系統の引出口の遮断器が開放された場合、主系列から切り離された分散電源を含む部分系列内(例えば、分散電源の出力端)での発電量と負荷量が異なるときは、部分系列の周波数や電圧が変動するので、これらを監視することによって単独運転を検知でき、これに基づいて分散電源を解列できることは、容易に推測できる。
【0005】
【発明が解決しようとする課題】
前述のような部分系列内での周波数や電圧変動を検知する手法では、主系列から切り離された分散電源を含む部分系列内での発電量と負荷量との差が小さくなるにつれて前記周波数や電圧の変動も小さくなってその検知が困難になり、両者がバランスした状態では前記周波数や電圧変動は事実上生じなくなるので、単独運転の検知ができなくなる。したがって当然に、単独運転状態が継続する事になるという不都合が予想される。
【0006】
本発明の目的は、電力系統に連系された電源から見た電力系統の等価インピーダンスおよび/または等価電源電圧を推定、ならびに主系列から切り離された部分系列内での発電量と負荷量とのバランス状態に関係なく、上記のように両者の差が小さい場合でも確実に分散電源の単独運転を検知する電力系統監視方法を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明においては、まず第1に、商用電力系統などの主系統に連系された分散電源の出力電圧Eti、電流Igi(i は正整数1〜n)を経時的に計測し、分散電源の出力電圧Et 、電流Ig 、系統電源電圧Es 、および系統インピーダンスZ=R+jX(ただし、Rは線路抵抗、Xは線路リアクタンス)の間の関係式Et =Es +Ig (R+jX)に計測電流値Igiを代入して端子電圧推定値Etif =Es +Igi(R+jX)を演算し、さらに、前記端子電圧推定値Etif と計測電圧値Etiとの差を最小とするような、線路抵抗Rおよび線路リアクタンスXからなる等価インピーダンス前記分散電源から見た主系統側の等価電源電圧の少なくとも一方を推定演算する。そして、推定された主系統側の等価インピーダンスの変化量および変化速度の少なくとも一方が予定値を超えたとき、あるいは主系統側の等価電源電圧が実質上ゼロに低下した時、または分散電源出力周波数の変動量/変動速度が基準値を超えたときは、前記分散電源の単独運転を示す信号を発生する。
【0010】
【発明の実施の形態】
図2に示すように、電源インピーダンスがZ1 、線路インピーダンスがZ2 の主系統(商用電力系統)電源Es に負荷L1 が接続され、これに連系された分散電源Gには負荷Li が接続された電力系統においては、図5の式1が成立する。そして通常は、負荷L1 、Li のインピーダンスZL1 、ZLi は電源インピーダンスや線路インピーダンスに比べて非常に大きいから、分散電源Gから主系統側を見たインピーダンスを考える場合、負荷インピーダンスは無視することができる。したがって、図2の系統では、分散電源Gの端子電圧Et と出力電流Ig との間には図5の式2が成立する。
【0011】
いま主系統電源Es が図2のA点において遮断されたとすると、分散電源Gから見た主系統電源Es はゼロであり、電源インピーダンスZ1 は無限大になるから、式1は式3に変化する。ここで、電流Ig の微小変動分に対する端子電圧Etの変動分を求めると、系統に連系されている場合は式2の微分から式4が得られ、系統から解列された場合は式3の微分から式5の関係が得られる。明らかなように式5は、負荷インピーダンスZL1、ZL2に較べて線路インピーダンスZ1 、Z2 は十分に小さいことを考慮して、これらを無視したものであり、分散電源に負荷ZLi とZL1 が並列接続された状態に対応する。以上の解析から、分散電源から系統側を見たインピーダンスは、正常な連系運転中は式4で表わされ、解列されて単独運転に移行した時は式5に急変することが分かる。
【0012】
本発明は、分散電源から系統側を見た等価インピーダンスおよび/または系統側電源電圧Es を推定し、あるいはさらにこれらの推定値の変化量および/または変化速度を監視して分散電源が単独運転状態になったことを検出しようとするものである。このために、分散電源Gからの出力電流Ig を、商用周波数に比べて十分に低い周期で変動させる場合を考える。このような系統においては、また線路や並列コンデンサの静電容量も無視できるので、その等価回路は図3のように表わされる。ここで、R、Lは線路の抵抗およびインダクタンス成分であり、Lg は分散電源Gの出力端子から分散電源側をみたインピーダンスである。またこの場合のベクトル図は図4のようになり、図5に示す式6の関係が得られる。
【0013】
これらの関係に基づき、分散電源Gからの出力電流Ig を緩やかに変化させたとき、各時点ti (iは1〜nの正整数)での実測電流Igiと実測端子電圧Etiとの関係が式6を満足するような係数(パラメータ)Es 、R、Xを、適当なパラメータ推定法によって求める。パラメータ推定法については、例えば、株式会社オーム社昭和58年10月30日発行、計測自動制御学会編、「自動制御ハンドブック、機器・応用編」516頁「6・3 パラメータ推定」や、株式会社コロナ社昭和63年3月25日発行、「現代制御シリーズ(1)『信号解析とシステム同定』」中溝高好著第7〜17頁「推定」、127頁「最小2乗推定」などに詳述されている。
【0014】
パラメ−タ推定の1手法として、例えば前記文献にも記載されている代表的な最小2乗法を用いることができる。その場合は、前記実測電流Igiを式6に代入して得られる推定端子電圧Etif (式7)と前記実測端子電圧Etiとの差εi 、すなわち式8、9で表されるε2 を最小にするような主系統電圧Es 、線路の抵抗分Rおよびリアクタンス成分Xの推定値を求める。実測電流Igiの主系統電圧Es に対する位相角(β+θ)は、図4から明らかなように、R、X、θが与えられると一義的に決まる。ところでθはθi として実測できるから、位相角(β+θ)は一義的に決まることになる。また推定端子電圧Etif と実測端子電圧Etiとは前記実測電流Igiに対して同一位相角であるから、Etif とEtiとの差は絶対値の差を採ればよい。
【0015】
このようにして求められたEs 、R、Xはi=1〜n時間内の主系統の電源電圧および線路インピーダンスの推定値である。図4に示したベクトル図から式10が得られるから、これを式9に代入すると式11が得られる。この式11中のEs 、R、Xを少しずつ変化させ、繰り返し計算により、式11を最小にするEs 、R、Xの値すなわち式8を最小にする係数Es 、R、Xの値を求めることができる。
【0016】
図1は本発明の方法を実施するのに好適な装置構成の1例を示すブロック図である。同図において、図2、3と同一の符号は同一または同等部分を表わす。分散電源Gの出力(電流Ig 、電圧Et )が出力制御装置11によって、なるべくは商用電源周波数に比べて十分に低い周波数で、正弦波状、M系列または不規則(ランダム)に変化させられる。前記M系列(最長系列)に関しては、例えばジャテック出版株式会社昭和59年11月15日発行、立野敏他著「最新スペクトラム拡散通信方式」57頁以降に詳述されている。また、出力電流を強制的に変化させなくても、自然に発生する出力変動をそのまま検出、利用することもできる。時刻ti における分散電源Gの出力電流Igti および電圧Etiがそれぞれ計測されてパラメ−タ推定演算部12に供給される。パラメ−タ推定演算部12は、上述のような適当な手法(例えば、最小2乗法)で、主系統電源電圧Es 、線路抵抗R、および線路リアクタンスXの各最尤値の少なくとも1つを推定する。
【0017】
パラメ−タ基準設定器13は、各分散電源または連系系統、あるいは部分系統ごとに予め求められた、各分散電源の正常な連系運転状態における系統パラメ−タ、すなわち各分散電源の出力端から見た主系統電源電圧Es 、線路抵抗R、および線路リアクタンスXの標準値、ならびに異常判定に必要な偏差量などの設定値を記憶する。異常検出部14は、推定演算部12で推定された主系統電源電圧Esf、線路抵抗Rf 、および線路リアクタンスXf を供給され、これらをそれぞれの標準値と対比して、それぞれの偏差が予定値以上であれば異常を検出し、対応する異常信号を単独運転判定部15に供給し、単独運転を示す信号を発生させる。単独運転の判定は、例えば次のような状態が設定時間(例えば、数秒〜10秒)以上継続したことに基づいて行なうことができる。
【0018】
(1)主系統電源電圧Es の推定値がゼロになったとき。
連系運転中は当然に主系統電源電圧Es の推定値は定格値に近いある値を示すのに対し、主系統が遮断されると、前述のように前記電圧の推定値はゼロになるから、これによって単独運転を判定できる。
【0019】
(2)等価インピーダンス(Rおよび/またはX)が急増し、その変化幅及び/または変化速度が設定値よりも大きくなったとき。
正常な連系運転中の前記等価インピーダンスは実質上線路インピーダンスのみであって非常に小さ小さいのに対して、単独運転になると連系端が開放となるので、たとえ図2に示したような負荷負荷インピーダンスZL1が加わったとしても、前記等価インピーダンスは各段に大きくなる。このような事実に則り、前記等価インピーダンスの増加を監視することによって単独運転を判定できる。この場合の判定基準としては、各系統ごとにばらつきはあるが、例えば、0.5秒以内に数10%以上の増加が検出され、かつこの状態が数秒〜10秒以上継続した場合には単独運転と判定することが想定できる。
【0020】
(3)R/Xの値が1〜1.5以上に大きくなったとき。
通常の送配電線ではR/Xの値は0.5〜1程度であるが、負荷が接続されたまま主系統電源が遮断されて単独運転に移行すると、前述のように、負荷インピーダンスが加わるのでその値は2以上に増加する(負荷の力率は通常90%以上であるから)。したがって、このような変化に基づいて単独運転を判定できる。
【0021】
さらに、分散電源Gの出力電圧(および必要に応じて、電流)信号を供給される電圧・周波数等異常検出部16を付設し、分散電源の出力端でみた電圧や周波数の異常上昇下降、出力電圧に対する電流の位相差の異常変動などが発生し、これらの異常状態が予定時間(例えば、数秒〜10秒)以上継続した場合には第2異常信号、または個々の異常信号を単独運転判定部15に出力して単独運転を示す信号を発生させるようにしてもよい。
【0022】
すなわち単独運転判定部15は、電圧・周波数等異常検出部16からの第2異常信号をアナログ信号の形(この場合は、電圧、周波数の標準値からの偏差量)で受信し、これと、異常検出部14で得られる各種パラメータ(推定主系統電源電圧Es 、抵抗R、リアクタンスX)の標準値からの偏差量(または比率)との組合せ(論理積や論理和)に基づいて、分散電源の単独運転状態を総合判断することができる。例えば、電力系統の遮断点(例えば、図2のA点)ごとに、前記各パラメ−タおよび分散電源の出力端における電圧、周波数の偏差量(または比率)を予め推定演算、または実測しておき、これらの組合わせをテーブルに蓄積しておけば、異常検出部14および電圧・周波数等異常検出部16からの各偏差量(または比率)の組合わせを前記テーブルに参照することによって、分散電源の単独運転を判定することができる。すなわち各偏差量(または比率)の組合わせに基づいて分散電源の単独運転を示す信号の発生を決定するようにしてもよい。
【0023】
周波数変動については、例えば、0.5秒以内に±0.1%〜±0.3%(0.06〜0.18Hz)の変動が検出されれば異常を検出し、この異常が5〜10秒継続すれば単独運転と判定することができる。その他のパラメータについてもほぼ同様の基準で異常の検出と単独運転判定を行うことができる。
【0024】
上述の演算処理に必要な入力データ(端子電圧Eti、電流Igti 、位相差θi )の取り込みは、次のような手法で実施できる。
(1)電圧、電流振幅値と両者間の位相差を計測する。
(2)分散電源の出力電圧を商用周波数ωc よりも低い周波数ωm で変動させ、図5の式12で表わされるような振幅変調された波形の電流Igiを作り出し、同式中の(ωc +ωm )成分または(ωc −ωm )成分を、例えば既知の相関フィルタなどを用いて抽出する。相関フィルタ(Matched Filter)については、例えば、HBJ出版局1986年3月13日発行、「詳解ディジタルアナログ通信方式」第484〜491頁や、現代工学社1982年6月20日発行「アナログ・ディジタル信号解析」第263〜265頁に記述されている。
【0025】
【発明の効果】
本発明によれば、分散電源の出力端において実測された出力電流、電圧(および両者の位相差)に基づいて、当該分散電源から見た主系列側のインピーダンスや電源電圧を推定することができ、このようにして推定インピーダンスおよび/または電源電圧、周波数などの変化を監視したり、予め準備された標準値と対比することにより、主系列から切り離された部分系列内での発電量と負荷量とがバランスしていたり、バランスに近い状態にあるときでも、確実に分散電源の単独運転を検知し、必要に応じて解列することができる。さらに、前記推定インピーダンスに基づいて当該電力系統の安定度を監視することもできる。
【図面の簡単な説明】
【図1】本発明の方法を適用した装置の1例を示すブロック図である。
【図2】本発明を適用するのに好適な電力系統の例を示す図である。
【図3】図2の電力系統の等価回路図である。
【図4】図3の回路における電圧、電流のベクトル図である。
【図5】本発明において使用される演算式を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an estimation of equivalent impedance of an electric power system, particularly a commercial electric power system , and an electric power system for performing isolated operation detection of a distributed power source such as a private power generation facility linked to the commercial electric power system based on the equivalent impedance thus estimated. It relates to the monitoring method . More specifically, the equivalent line impedance of the power system and / or the equivalent power supply voltage of the power system as viewed from the output terminal of the distributed power source connected to the power system is estimated , and the estimated equivalent impedance and / or equivalent Based on the power supply voltage, with the commercial power system to which the distributed power supply is connected and the circuit breaker at the outlet of the upper system open, the distributed power supply continues to operate (power generation) independently. The present invention relates to a power system monitoring method to be detected.
[0002]
[Prior art]
From the viewpoint of effective use of energy and improvement of the power supply situation, it is approved to link private power generation facilities such as small hydropower generation, garbage incineration power generation, wind power generation, fuel cells, solar cells, etc., that is, distributed power sources, to the commercial power system. It came to be put to practical use. In such an interconnected power system, when an accident occurs in a commercial power system or a higher system connected to a distributed power source, or when maintenance, repair, or restoration of the system is performed, the outlet The circuit breaker is opened. In such a state, if the isolated operation (power generation) is continued in the partial series separated from the commercial power supply without disconnecting the distributed power supply, the commercial power line that should be essentially no voltage is generated. There will be a problem in terms of ensuring safety. Therefore, the isolated operation of the distributed power source during system maintenance, repair, restoration work, etc. must be reliably detected and prevented.
[0003]
In the case of power generation equipment that does not allow power flow from the distributed power source to the power system, that is, interconnection without reverse power flow, reverse power flow is detected by installing a reverse power relay at the receiving point of the distributed power source and automatically Distributed power can be disconnected from the grid. However, in the case of an interconnection that allows reverse power flow, a reverse power relay or the like cannot be used because there is a power flow from the distributed power source to the power system even during steady operation.
[0004]
If the circuit breaker at the outlet of the power system is opened due to a power system accident, maintenance or repair, etc., within the sub-series (for example, the output terminal of the distributed power supply) that includes the distributed power supply disconnected from the main system When the power generation amount and the load amount are different, the frequency and voltage of the partial series fluctuate. Therefore, it can be easily estimated that the isolated operation can be detected by monitoring these and the distributed power source can be disconnected based on this.
[0005]
[Problems to be solved by the invention]
In the method of detecting the frequency and voltage fluctuation in the partial series as described above, the frequency and voltage are increased as the difference between the power generation amount and the load quantity in the partial series including the distributed power source separated from the main series decreases. The fluctuation of the frequency becomes small and it becomes difficult to detect the fluctuation, and in the state where both are balanced, the frequency and voltage fluctuations practically do not occur, so that the isolated operation cannot be detected. Therefore, naturally, the inconvenience that the isolated operation state will continue is expected.
[0006]
The purpose of the present invention, estimates the equivalent impedance and / or equivalent power source voltage of the power system as viewed from the interconnection to power to the power grid, and the power generation amount in the severed portion in a sequence from the main sequence loadings and It is an object of the present invention to provide a power system monitoring method that reliably detects the isolated operation of a distributed power source even when the difference between the two is small as described above, regardless of the balance state.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, firstly, the output voltage Eti and current Igi (i is a positive integer 1 to n) of a distributed power source linked to a main system such as a commercial power system over time. The relational expression Et = Es + Ig (R + jX) between the output voltage Et of the distributed power supply, the current Ig, the system power supply voltage Es, and the system impedance Z = R + jX (where R is the line resistance and X is the line reactance). ) To calculate the terminal voltage estimated value Etif = Es + Igi (R + jX) by substituting the measured current value Igi into the line resistance, and further to minimize the difference between the terminal voltage estimated value Etif and the measured voltage value Eti. At least one of an equivalent impedance composed of R and line reactance X and an equivalent power supply voltage on the main system side viewed from the distributed power supply is estimated and calculated. And when at least one of the estimated change amount and change speed of the equivalent impedance on the main system side exceeds a predetermined value, or when the equivalent power supply voltage on the main system side drops to substantially zero, or the distributed power output frequency When the fluctuation amount / speed of fluctuation exceeds the reference value, a signal indicating the independent operation of the distributed power source is generated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 2, a load L1 is connected to a main system (commercial power system) power source Es having a power source impedance Z1 and a line impedance Z2, and a load Li is connected to a distributed power source G connected thereto. In the power system, Equation 1 in FIG. 5 is established. In general, the impedances ZL1 and ZLi of the loads L1 and Li are much larger than the power supply impedance and the line impedance. Therefore, when considering the impedance of the distributed power supply G viewed from the main system side, the load impedance can be ignored. . Therefore, in the system of FIG. 2, the formula 2 of FIG. 5 is established between the terminal voltage Et of the distributed power source G and the output current Ig.
[0011]
If the main system power supply Es is cut off at point A in FIG. 2, the main system power supply Es viewed from the distributed power supply G is zero, and the power source impedance Z1 becomes infinite, so Equation 1 changes to Equation 3. . Here, when the fluctuation amount of the terminal voltage Et with respect to the minute fluctuation amount of the current Ig is obtained, the expression 4 is obtained from the differentiation of the expression 2 when connected to the system, and the expression 3 when disconnected from the system. From the differentiation, the relationship of Equation 5 is obtained. As can be seen, Equation 5 ignores the line impedances Z1 and Z2 in consideration of the fact that the line impedances Z1 and Z2 are sufficiently smaller than the load impedances ZL1 and ZL2, and the loads ZLi and ZL1 are connected in parallel to the distributed power source. Corresponding to the state. From the above analysis, it can be seen that the impedance viewed from the distributed power source when viewed from the grid side is expressed by Equation 4 during normal interconnection operation, and suddenly changes to Equation 5 when disconnected and shifted to independent operation.
[0012]
The present invention estimates the equivalent impedance and / or system-side power supply voltage Es as seen from the system side from the distributed power source, or further monitors the amount of change and / or the rate of change of these estimated values, so that the distributed power source is in a single operation state. It tries to detect that it became. For this purpose, consider a case where the output current Ig from the distributed power supply G is changed at a sufficiently lower period than the commercial frequency. In such a system, the capacitance of lines and parallel capacitors can also be ignored, so the equivalent circuit is represented as shown in FIG. Here, R and L are resistance and inductance components of the line, and Lg is an impedance when the distributed power source side is viewed from the output terminal of the distributed power source G. Further, the vector diagram in this case is as shown in FIG. 4, and the relationship of Expression 6 shown in FIG. 5 is obtained.
[0013]
Based on these relationships, when the output current Ig from the distributed power source G is changed gently, the relationship between the measured current Igi and the measured terminal voltage Eti at each time t i (i is a positive integer from 1 to n) Coefficients (parameters) Es, R, and X satisfying 6 are obtained by an appropriate parameter estimation method. As for the parameter estimation method, for example, OHM Co., Ltd., issued on October 30, 1983, edited by the Society of Instrument and Control Engineers, “Automatic Control Handbook, Device / Application”, page 516 “6.3 Parameter Estimation”, Corona, Inc. published on March 25, 1988, "Hyundai Control Series (1)" Signal Analysis and System Identification "" by Nakayoshi Takayoshi, pages 7-17 "Estimation", page 127 "Least Square Estimation" It is stated.
[0014]
As one method of parameter estimation, for example, a typical least square method described in the above-mentioned document can be used. In that case, the difference εi between the estimated terminal voltage E tif (Equation 7) obtained by substituting the measured current Igi into Equation 6 and the measured terminal voltage Eti, ie, ε 2 represented by Equations 8 and 9 is minimized. The estimated values of the main system voltage Es, the resistance R of the line, and the reactance component X are obtained. As apparent from FIG. 4, the phase angle (β + θ) of the measured current Igi with respect to the main system voltage Es is uniquely determined when R, X, and θ are given. By the way, since θ can be measured as θi, the phase angle (β + θ) is uniquely determined. Since the estimated terminal voltage Etif and the measured terminal voltage Eti have the same phase angle with respect to the measured current Igi, the difference between Etif and Eti may be an absolute value difference.
[0015]
Es, R, and X thus obtained are estimated values of the power supply voltage and line impedance of the main system within i = 1 to n hours. Since Expression 10 is obtained from the vector diagram shown in FIG. 4, Expression 11 is obtained by substituting it into Expression 9. Es, R, and X in Equation 11 are changed little by little, and by repeated calculation, values of Es, R, and X that minimize Equation 11, that is, values of coefficients Es, R, and X that minimize Equation 8 are obtained. be able to.
[0016]
FIG. 1 is a block diagram showing an example of an apparatus configuration suitable for carrying out the method of the present invention. In the figure, the same reference numerals as those in FIGS. 2 and 3 represent the same or equivalent parts. The output (current Ig, voltage Et) of the distributed power supply G is changed by the output control device 11 in a sinusoidal, M-sequence or irregular (random) manner, preferably at a frequency sufficiently lower than the commercial power supply frequency. The M series (longest series) is described in detail, for example, on page 57 and subsequent pages of “Latest spread spectrum communication system” by Toshin Tateno et al. In addition, naturally occurring output fluctuations can be detected and used as they are without forcibly changing the output current. The output current Igti and voltage Eti of the distributed power source G at time ti are measured and supplied to the parameter estimation calculation unit 12. The parameter estimation calculation unit 12 estimates at least one of the maximum likelihood values of the main system power supply voltage Es, the line resistance R, and the line reactance X by an appropriate method as described above (for example, the least square method). To do.
[0017]
The parameter reference setting unit 13 is a system parameter obtained in advance for each distributed power source or the interconnected system, or for each partial system, in the normal interconnected operation state of each distributed power source, that is, the output terminal of each distributed power source. The main system power supply voltage Es, the line resistance R, the standard value of the line reactance X, and the set values such as the deviation necessary for abnormality determination are stored. The abnormality detection unit 14 is supplied with the main system power supply voltage Esf, the line resistance Rf, and the line reactance Xf estimated by the estimation calculation unit 12, and these are compared with the respective standard values, and each deviation is equal to or more than a predetermined value. If so, an abnormality is detected, and a corresponding abnormality signal is supplied to the isolated operation determination unit 15 to generate a signal indicating the isolated operation. The determination of the isolated operation can be performed based on, for example, the following state continuing for a set time (for example, several seconds to 10 seconds) or longer.
[0018]
(1) When the estimated value of the main system power supply voltage Es becomes zero.
During the grid operation, the estimated value of the main system power supply voltage Es naturally shows a certain value close to the rated value, but when the main system is shut off, the estimated value of the voltage becomes zero as described above. In this way, it is possible to determine the isolated operation.
[0019]
(2) When the equivalent impedance (R and / or X) increases rapidly, and its change width and / or change speed becomes larger than the set value.
While the equivalent impedance during normal interconnection operation is substantially only the line impedance and is very small and small, the interconnection end is opened in the single operation, so that the load as shown in FIG. Even if the load impedance ZL1 is added, the equivalent impedance increases in each stage. In accordance with such a fact, the isolated operation can be determined by monitoring the increase in the equivalent impedance. In this case, the determination criteria vary depending on each system. For example, when an increase of several tens of percent or more is detected within 0.5 seconds and this state continues for several seconds to 10 seconds or more, it is independent. It can be assumed that the operation is determined.
[0020]
(3) When the value of R / X increases to 1 to 1.5 or more.
In a normal transmission / distribution line, the value of R / X is about 0.5 to 1, but when the main system power supply is shut off and the load is connected, the load impedance is added as described above. Therefore, the value increases to 2 or more (because the power factor of the load is usually 90% or more). Therefore, the isolated operation can be determined based on such a change.
[0021]
Furthermore, an abnormal voltage / frequency detecting unit 16 to which the output voltage (and current, if necessary) signal of the distributed power source G is supplied is attached, and abnormal rise and fall of the voltage and frequency seen at the output terminal of the distributed power source are output. When abnormal fluctuations in the phase difference of the current with respect to the voltage occur and these abnormal states continue for a predetermined time (for example, several seconds to 10 seconds) or more, the second abnormal signal or individual abnormal signal is determined as an independent operation determination unit. 15 may be output to generate a signal indicating an isolated operation.
[0022]
That is, the isolated operation determination unit 15 receives the second abnormal signal from the voltage / frequency abnormality detection unit 16 in the form of an analog signal (in this case, the deviation from the standard value of voltage and frequency), and Based on combinations (logical product and logical sum) of deviations (or ratios) from standard values of various parameters (estimated main system power supply voltage Es, resistance R, reactance X) obtained by the abnormality detection unit 14 It is possible to comprehensively judge the single operation state. For example, for each power system cutoff point (for example, point A in FIG. 2), the voltage and frequency deviation amounts (or ratios) at the output terminals of the respective parameters and the distributed power source are estimated or calculated in advance. If these combinations are stored in the table, the combinations of deviation amounts (or ratios) from the abnormality detection unit 14 and the abnormality detection unit 16 such as voltage / frequency are referred to the table to distribute the combinations. The single operation of the power supply can be determined. That is, the generation of a signal indicating the independent operation of the distributed power source may be determined based on a combination of the deviation amounts (or ratios).
[0023]
For frequency fluctuation, for example, if a fluctuation of ± 0.1% to ± 0.3% (0.06 to 0.18 Hz) is detected within 0.5 seconds, an abnormality is detected. If it continues for 10 seconds, it can be determined that it is an isolated operation. For other parameters, it is possible to perform abnormality detection and isolated operation determination based on substantially the same criteria.
[0024]
The input data (terminal voltage Eti, current Igti, phase difference θi) necessary for the arithmetic processing described above can be acquired by the following method.
(1) Measure voltage and current amplitude values and phase difference between them.
(2) The output voltage of the distributed power source is varied at a frequency ωm lower than the commercial frequency ωc to generate an amplitude-modulated waveform current Igi as represented by Equation 12 in FIG. 5, and (ωc + ωm) in the equation The component or (ωc−ωm) component is extracted using, for example, a known correlation filter. The correlation filter (Matched Filter) is, for example, published on March 13, 1986, “Detailed Digital Analog Communication System”, pages 484-491, and published on “Analog / Digital” on June 20, 1982 by Hyundai Engineering. Signal analysis "pages 263-265.
[0025]
【The invention's effect】
According to the present invention, based on the output current and voltage actually measured at the output terminal of the distributed power supply (and the phase difference between them), the impedance and power supply voltage on the main series side viewed from the distributed power supply can be estimated. In this way, by monitoring changes in the estimated impedance and / or power supply voltage, frequency, etc., or by comparing with a standard value prepared in advance, the power generation amount and load amount in the partial series separated from the main series Even when they are balanced or close to the balance, it is possible to reliably detect the isolated operation of the distributed power source and disconnect them as necessary. Furthermore, the stability of the power system can be monitored based on the estimated impedance.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of an apparatus to which a method of the present invention is applied .
FIG. 2 is a diagram showing an example of a power system suitable for applying the present invention.
3 is an equivalent circuit diagram of the power system of FIG. 2. FIG.
4 is a vector diagram of voltage and current in the circuit of FIG. 3;
FIG. 5 is a diagram showing an arithmetic expression used in the present invention.

Claims (6)

商用電力系統などの主系統に連系された分散電源の出力電圧Eti、電流Igi(i は正整数1〜n)を経時的に計測し、
分散電源の出力電圧Et 、電流Ig 、系統電源電圧Es 、および系統インピーダンスZ=R+jX(ただし、Rは線路抵抗、Xは線路リアクタンス)の間の関係式
Et =Es +Ig (R+jX)
に計測電流値Igiを代入して端子電圧推定値Etif =Es +Igi(R+jX)を演算し、さらに、前記端子電圧推定値Etif と計測電圧値Etiとの差を最小とするような、線路抵抗Rおよび線路リアクタンスXからなる等価インピーダンス前記分散電源から見た主系統側の等価電源電圧の少なくとも一方を推定演算することを特徴とする電力系統監視方法。
Measure the output voltage Eti and current Igi (i is a positive integer 1 to n) of a distributed power source linked to a main system such as a commercial power system over time,
A relational expression between the output voltage Et of the distributed power source, the current Ig, the system power source voltage Es, and the system impedance Z = R + jX (where R is a line resistance and X is a line reactance) Et = Es + Ig (R + jX)
Is substituted with the measured current value Igi to calculate the terminal voltage estimated value Etif = Es + Igi (R + jX), and further the line resistance R to minimize the difference between the terminal voltage estimated value Etif and the measured voltage value Eti. And a power system monitoring method for estimating and calculating at least one of an equivalent impedance composed of a line reactance X and an equivalent power supply voltage on the main system side as viewed from the distributed power supply .
前記出力電圧Eti、電流Igiの計測は、分散電源の出力を変動させながら行なわれることを特徴とする請求項1に記載の電力系統監視方法。The power system monitoring method according to claim 1, wherein the output voltage Eti and the current Igi are measured while varying the output of the distributed power source. 前記線路抵抗Rおよび線路リアクタンスXからなる等価インピーダンスを推定演算する電力系統監視方法であり、さらに前記線路抵抗Rおよび線路リアクタンスXのいずれかの変化量および変化速度の少なくとも一方が予定値を超えたときは、前記分散電源の単独運転を示す信号を発生することを含むことを特徴とする請求項1または2に記載の電力系統監視方法。 A power system monitoring method for estimating and calculating an equivalent impedance composed of the line resistance R and the line reactance X, and at least one of a change amount and a change speed of the line resistance R and the line reactance X exceeds a predetermined value. 3. The power system monitoring method according to claim 1 , further comprising: generating a signal indicating an independent operation of the distributed power source. 前記分散電源から見た主系統側の等価電源電圧を推定演算する電力系統監視方法であり、さらに前記等価電源電圧が実質上ゼロに低下したときは、前記分散電源の単独運転を示す信号を発生することを含むことを特徴とする請求項1または2に記載の電力系統監視方法。 A power system monitoring method for estimating and calculating an equivalent power supply voltage on the main system side as seen from the distributed power supply, and further generating a signal indicating an independent operation of the distributed power supply when the equivalent power supply voltage drops to substantially zero power system monitoring method according to claim 1 or 2, characterized in that it comprises. 前記分散電源から見た主系統側の等価電源電圧、線路抵抗Rおよび線路リアクタンスXの推定演算は、前記線路抵抗Rおよび線路リアクタンスXからなる等価インピーダンスおよび等価電源の直列回路が前記分散電源の出力端子に接続された等価回路に基づいて行なわれることを特徴とする請求項ないしのいずれかに記載の電力系統監視方法。 The estimation calculation of the equivalent power supply voltage, line resistance R and line reactance X on the main system side as viewed from the distributed power supply is performed by the equivalent circuit composed of the line resistance R and line reactance X and the series circuit of the equivalent power supply outputs the output of the distributed power supply. power system monitoring method according to any one of claims 1 to 4, characterized in that is carried out based on the connected equivalent circuit terminal. 前記分散電源の出力電圧周波数をさらに計測し、
線路抵抗Rおよび線路リアクタンスXからなる等価インピーダンス、前記分散電源から見た主系統側の等価電源電圧の少なくとも一方に基づき、前記出力電圧および周波数の少なくとも一方の変動量および/または変動速度をも考慮して、前記分散電源の単独運転を示す信号を発生させることを含むことを特徴とする請求項1ないしのいずれかに記載の電力系統監視方法。
Further measuring the output voltage frequency of the distributed power source,
Based on at least one of the equivalent impedance composed of the line resistance R and the line reactance X and the equivalent power supply voltage on the main system side as viewed from the distributed power supply, the amount of fluctuation and / or the speed of fluctuation of at least one of the output voltage and frequency are also considered. to, power system monitoring method according to any one of claims 1 to 5, characterized in that it comprises generating a signal indicating a single operation of the distributed power supply.
JP07817396A 1996-03-07 1996-03-07 Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus Expired - Fee Related JP3719285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07817396A JP3719285B2 (en) 1996-03-07 1996-03-07 Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07817396A JP3719285B2 (en) 1996-03-07 1996-03-07 Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus

Publications (2)

Publication Number Publication Date
JPH09243682A JPH09243682A (en) 1997-09-19
JP3719285B2 true JP3719285B2 (en) 2005-11-24

Family

ID=13654569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07817396A Expired - Fee Related JP3719285B2 (en) 1996-03-07 1996-03-07 Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3719285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852898B2 (en) * 2004-10-29 2012-01-11 東京電力株式会社 Distributed power supply, distribution facility, and power supply method
JP5278414B2 (en) * 2004-10-29 2013-09-04 東京電力株式会社 Distributed power supply, distribution facility, and power supply method
KR101138590B1 (en) * 2010-12-22 2012-05-14 삼성전기주식회사 Monitoring apparatus of power
KR101902173B1 (en) * 2012-09-28 2018-10-01 한국전력공사 A device for identifying the power source in the power distribution network

Also Published As

Publication number Publication date
JPH09243682A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
JP4076721B2 (en) Isolated power-proof method and apparatus for distributed generation
Jang et al. Development of a logical rule-based islanding detection method for distributed resources
CN104777397A (en) Distribution line single-phase break line judgment and positioning method based on line voltage vector criterion
US9467070B2 (en) Decentralized power generation plant having a device and method for detecting an island network
JP7006237B2 (en) A system with a protective device for the power supply system
US11355912B2 (en) Method and device for detecting faults in transmission and distribution systems
US10784677B2 (en) Enhanced utility disturbance monitor
Choudhry et al. Power loss reduction in radial distribution system with multiple distributed energy resources through efficient islanding detection
Singh et al. Optimum Adaptive Relaying Using Fault Current Quadrature (Q) Component
JP3719285B2 (en) Equivalent impedance estimation method for power system, and distributed power supply isolated operation detection method and apparatus
KR20170135324A (en) Reactive power compensation system and method thereof
US10819098B2 (en) Flux based utility disturbance detector
KR20200003631A (en) Protection device and method for distributed energy resources in electric distribution system
Raju et al. Evaluation of Passive Islanding Detection Methods for Line to Ground Unsymmetrical Fault in Three Phase Microgrid Systems: Microgrid Islanding Detection Method
CN105978017B (en) There is the method for detecting and protecting isolated island of anti-jump function for large-scale wind power
Henville et al. Dynamic simulations challenge protection performance
JP2633150B2 (en) Method and device for detecting state of reverse charging from private power generation facility to power supply system side
KR102473811B1 (en) Overcurrent relay and its control method for applying fault current limiter to distribution system with decentralized power supply
JP3030813B2 (en) Standalone operation detection device for private power generation equipment
Pan et al. Fault disappearing judgement of single phase grounding in neutral point non-effective grounding system based on adjustable resistor
Chen et al. A voltage quality detection method
JP2002101562A (en) System interconnection protection device of power generating installation
Zhang et al. An adaptive microcomputer based load shedding relay
JPH10201107A (en) Single operation detection/control device
JPH10164758A (en) Individual operation detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees