JP3673565B2 - Distillation apparatus and distillation method - Google Patents

Distillation apparatus and distillation method Download PDF

Info

Publication number
JP3673565B2
JP3673565B2 JP20292095A JP20292095A JP3673565B2 JP 3673565 B2 JP3673565 B2 JP 3673565B2 JP 20292095 A JP20292095 A JP 20292095A JP 20292095 A JP20292095 A JP 20292095A JP 3673565 B2 JP3673565 B2 JP 3673565B2
Authority
JP
Japan
Prior art keywords
pressure
air
heat exchanger
cooled heat
reflux vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20292095A
Other languages
Japanese (ja)
Other versions
JPH0929001A (en
Inventor
一郎 南
利夫 田沼
嘉忠 西本
信夫 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Idemitsu Kosan Co Ltd
Original Assignee
JGC Corp
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Idemitsu Kosan Co Ltd filed Critical JGC Corp
Priority to JP20292095A priority Critical patent/JP3673565B2/en
Publication of JPH0929001A publication Critical patent/JPH0929001A/en
Application granted granted Critical
Publication of JP3673565B2 publication Critical patent/JP3673565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、石油精製、石油化学、一般化学等に用いられ、蒸留塔塔頂からの蒸気を空冷式熱交換器で冷却凝縮する蒸留装置および蒸留方法に関する。
【0002】
【従来の技術】
従来から、連続精留を行う蒸留装置は、例えば石油精製、石油化学、一般化学等の分野で用いられて来た。この種の蒸留装置において、塔頂蒸気を凝縮するためには、例えば空冷式熱交換器が用いられており、この場合図3〜図5に示すように、蒸留塔50の塔頂蒸気を空冷式熱交換器51で冷却凝縮し、得られた凝縮液を還流容器52に貯留して、この凝縮液の一部を蒸留塔50にポンプ53、調節弁54を介して還流すると共に、残りの凝縮液を調節弁55を介して製品として取り出すようにして蒸留が行なわれている。
【0003】
このような装置においては、製品の品質の安定化を図るために、蒸留塔50の塔頂圧力を一定に保つことが必要であり、蒸留塔50の塔頂圧力の制御方法としては、例えば以下の方法が採られている。
【0004】
1つの方法は図3に示すように、調節弁57を備え窒素等の不活性ガスをシールガスとして用いるシールガス供給手段に接続される配管と、調節弁58を備え排ガス燃焼装置に接続される配管とに途中から分離する配管56を還流容器52に接続すると共に、蒸留塔50の塔頂圧力を圧力計59で測定し、この値に基づいて調節弁57、58の開度が制御される装置において実施されるものであり、この方法では蒸留塔50の塔頂圧力が所定値以下になると、還流容器52へシールガスを供給し、前記圧力値が所定値を越えると排ガス燃焼装置へ排気することにより塔頂圧力が一定に制御される。
【0005】
また他の方法は図4に示すように、空冷式熱交換器51の入口側の配管と還流容器52との間に、蒸留塔の塔頂圧力に基づいて開度が制御される調節弁62を備えたバイパス流路61を設けると共に、還流容器52内の気相部分の圧力を圧力計60により測定し、この値に基づいて調節弁57、58の開度が制御される装置にて実施されるものである。この方法では、還流容器52内の圧力が所定値以下のときには還流容器52へシールガスを供給すると共に、還流容器52内の圧力が所定値を越えると排ガス燃焼装置へ排気し、こうして還流容器52内の圧力を一定に制御する一方、蒸留塔50の塔頂圧力に基づいて蒸留塔50からバイパス流路61を介して還流容器52へ直接送られる塔頂蒸気の量を調整し、この結果塔頂圧力が一定に制御される。
【0006】
さらに他の方法は図5に示すように、空冷式熱交換器51の入口側の配管に、蒸留塔50から空冷式熱交換器51へ流れる塔頂蒸気の流量を調節する調節弁63を設けると共に、バイパス流路61に蒸留塔50の塔頂圧力と還流容器52内の圧力との差圧に基づいて、蒸留塔50から還流容器52へ直接送られる塔頂蒸気の量を調整する差圧調節弁64を設けた装置にて実施されるものであり、この方法では蒸留塔50の塔頂圧力と還流容器52内の圧力が一定に制御される。さらに図5に一点鎖線で示すように、空冷式熱交換器51出口と還流容器52との間に均圧管64を設けて、これにより空冷式熱交換器51や空冷式熱交換器51と還流容器52との間の配管内における凝縮液の停留を防ぐことも行われる。
【0007】
【発明が解決しようとする課題】
しかしながら上述の図3に示す方法では、シールガスを用いて蒸留塔50の塔頂圧力の制御を行っているため、多量のシールガスが必要である。また例えば降雨等のような外乱時に蒸留塔50の塔頂圧力が低くなった場合は、シールガスはこの圧力の低下を補償するために還流容器52へ導入されるが、この塔頂系の容量に応じた遅れが生じるため、制御応答性が悪く、この間に空冷式熱交換器51で凝縮が進み過ぎて、塔頂圧力が低くなり過ぎ、塔頂圧力が安定するまでに数時間必要であるという問題があった。
【0008】
また図4に示す方法は図3に示す方法を改良したものであり、この方法ではシールガスは還流容器52の圧力制御に用いられているため、図3の方法に比べて量は少なくなるもののやはりシールガスは必要である。また、外乱時に蒸留塔50の塔頂圧力が低くなった場合には、バイパス流路61を介して還流容器52へ直接流れる塔頂蒸気が調節弁62により減じられることにより塔頂圧力を上昇する方向に作用するが、塔頂蒸気の主流路となる空冷式熱交換器51で過大な凝縮が進行し塔頂圧力の上昇を妨害することがある。すなわち、空冷式熱交換器51で凝縮する蒸気量は主として空冷式熱交換器の伝熱能力により支配されるため、大気温度が低く空冷式熱交換器の能力が過大になると凝縮蒸気量が予想以上に増大し塔頂圧力を低下させる方向に作用することとなり、前記バイパス流路61の蒸気量が減じられても結果として塔頂圧力の制御が不能となる危険性があった。
【0009】
さらに図5に示す方法では、シールガスを用いない点では前2つの方法より優れているが、蒸留塔50から空冷式熱交換器51に至る配管径が気体である蒸気を通す大口径であるため、その配管に設ける調整弁63も大口径のものが必要となり、高価で大重量のものとなる。しかも空冷式熱交換器51は発生する熱風が他の機器に当たらないように最上部の架台上に設置されるが、前記調節弁63はさらにその上流の高所に位置する必要があり、最上部の架台上より高所に大重量の調節弁63を設置するための大型架台も設ける必要があった。このため設備費が増大する上、調節弁63が大型化すると開閉に時間がかかり、応答性が悪いという欠点もあった。
【0010】
また例えば外乱により塔頂圧力が低くなった場合には、空冷式熱交換器51への塔頂蒸気の供給量を少くするため、調節弁63の開度を小さくするが、この際応答性の遅れ等により調節弁63を絞り過ぎたときに空冷式熱交換器51の出口側が負圧になって吸引現象が起こり、還流容器52内の凝縮液が一気に空冷式熱交換器51内に引き込まれてしまい、次には熱交換器内が満液となり凝縮能力がなくなって反対に塔頂圧力が急激に高目に振れるという振動現象におちいり、蒸留塔50の塔頂圧力の制御を安定的に行なうことが困難になるおそれがあった。
【0011】
この対策として均圧管64を設けると、空冷式熱交換器51の出口側が負圧になった場合、還流容器52内の熱い蒸気が均圧管64を通って逆流し、空冷式熱交換器51の出口側で急に冷やされて液化することによりハンマリング(蒸気の液化が断続的に起こること)が発生する場合があり、この衝撃により空冷式熱交換器51に損傷を与えるおそれがあった。
【0012】
本発明はこのような事情のもとになされたものであり、その目的は、蒸留塔の塔頂圧力の安定化を図ることができる蒸留装置および蒸留方法を提供することにある。
【0013】
【課題を解決するための手段】
請求項1の発明は、蒸留塔塔頂からの蒸気を空冷式熱交換器で凝縮し、得られた凝縮液を還流容器に貯留すると共に、この還流容器内の凝縮液の一部を前記蒸留塔に還流する蒸留装置において、前記蒸留塔の塔頂圧力を検出する圧力検出部と、前記空冷式熱交換器の出口と還流容器との間に設けられ、前記圧力検出部の検出圧力に基づいて凝縮液の流量を制御する第1の調節弁と、前記蒸留塔と還流容器との間に設けられ、蒸留塔塔頂からの蒸気の一部を空冷式熱交換器及び第1の調節弁を介さずに還流容器に直接通流するためのバイパス流路と、前記バイパス流路に設けられ、その上流側と下流側との差圧または還流容器内の圧力に基づいて前記蒸気の流量を制御する第2の調節弁と、を備えることを特徴とする。
【0014】
請求項2の発明は、蒸留塔塔頂からの蒸気を空冷式熱交換器で凝縮し、得られた凝縮液を還流容器に貯留すると共に、この還流容器内の凝縮液の一部を前記蒸留塔に還流する蒸留方法において、前記空冷式熱交換器により凝縮された凝縮液を、蒸留塔の塔頂圧力に基づいて流量を制御しながら還流容器内へ送液すると共に、蒸留塔からの蒸気の一部を、空冷式熱交換器を介さずにその上流側と下流側との差圧または還流容器内の圧力に基づいて流量を制御しながら、還流容器内へ直接通流することを特徴とする。
【0015】
降雨等により蒸留塔の塔頂圧力が低下した場合は、第1の制御系としての第1の調節弁が絞られて空冷式熱交換器の出口側から還流容器への凝縮液流量が少なくなる。これにより空冷式熱交換器内に凝縮液の溜まる量が多くなり、空冷式熱交換器管路群のうち凝縮に寄与する管路が減少、すなわち伝熱面積が減少するため、蒸留塔からの蒸気が凝縮される量が少なくなり、塔頂圧力を上昇する方向に作用する。また第2の制御系としての第2の調節弁の開度は、その上流側である塔頂圧力と下流側である還流容器内圧力との差圧が小さくなるため小さくなり、これによりバイパス流路を流通する蒸気の量が抑えられ塔頂圧力を上昇する方向に作用する。すなわち、空冷式熱交換器の出口側の凝縮液の液流量を減少させる第1の制御系とバイパス流路の蒸気の流量を減少させる第2の制御系との総合作用で塔頂圧力を上昇させることとなる。
【0016】
塔頂圧力が上昇した場合は、上記の逆となり、第1の調節弁の開度が大となり、空冷式熱交換器の出口側から還流容器への凝縮液の流通量を増やし伝熱面積を増加して凝縮を促進し塔頂圧力を減少させる方向に作用するとともに、バイパス流路の第2の調節弁の開度を大きくして塔頂側から還流容器に流通する蒸気を増加し塔頂圧力を減少させる方向に作用する。すなわち、空冷式熱交換器の出口側の凝縮液の液流量を増加させる第1の制御系とバイパス流路の蒸気の流量を増加させる第2の制御系との両方の総合作用で塔頂圧力を低下させることとなる。
【0017】
そして、塔頂圧力が大きく低下又は上昇するように振れた場合には、上記の作用が交互に繰り返されて蒸留塔の塔頂圧力が所定圧力に収斂することとなる。
【0018】
【発明の実施の形態】
以下本発明の実施例について説明する。図1は本発明方法を実施するための蒸留装置を示す構成図である。図中1は蒸留塔であり、この蒸留塔の塔頂部は配管11により空冷式熱交換器2の入口側(後述の側部フレームの上端)に接続されている。空冷式熱交換器2は、側部フレーム21により水平方向に伸びる管路22を上下方向に複数段(通常4〜6段)となるように支持し、最上段の管路22から最下段の管路22までは側部フレーム21の内部の流路を介して屈曲路を形成するように繋がっており、管路22の下方側に管路22に向って送風するファン23を配設して構成される。前記空冷式熱交換器2の出口側、即ち側部フレーム21の下部には、第1の調節弁である流量調節弁25を備えた配管24が接続されており、その先端は還流容器3の底部付近まで延没されている。また蒸留塔1には塔頂圧力を検出するための圧力検出部をなす圧力計12が取付けられており、前記流量調節弁25は、この圧力計12の圧力検出値に基づき制御部13を介してその開度が制御(第1の制御系)される。
【0019】
また蒸留塔1から空冷式熱交換器2に蒸気を送る前記配管11からは、空冷式熱交換器2及び調節弁25を介さずに直接還流容器3の頂部部分に蒸気を流すためのバイパス流路4が分岐されている。このバイパス流路4には第2の調節弁である差圧調節弁41が介設されており、この差圧調節弁41は、その上流側と下流側との差圧を検出する差圧検出計42の差圧検出値に基づいて制御部43により開度が制御(第2の制御系)される。
【0020】
還流容器3の底部には、還流容器3内の凝縮液を抜き取るための配管31が接続されており、この配管31は、ポンプ32、調節弁33を介して蒸留塔1の例えば塔頂近傍に接続されると共に、ポンプ32、調節弁33の間において、調節弁35を備えた製品取り出し用の配管34に分岐している。
【0021】
このような構成の蒸留装置では、蒸留塔頂からの蒸気の大部分は配管11を介して空冷式熱交換器2へ送られ、この空冷式熱交換器2では、下方側からのファン23による送風で管路22が冷却され、これによりここを通過する蒸気は冷却されて凝縮液化される。そして得られた凝縮液は、流量調節弁25により送液量が調節されながら配管24を介して還流容器3の底部付近へ送液される。次いでこの凝縮液の一部は配管31、ポンプ32、調節弁33を介して蒸留塔1の塔頂近傍へ還流され、残りの凝縮液は配管31から分岐する配管34、調節弁35を介して製品として取り出される。
【0022】
ここで上述の第1の制御系では蒸留塔1の塔頂圧力の変化に応じて空冷式熱交換器2の出口側の配管24の凝縮液の流量が調整されるので、空冷式熱交換器2における、熱交換に寄与する管路22の段数が変化し、これにより空冷式熱交換器2で凝縮される蒸気の凝縮量が調整されて蒸留塔1の塔頂圧力が制御される。一方、第2の制御系では蒸留塔1の塔頂圧力と還流容器3の気相部分の圧力との差圧に応じて、蒸留塔1からバイパス流路4を通って還流容器3へ直接流れる蒸気の流量を調整しているため、塔頂圧力の大きな振れが抑えられ、そしてこのバイパス流路4の蒸気流量の調整によって、蒸気の凝縮量の調整による空冷式熱交換器2の伝面変化のいわばオーバシュート分が抑えられ、これら2系統の制御が相俟って塔頂圧力の急激な変化を抑えて、塔頂圧力が一定値になるように制御される。
【0023】
今例えば降雨等の外乱時に蒸留塔1の塔頂圧力が所定値より低くなった場合、即ち蒸留塔1より発生する蒸気量よりも空冷式熱交換器2で凝縮される蒸気量の方が多くなった場合には、第1の制御系である流量調節弁25の開度が小さくなり、凝縮液の流量が少なくなる。これにより例えば図2に示すように、凝縮液が配管24内及び空冷式熱交換器2の最下段の管路22内へ溜まり始め(図中Aで示す部分)、空冷式熱交換器2の伝熱面積(図中Bで示す部分)即ち管路22の熱交換に寄与する部分の面積が減少するため、空冷式熱交換器2における蒸気の凝縮量が抑えられ、塔頂圧力を上昇させる方向に作用する。
【0024】
一方、第2の制御系である差圧調節弁41は、バイパス流路4の上流側である塔頂圧力と下流側である還流容器3内圧力との差圧が小となるためその開度が小さくなり、蒸留塔1からバイパス流路4を経由して還流容器3へ流れる蒸気の量が抑えられ、塔頂圧力を上昇させる方向に作用する。
【0025】
上記第1及び第2の制御系は共同で作用するため効率がよく、また相互に影響しあって急激なる圧力変化も抑えることができる。
【0026】
塔頂圧力が大きく低下した場合には、上記の作用で塔頂圧力が過度に上昇することがある。その場合、圧力の上昇に伴い空冷式熱交換器2における凝縮液の上昇が抑えられ、第1及び第2の調節弁25、41が開かれて、満液となっている管路22から凝縮液が減少し空冷式熱交換器2の冷却能力が回復し、かつバイパス流路4から還流容器3へ直接流れる蒸気量も増加して塔頂圧力を減少する方向に作用する。そして、圧力上昇と減少の上記の制御が繰り返されて塔頂圧力が所定の圧力に収斂する。
【0027】
本発明では空冷式熱交換器2の出口側に流量調節弁25を設けるとともに、バイパス流路4に差圧調節弁41を設けたので、塔頂蒸気あるいは凝縮液は、系内を連続的に安定して流れ、流量調節弁25や差圧調節弁41の開度の急激な大きな変化が抑えられ、このため塔頂圧力の急激な変化を防止できるので、塔頂圧力の制御を安定して行うことができる。
【0028】
また空冷式熱交換器2では、例えば最下段の管路22に溜まっている凝縮液は、常にファン23により冷却されるため、この凝縮液は凝縮温度よりも低い温度まで過冷却され、この温度のまま還流容器3の底部へ送液される。一方還流容器3内へは、バイパス流路4を介して凝縮温度以上の熱い蒸気が送られてくるため、還流容器3内の凝縮液はこの蒸気により加熱されて昇温し、その表層部分はほぼ沸点温度となるまで上昇する。このため還流容器3内の凝縮液の表層部分は平衡状態となり、これにより還流容器3内の圧力はより安定し、この結果塔頂圧力の制御がより安定に行なわれる。
【0029】
以上のように上述実施例では、空冷式熱交換器2の出口側に流量調節弁25を設けて、塔頂圧力に応じて還流容器3へ送液する凝縮液の液量を変えることにより、空冷式熱交換器2の伝熱面積を調節して、塔頂蒸気の凝縮量を調節することができるため、塔頂圧力を応答性よく制御することができる。また流量調節弁25は凝縮液の送液量を調節するために設けられているので、調節弁25を絞り過ぎたとしても空冷式熱交換器2の出口側が負圧になって凝縮液が還流容器3から一気に吸引して空冷式熱交換器2の入口側まで逆流するようなおそれはなく、この結果塔頂圧力の安定化を図ることができる。
【0030】
また空冷式熱交換器2の出口側の配管24は凝縮液の流路用配管であり、蒸気の流路用配管である空冷式熱交換器2の入口側の配管11に比べて管径が小さいため、この出口側配管24に取り付けられる調節弁25は、入口側配管に取り付けられる調節弁に比べて小型のものを用いることができる。そのうえ調節弁25の設置場所も空冷式熱交換器2より低い位置である還流容器3の上部付近位置であるため、空冷式熱交換器2より高い位置に設けなければならない入口側調節弁を設置する場合に比べて、取り付けが容易であると共に、高所の大型の架台等も不要となるため、設備費を大幅に削減できる。
【0031】
以上において、蒸留塔の塔頂圧力と還流容器内の圧力との差圧を所定値とするために、差圧調節弁の上流側と下流側との差圧を検出して、その検出値に基づいて差圧調節弁の開度を調整しているが、本発明では差圧を検出する代わりに、還流容器内の気相部分の圧力を検出し、その検出値に基づいて差圧調節弁の開度を調節してもよい。還流容器内の気相部分の圧力に基づいて差圧調節弁を調整する場合には、還流容器内の圧力が高すぎると差圧調節弁41が絞られ、還流容器液表面温度(圧力)を下げる方向となり、逆に還流容器内の圧力が低すぎると差圧調節弁41の開度が大きくなり、この結果還流容器内の圧力が一定となるように制御される。このような条件のもとで、塔頂圧力が一定となるように制御されることとなる。
【0032】
【発明の効果】
本発明によれば、空冷式熱交換器の出口側配管に蒸留塔の塔頂圧力に基づいて制御される調節弁を設けるとともに、バイパス流路に塔頂圧力と還流容器内圧力との差圧または還流用容器内圧力に基づいて制御される差圧調節弁を設けたので、塔頂圧力に応じて空冷式熱交換器から送液される凝縮液量を調節して空冷式熱交換器の伝熱面積を調節し、これにより空冷式熱交換器における塔頂蒸気の凝縮量を制御することができ、また塔頂圧力と還流容器内圧力との差圧または還流容器内の圧力に応じてバイパス流路を流れる蒸気の量を直接制御できることとなり、両制御の共同作用により蒸留塔の塔頂圧力の変化を応答性よく制御できる。また空冷式熱交換器の出口側が負圧になるおそれがないため、凝縮液の停流や逆流の心配がなく蒸気及び凝縮液が系内を連続的に安定して流れ、これにより塔頂圧力の制御を安定して行なうことができ、蒸留製品の品質を安定化することができる。さらに第1の調節弁は空冷式熱交換器出口側の液体流通用の細い配管に設けられるので、応答性がよい小型のものでよく、しかも設置場所が低所であるため、取り付けが容易であるとともに高所での大型の取付け架台等も不要となり、設備費用を大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の蒸留方法を実施するための蒸留装置の一実施例を示す構成図である。
【図2】空冷式熱交換器の作用を説明するための説明図である。
【図3】従来の蒸留装置の構成図である。
【図4】従来の蒸留装置の構成図である。
【図5】従来の蒸留装置の構成図である。
【符号の説明】
1 蒸留塔
2 空冷式熱交換器
25 流量調節弁
3 還流容器
4 バイパス流路
41 差圧調節弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distillation apparatus and a distillation method which are used in petroleum refining, petrochemistry, general chemistry, and the like, and cool and condense steam from the top of a distillation column with an air-cooled heat exchanger.
[0002]
[Prior art]
Conventionally, distillation apparatuses that perform continuous rectification have been used in fields such as petroleum refining, petrochemistry, and general chemistry. In this type of distillation apparatus, for example, an air-cooled heat exchanger is used to condense the overhead vapor. In this case, as shown in FIGS. 3 to 5, the overhead vapor of the distillation tower 50 is air-cooled. The condensate obtained by cooling and condensing in the heat exchanger 51 is stored in the reflux vessel 52, and a part of the condensate is refluxed to the distillation column 50 via the pump 53 and the control valve 54, and the rest Distillation is carried out by taking out the condensate as a product through the control valve 55.
[0003]
In such an apparatus, in order to stabilize the quality of the product, it is necessary to keep the top pressure of the distillation column 50 constant. As a method for controlling the top pressure of the distillation column 50, for example, The method is adopted.
[0004]
As shown in FIG. 3, one method includes a control valve 57 and a pipe connected to a seal gas supply means using an inert gas such as nitrogen as a seal gas, and a control valve 58 and connected to an exhaust gas combustion apparatus. A pipe 56 separated from the middle of the pipe is connected to the reflux vessel 52, and the top pressure of the distillation column 50 is measured with a pressure gauge 59, and the opening degree of the control valves 57 and 58 is controlled based on this value. In this method, when the top pressure of the distillation column 50 falls below a predetermined value, a sealing gas is supplied to the reflux vessel 52, and when the pressure value exceeds a predetermined value, exhaust gas is discharged to the exhaust gas combustion device. By doing so, the tower top pressure is controlled to be constant.
[0005]
In another method, as shown in FIG. 4, a regulating valve 62 whose opening degree is controlled based on the top pressure of the distillation column is provided between the inlet-side piping of the air-cooled heat exchanger 51 and the reflux vessel 52. And a bypass passage 61 provided with a pressure gauge 60 is used to measure the pressure in the gas phase portion in the reflux vessel 52, and the opening of the control valves 57 and 58 is controlled based on this value. It is what is done. In this method, when the pressure in the reflux container 52 is equal to or lower than a predetermined value, a seal gas is supplied to the reflux container 52, and when the pressure in the reflux container 52 exceeds a predetermined value, the exhaust gas is exhausted to the exhaust gas combustion device. While the internal pressure is controlled to be constant, the amount of overhead vapor sent directly from the distillation column 50 to the reflux vessel 52 via the bypass channel 61 is adjusted based on the overhead pressure of the distillation column 50, and as a result, The top pressure is controlled to be constant.
[0006]
In another method, as shown in FIG. 5, a control valve 63 for adjusting the flow rate of the top vapor flowing from the distillation column 50 to the air-cooled heat exchanger 51 is provided in the piping on the inlet side of the air-cooled heat exchanger 51. At the same time, the differential pressure for adjusting the amount of the top vapor directly sent from the distillation column 50 to the reflux vessel 52 based on the differential pressure between the top pressure of the distillation column 50 and the pressure in the reflux vessel 52 to the bypass channel 61. In this method, the top pressure of the distillation column 50 and the pressure in the reflux vessel 52 are controlled to be constant. Further, as shown by a one-dot chain line in FIG. 5, a pressure equalizing pipe 64 is provided between the outlet of the air-cooled heat exchanger 51 and the reflux vessel 52, and thereby the air-cooled heat exchanger 51 and the air-cooled heat exchanger 51 are refluxed. It is also possible to prevent the condensate from staying in the pipe between the container 52 and the container 52.
[0007]
[Problems to be solved by the invention]
However, in the method shown in FIG. 3 described above, since the top pressure of the distillation column 50 is controlled using the seal gas, a large amount of seal gas is required. Further, when the top pressure of the distillation column 50 becomes low due to disturbance such as rain, for example, the seal gas is introduced into the reflux vessel 52 to compensate for this pressure drop. Therefore, the control response is poor, and during this time, the condensation is excessively advanced in the air-cooled heat exchanger 51, the tower top pressure becomes too low, and it takes several hours for the tower top pressure to stabilize. There was a problem.
[0008]
The method shown in FIG. 4 is an improvement of the method shown in FIG. 3. In this method, the seal gas is used for pressure control of the reflux vessel 52, but the amount is smaller than the method of FIG. Again, sealing gas is necessary. Further, when the top pressure of the distillation column 50 becomes low during disturbance, the top pressure is increased by reducing the top vapor directly flowing to the reflux vessel 52 through the bypass passage 61 by the control valve 62. Although acting in the direction, excessive condensation may proceed in the air-cooled heat exchanger 51 serving as the main flow path for the top vapor of the tower, which may hinder the rise of the top pressure. That is, the amount of steam condensed in the air-cooled heat exchanger 51 is mainly governed by the heat transfer capacity of the air-cooled heat exchanger, and therefore the amount of condensed steam is expected when the air temperature is low and the capacity of the air-cooled heat exchanger becomes excessive. As a result, there is a risk that control of the tower top pressure becomes impossible even if the amount of steam in the bypass passage 61 is reduced.
[0009]
Further, the method shown in FIG. 5 is superior to the previous two methods in that no seal gas is used, but the pipe diameter from the distillation column 50 to the air-cooled heat exchanger 51 is a large diameter through which vapor, which is a gas, passes. For this reason, the adjustment valve 63 provided in the pipe also needs to have a large diameter, which is expensive and heavy. In addition, the air-cooled heat exchanger 51 is installed on the uppermost frame so that the generated hot air does not hit other equipment. However, the control valve 63 needs to be located at a higher location upstream of it. It is also necessary to provide a large gantry for installing the heavy control valve 63 at a higher position than the upper gantry. For this reason, in addition to an increase in equipment costs, there is a disadvantage that when the control valve 63 is enlarged, it takes time to open and close and the responsiveness is poor.
[0010]
Further, for example, when the tower top pressure is lowered due to a disturbance, the opening degree of the control valve 63 is reduced in order to reduce the supply amount of the tower top steam to the air-cooled heat exchanger 51. When the regulating valve 63 is excessively throttled due to a delay or the like, the outlet side of the air-cooled heat exchanger 51 becomes negative pressure and a suction phenomenon occurs, and the condensate in the reflux vessel 52 is drawn into the air-cooled heat exchanger 51 at a stretch. Then, the inside of the heat exchanger becomes full and the condensing capacity is lost, and on the contrary, the top pressure suddenly fluctuates to a high level, so that the control of the top pressure of the distillation column 50 is stably performed. There was a risk that it would be difficult to do.
[0011]
When the pressure equalizing pipe 64 is provided as a countermeasure, when the outlet side of the air-cooled heat exchanger 51 becomes negative pressure, the hot steam in the reflux vessel 52 flows backward through the pressure-equalizing pipe 64 and the air-cooled heat exchanger 51 Hammering (steam liquefaction occurs intermittently) may occur due to sudden cooling on the outlet side and liquefaction, and this shock may damage the air-cooled heat exchanger 51.
[0012]
The present invention has been made under such circumstances, and an object thereof is to provide a distillation apparatus and a distillation method capable of stabilizing the top pressure of the distillation column.
[0013]
[Means for Solving the Problems]
The invention of claim 1 condenses the vapor from the top of the distillation column with an air-cooled heat exchanger, stores the resulting condensate in a reflux vessel, and distills part of the condensate in the reflux vessel. In the distillation apparatus refluxed to the column, a pressure detection unit for detecting the top pressure of the distillation column, and provided between the outlet of the air-cooled heat exchanger and the reflux vessel, based on the detected pressure of the pressure detection unit A first control valve for controlling the flow rate of the condensate, and an air-cooled heat exchanger and a first control valve provided between the distillation column and the reflux vessel, and a part of the steam from the top of the distillation column A bypass passage for directly passing through the reflux vessel without intervening, and the flow rate of the steam based on the differential pressure between the upstream side and the downstream side of the bypass passage or the pressure in the reflux vessel. And a second control valve to be controlled.
[0014]
The invention of claim 2 condenses the vapor from the top of the distillation column with an air-cooled heat exchanger, stores the resulting condensate in a reflux vessel, and partially distills the condensate in the reflux vessel. In the distillation method for refluxing to the tower, the condensate condensed by the air-cooled heat exchanger is fed into the reflux vessel while controlling the flow rate based on the top pressure of the distillation tower, and the vapor from the distillation tower A part of the water is directly passed into the reflux vessel while controlling the flow rate based on the differential pressure between the upstream side and the downstream side or the pressure in the reflux vessel without using an air-cooled heat exchanger. And
[0015]
When the top pressure of the distillation column decreases due to rainfall or the like, the first control valve as the first control system is throttled, and the condensate flow rate from the outlet side of the air-cooled heat exchanger to the reflux vessel decreases. . This increases the amount of condensate that accumulates in the air-cooled heat exchanger, and the number of air-cooled heat exchanger tube groups that contribute to condensation decreases, that is, the heat transfer area decreases. The amount of steam condensed is reduced and acts to increase the tower top pressure. Further, the opening of the second control valve as the second control system becomes small because the differential pressure between the tower top pressure on the upstream side and the pressure in the reflux vessel on the downstream side becomes small, and thereby the bypass flow. The amount of steam flowing through the passage is suppressed, and acts to increase the tower top pressure. That is, the tower top pressure is increased by the combined action of the first control system for reducing the flow rate of the condensate on the outlet side of the air-cooled heat exchanger and the second control system for reducing the flow rate of steam in the bypass channel. Will be allowed to.
[0016]
When the pressure at the top of the column rises, the reverse of the above occurs, the opening of the first control valve increases, increases the flow of condensate from the outlet side of the air-cooled heat exchanger to the reflux vessel, and increases the heat transfer area. It increases and acts in the direction of condensing and reducing the pressure at the top of the tower, and the opening of the second control valve in the bypass passage is increased to increase the amount of steam flowing from the tower top to the reflux vessel. Acts in the direction of decreasing pressure. That is, the tower top pressure is obtained by the combined action of both the first control system for increasing the liquid flow rate of the condensate on the outlet side of the air-cooled heat exchanger and the second control system for increasing the flow rate of steam in the bypass channel. Will be reduced.
[0017]
And when it shakes so that a column top pressure may fall or raise greatly, said operation | movement will be repeated alternately and the column top pressure of a distillation column will be converged on predetermined pressure.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below. FIG. 1 is a block diagram showing a distillation apparatus for carrying out the method of the present invention. In the figure, 1 is a distillation column, and the top of the distillation column is connected to the inlet side of the air-cooled heat exchanger 2 (the upper end of a side frame described later) by a pipe 11. The air-cooling type heat exchanger 2 supports the pipe line 22 extending in the horizontal direction by the side frame 21 so as to have a plurality of stages (usually 4 to 6 stages), and from the uppermost line 22 to the lowermost line. Up to the pipe line 22 is connected so as to form a bent path through a flow path inside the side frame 21, and a fan 23 that blows air toward the pipe line 22 is disposed below the pipe line 22. Composed. On the outlet side of the air-cooled heat exchanger 2, that is, on the lower part of the side frame 21, a pipe 24 having a flow rate adjusting valve 25 that is a first adjusting valve is connected. It is extended to near the bottom. The distillation column 1 is provided with a pressure gauge 12 that constitutes a pressure detection unit for detecting the top pressure of the column, and the flow rate control valve 25 is connected to the control unit 13 based on the pressure detection value of the pressure gauge 12. The opening degree is controlled (first control system).
[0019]
Further, a bypass flow for flowing the steam directly to the top portion of the reflux vessel 3 without passing through the air-cooled heat exchanger 2 and the control valve 25 from the pipe 11 for sending the steam from the distillation column 1 to the air-cooled heat exchanger 2. Road 4 is branched. The bypass flow path 4 is provided with a differential pressure regulating valve 41 as a second regulating valve, and the differential pressure regulating valve 41 detects a differential pressure between the upstream side and the downstream side. The opening degree is controlled (second control system) by the control unit 43 based on the differential pressure detection value of the meter 42.
[0020]
A pipe 31 for extracting the condensate in the reflux container 3 is connected to the bottom of the reflux container 3, and this pipe 31 is connected, for example, near the top of the distillation column 1 via a pump 32 and a control valve 33. In addition to being connected, it branches between a pump 32 and a control valve 33 into a product extraction pipe 34 having a control valve 35.
[0021]
In the distillation apparatus having such a configuration, most of the steam from the top of the distillation column is sent to the air-cooled heat exchanger 2 via the pipe 11, and in the air-cooled heat exchanger 2, the fan 23 from the lower side is used. The duct 22 is cooled by blowing air, whereby the steam passing therethrough is cooled and condensed and liquefied. The obtained condensate is fed to the vicinity of the bottom of the reflux vessel 3 through the pipe 24 while the amount of liquid fed is adjusted by the flow rate control valve 25. Subsequently, a part of this condensate is refluxed to the vicinity of the top of the distillation column 1 through the pipe 31, the pump 32 and the control valve 33, and the remaining condensate is passed through the pipe 34 and the control valve 35 branched from the pipe 31. Taken out as a product.
[0022]
Here, in the first control system described above, the flow rate of the condensate in the pipe 24 on the outlet side of the air-cooled heat exchanger 2 is adjusted according to the change in the top pressure of the distillation column 1, so that the air-cooled heat exchanger 2, the number of stages of the pipe line 22 that contributes to heat exchange changes, whereby the amount of vapor condensed in the air-cooled heat exchanger 2 is adjusted, and the top pressure of the distillation column 1 is controlled. On the other hand, in the second control system, the gas directly flows from the distillation column 1 to the reflux vessel 3 through the bypass channel 4 according to the pressure difference between the top pressure of the distillation column 1 and the pressure in the gas phase portion of the reflux vessel 3. Since the flow rate of the steam is adjusted, a large fluctuation in the top pressure of the tower can be suppressed, and the change in the propagation surface of the air-cooled heat exchanger 2 due to the adjustment of the amount of condensed steam can be achieved by adjusting the steam flow rate of the bypass passage 4. In other words, the amount of overshoot is suppressed, and the control of these two systems is combined to suppress a rapid change in the tower top pressure so that the tower top pressure becomes a constant value.
[0023]
If the top pressure of the distillation column 1 becomes lower than a predetermined value during a disturbance such as rain, for example, the amount of steam condensed in the air-cooled heat exchanger 2 is larger than the amount of steam generated from the distillation column 1. In this case, the opening degree of the flow rate adjustment valve 25 that is the first control system is reduced, and the flow rate of the condensate is reduced. As a result, for example, as shown in FIG. 2, the condensate begins to accumulate in the pipe 24 and the lowermost pipe line 22 of the air-cooled heat exchanger 2 (the portion indicated by A in the figure). Since the heat transfer area (the part indicated by B in the figure), that is, the area of the part contributing to the heat exchange of the pipe line 22 is reduced, the amount of steam condensation in the air-cooled heat exchanger 2 is suppressed, and the tower top pressure is increased. Acts on direction.
[0024]
On the other hand, since the differential pressure between the pressure at the top of the bypass channel 4 and the pressure inside the reflux vessel 3 at the downstream side is small, the differential pressure regulating valve 41 as the second control system has its opening degree. Is reduced, the amount of steam flowing from the distillation column 1 to the reflux vessel 3 via the bypass channel 4 is suppressed, and acts to increase the column top pressure.
[0025]
Since the first and second control systems work together, the efficiency is high, and it is possible to suppress an abrupt pressure change due to mutual influence.
[0026]
When the tower top pressure is greatly reduced, the tower top pressure may increase excessively due to the above-described action. In that case, the rise of the condensate in the air-cooled heat exchanger 2 is suppressed as the pressure rises, and the first and second control valves 25 and 41 are opened to condense from the full line 22. The liquid is reduced, the cooling capacity of the air-cooled heat exchanger 2 is restored, and the amount of steam directly flowing from the bypass flow path 4 to the reflux vessel 3 is increased to act to reduce the tower top pressure. Then, the above control of pressure increase and decrease is repeated, and the tower top pressure converges to a predetermined pressure.
[0027]
In the present invention, the flow control valve 25 is provided on the outlet side of the air-cooled heat exchanger 2, and the differential pressure control valve 41 is provided in the bypass flow path 4, so that the top vapor or the condensate continuously flows in the system. The flow is stable, and a sudden large change in the opening of the flow rate control valve 25 or the differential pressure control valve 41 can be suppressed. Therefore, a sudden change in the top pressure can be prevented, so that the control of the top pressure can be stabilized. It can be carried out.
[0028]
In the air-cooled heat exchanger 2, for example, the condensate accumulated in the lowermost pipe line 22 is always cooled by the fan 23, so that the condensate is supercooled to a temperature lower than the condensing temperature. The solution is fed to the bottom of the reflux vessel 3 as it is. On the other hand, since the hot vapor | steam more than a condensation temperature is sent into the reflux container 3 via the bypass flow path 4, the condensate in the reflux container 3 is heated by this vapor | steam, and it heats up, The surface layer part is It rises until the boiling temperature is reached. For this reason, the surface layer portion of the condensate in the reflux vessel 3 is in an equilibrium state, whereby the pressure in the reflux vessel 3 becomes more stable, and as a result, the control of the tower top pressure is performed more stably.
[0029]
As described above, in the above-described embodiment, the flow control valve 25 is provided on the outlet side of the air-cooled heat exchanger 2, and the amount of the condensate liquid fed to the reflux vessel 3 is changed according to the tower top pressure. Since the heat transfer area of the air-cooled heat exchanger 2 can be adjusted to adjust the amount of condensation of the top vapor, the top pressure can be controlled with good responsiveness. Further, since the flow rate adjusting valve 25 is provided for adjusting the amount of the condensate fed, even if the adjusting valve 25 is excessively throttled, the outlet side of the air-cooled heat exchanger 2 becomes a negative pressure and the condensate is refluxed. There is no risk of suction from the container 3 and backflow to the inlet side of the air-cooled heat exchanger 2, and as a result, the tower top pressure can be stabilized.
[0030]
The pipe 24 on the outlet side of the air-cooled heat exchanger 2 is a pipe for condensate flow, and has a pipe diameter that is smaller than that of the pipe 11 on the inlet side of the air-cooled heat exchanger 2 that is a pipe for steam. Since it is small, the control valve 25 attached to the outlet side pipe 24 can be smaller than the control valve attached to the inlet side pipe. In addition, since the control valve 25 is installed at a position near the top of the reflux vessel 3, which is lower than the air-cooled heat exchanger 2, an inlet-side control valve that must be installed higher than the air-cooled heat exchanger 2 is installed. Compared to the case, the installation is easy, and a large pedestal or the like is not required, so that the equipment cost can be greatly reduced.
[0031]
In the above, in order to set the differential pressure between the top pressure of the distillation column and the pressure in the reflux vessel to a predetermined value, the differential pressure between the upstream side and the downstream side of the differential pressure control valve is detected, and the detected value is However, in the present invention, instead of detecting the differential pressure, the pressure in the gas phase portion in the reflux vessel is detected, and the differential pressure control valve is detected based on the detected value. The degree of opening may be adjusted. When adjusting the differential pressure control valve based on the pressure in the gas phase portion in the reflux container, if the pressure in the reflux container is too high, the differential pressure control valve 41 is throttled, and the liquid surface temperature (pressure) of the reflux container is reduced. On the contrary, if the pressure in the reflux container is too low, the opening degree of the differential pressure adjustment valve 41 is increased, and as a result, the pressure in the reflux container is controlled to be constant. Under such conditions, the tower top pressure is controlled to be constant.
[0032]
【The invention's effect】
According to the present invention, the outlet valve of the air-cooled heat exchanger is provided with a control valve that is controlled based on the tower top pressure of the distillation tower, and the differential pressure between the tower top pressure and the reflux vessel pressure is provided in the bypass channel. Alternatively, since a differential pressure control valve that is controlled based on the pressure in the reflux vessel is provided, the amount of condensate sent from the air-cooled heat exchanger is adjusted according to the tower top pressure, and the air-cooled heat exchanger By adjusting the heat transfer area, it is possible to control the amount of condensation of the top steam in the air-cooled heat exchanger, and depending on the differential pressure between the top pressure and the pressure in the reflux vessel or the pressure in the reflux vessel The amount of steam flowing through the bypass channel can be directly controlled, and the change in the top pressure of the distillation column can be controlled with good responsiveness by the combined action of both controls. In addition, there is no risk of negative pressure on the outlet side of the air-cooled heat exchanger, so there is no concern about condensate flow or backflow, and the steam and condensate flow continuously and stably in the system. Can be stably controlled, and the quality of the distilled product can be stabilized. Furthermore, since the first control valve is provided in a thin pipe for liquid circulation on the outlet side of the air-cooled heat exchanger, it can be small in size with good responsiveness, and it is easy to install because the installation place is low. In addition, there is no need for a large mounting stand at a high place, and the equipment cost can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a distillation apparatus for carrying out the distillation method of the present invention.
FIG. 2 is an explanatory diagram for explaining the operation of an air-cooled heat exchanger.
FIG. 3 is a configuration diagram of a conventional distillation apparatus.
FIG. 4 is a configuration diagram of a conventional distillation apparatus.
FIG. 5 is a configuration diagram of a conventional distillation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Distillation tower 2 Air-cooling type heat exchanger 25 Flow control valve 3 Reflux vessel 4 Bypass flow path 41 Differential pressure control valve

Claims (2)

蒸留塔塔頂からの蒸気を空冷式熱交換器で凝縮し、得られた凝縮液を還流容器に貯留すると共に、この還流容器内の凝縮液の一部を前記蒸留塔に還流する蒸留装置において、
前記蒸留塔の塔頂圧力を検出する圧力検出部と、
前記空冷式熱交換器の出口と還流容器との間に設けられ、前記圧力検出部の検出圧力に基づいて凝縮液の流量を制御する第1の調節弁と、
前記蒸留塔と還流容器との間に設けられ、蒸留塔塔頂からの蒸気の一部を空冷式熱交換器及び第1の調節弁を介さずに還流容器に直接通流するためのバイパス流路と、
前記バイパス流路に設けられ、その上流側と下流側との差圧または還流容器内の圧力に基づいて前記蒸気の流量を制御する第2の調節弁と、
を備えることを特徴とする蒸留装置。
In a distillation apparatus for condensing the vapor from the top of the distillation column with an air-cooled heat exchanger, storing the resulting condensate in a reflux vessel, and refluxing part of the condensate in the reflux vessel to the distillation column ,
A pressure detector for detecting the top pressure of the distillation column;
A first control valve that is provided between the outlet of the air-cooled heat exchanger and the reflux vessel and controls the flow rate of the condensate based on the detected pressure of the pressure detector;
A bypass flow provided between the distillation column and the reflux vessel, for directly passing a part of the vapor from the top of the distillation column to the reflux vessel without passing through the air-cooled heat exchanger and the first control valve. Road,
A second control valve that is provided in the bypass flow path and controls the flow rate of the steam based on the differential pressure between the upstream side and the downstream side or the pressure in the reflux vessel;
A distillation apparatus comprising:
蒸留塔塔頂からの蒸気を空冷式熱交換器で凝縮し、得られた凝縮液を還流容器に貯留すると共に、この還流容器内の凝縮液の一部を前記蒸留塔に還流する蒸留方法において、
前記空冷式熱交換器により凝縮された凝縮液を、蒸留塔の塔頂圧力に基づいて流量を制御しながら還流容器内へ送液すると共に、蒸留塔からの蒸気の一部を、空冷式熱交換器を介さずにその上流側と下流側との差圧または還流容器内の圧力に基づいて流量を制御しながら、還流容器内へ直接通流することを特徴とする蒸留方法。
In the distillation method of condensing the vapor from the top of the distillation column with an air-cooled heat exchanger, storing the resulting condensate in a reflux vessel, and refluxing a part of the condensate in the reflux vessel to the distillation column. ,
The condensate condensed by the air-cooled heat exchanger is fed into the reflux vessel while controlling the flow rate based on the top pressure of the distillation tower, and a part of the vapor from the distillation tower is cooled by air-cooling heat. A distillation method characterized by flowing directly into a reflux vessel while controlling a flow rate based on a differential pressure between the upstream side and the downstream side or a pressure in the reflux vessel without using an exchanger.
JP20292095A 1995-07-17 1995-07-17 Distillation apparatus and distillation method Expired - Lifetime JP3673565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20292095A JP3673565B2 (en) 1995-07-17 1995-07-17 Distillation apparatus and distillation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20292095A JP3673565B2 (en) 1995-07-17 1995-07-17 Distillation apparatus and distillation method

Publications (2)

Publication Number Publication Date
JPH0929001A JPH0929001A (en) 1997-02-04
JP3673565B2 true JP3673565B2 (en) 2005-07-20

Family

ID=16465357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20292095A Expired - Lifetime JP3673565B2 (en) 1995-07-17 1995-07-17 Distillation apparatus and distillation method

Country Status (1)

Country Link
JP (1) JP3673565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159371A1 (en) * 2018-02-19 2019-08-22 日揮株式会社 Natural gas liquefier

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725360B2 (en) * 2006-02-27 2011-07-13 住友化学株式会社 Distillation system and method for controlling top pressure of distillation column in distillation system
JP5026774B2 (en) * 2006-11-28 2012-09-19 大陽日酸株式会社 Distillation equipment
US8524046B2 (en) * 2010-03-30 2013-09-03 Uop Llc Distillation column pressure control
JP5582044B2 (en) * 2010-05-12 2014-09-03 三菱化学株式会社 Distillation tower pressure control method
GB201223353D0 (en) 2012-12-24 2013-02-06 Seres Healthcare Ltd Portable level sensor
JP6368179B2 (en) * 2014-07-09 2018-08-01 千代田化工建設株式会社 Distillation equipment and distillation method
US10428006B2 (en) 2015-09-30 2019-10-01 Daicel Corporation Method and apparatus for producing acetic acid
CN106334328B (en) * 2016-09-18 2019-03-05 宁波巨化化工科技有限公司 A kind of differential pressure type thermal coupling rectification device
CN110194964B (en) * 2018-02-27 2024-04-26 中国石油化工股份有限公司 System and method for utilizing heat of tower top oil gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159371A1 (en) * 2018-02-19 2019-08-22 日揮株式会社 Natural gas liquefier

Also Published As

Publication number Publication date
JPH0929001A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JP3673565B2 (en) Distillation apparatus and distillation method
US7370484B2 (en) Variable evaporator control for a gas dryer
JPH11501114A (en) Feedforward control of expansion valve
US7487955B1 (en) Passive desuperheater
JPS60162170A (en) Cooling device and method of controlling flow rate of refrigerant for said device
CA1121803A (en) Heat reclaiming method and apparatus
KR102513055B1 (en) Method of adjusting duty of heat exchange in heat integrated distillation column
WO2007133071A2 (en) Bottom-fed steam generator with separator and downcomer conduit
US4353213A (en) Side stream type condensing system and method of operating the same
CN1368922A (en) Pressure control system improving power plant efficiency
EP1184627A1 (en) Gas feed-through comprising an indoor heat exchange associated with a heat pump
EP2959240B1 (en) A heating, ventilation and air conditioning (hvac) system and a method of regulating flow of refrigerant to the falling film evaporator of the hvac system
CA2269556C (en) Waste heat boiler with variable output
US4240263A (en) Refrigeration system - method and apparatus
RU2751049C1 (en) Plant for natural gas liquefaction
JP4725360B2 (en) Distillation system and method for controlling top pressure of distillation column in distillation system
JP4540315B2 (en) Cryogenic liquid heating method and apparatus
US4282926A (en) Cooling of fluid streams
CN102575619B (en) The low-yield waste gas utilizing direct contact type condenser cools down
JPH05222904A (en) Control device for turbine exhaust condensing system
CN117707308B (en) Phase-change immersed liquid cooling dynamic regulation and control system of server
JP2005061484A (en) Cryogenic liquid heating method and its device
WO2018179204A1 (en) Cooling system and refrigerant control method for cooling system
Harrison et al. Trouble-Shooting Distillation Columns-Part 4: Auxiliary Equipment
JPS61265489A (en) Water-condensing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term