JP3564476B2 - Uninterruptible power supply control circuit - Google Patents

Uninterruptible power supply control circuit Download PDF

Info

Publication number
JP3564476B2
JP3564476B2 JP32144896A JP32144896A JP3564476B2 JP 3564476 B2 JP3564476 B2 JP 3564476B2 JP 32144896 A JP32144896 A JP 32144896A JP 32144896 A JP32144896 A JP 32144896A JP 3564476 B2 JP3564476 B2 JP 3564476B2
Authority
JP
Japan
Prior art keywords
power supply
output
uninterruptible power
voltage
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32144896A
Other languages
Japanese (ja)
Other versions
JPH10164773A (en
Inventor
一喜 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP32144896A priority Critical patent/JP3564476B2/en
Publication of JPH10164773A publication Critical patent/JPH10164773A/en
Application granted granted Critical
Publication of JP3564476B2 publication Critical patent/JP3564476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、無停電電源システムを構成する無停電電源装置の制御回路に関する。
【0002】
【従来の技術】
図3は、この種の無停電電源システムの従来の構成例を示す回路図である。
図3において、この無停電電源システムは交流電源としての商用電源1と、商用電源1の出力に接続された電磁接触器2と、主回路11,制御回路20からなる無停電電源装置10と、無停電電源装置10の出力に接続された電磁接触器15と、この無停電電源システムの負荷3とから構成され、図示しないシーケンス回路により電磁接触器2と電磁接触器15とが交互に励磁されることで負荷3に電力が供給される。
【0003】
また前記主回路11は、整流電源,蓄電池などの直流電源12と、半導体スイッチ素子などからなるインバータ13と、インバータ13の出力電圧の波形整形をするLCフィルタ14とで構成される。
さらに前記制御回路20は、無停電電源装置10の出力電圧と商用電源1の電圧との位相差を検出する位相差検出器21と、検出された位相差のオフセット量を補正するオフセット設定器22と、位相差検出器21の出力とオフセット設定器22の設定値とを加算する加算演算器23と、加算演算器23の出力に基づいて無停電電源装置10の出力の電圧の位相を調整する周波数調節器24と、電圧指令器25の指令値(交流量)に基づいて、無停電電源装置10の出力の電圧を調整する電圧調節器26と、周波数調節器24の出力と電圧調節器26の出力とにより無停電電源装置10の出力電圧の振幅,周波数,位相を商用電源1の電圧,周波数に同期させるための駆動信号をインバータ13に与えるPWM制御回路27とで構成される。
【0004】
上述の無停電電源装置10の制御回路20を形成するそれぞれの構成要素は、公知の技術を用いて構築できるので、その詳細な動作説明を省略する。
【0005】
【発明が解決しようとする課題】
上記従来の無停電電源装置10の出力電圧と商用電源1の電圧との位相差を検出する位相差検出器21においては、無停電電源装置10の出力電圧が有する電圧リプルや波形歪みを除去するフィルタを備え、このフィルタの出力のゼロクロス点と商用電源1の電圧のゼロクロス点とにより位相差を検出し、該フィルタによる無停電電源装置10の出力電圧の位相遅れは、オフセット設定器22のオフセット量により調整を行っていた。
【0006】
しかしながら、このオフセット量の調整は、例えば、オシロスコープなどにより無停電電源装置10の出力電圧の波形と商用電源1の電圧の波形とを観測して行うようにしていたが、上述の如く無停電電源装置10の出力電圧が有する電圧リプルや波形歪みのために、該オフセット量を精度よく調整するためには多大な労力と熟練が必要であった。
【0007】
この発明の目的は、上記問題点を解決する無停電電源装置の制御回路を提供することにある。
【0008】
【課題を解決するための手段】
この第1の発明は、商用電源などの交流電源の出力に接続された第1電磁接触器の接点と、無停電電源装置の出力に接続された第2電磁接触器の接点とを交互に閉路させ、閉路した第1又は第2電磁接触器の接点を介して負荷に給電する無停電電源システムであって、無停電電源装置の出力電圧の位相を前記交流電源の電圧の位相に同期させる無停電電源装置の制御回路において、
無停電電源装置の出力電圧と前記交流電源の電圧との位相差を検出する位相差検出器と、前記負荷に流れる電流と無停電電源装置の出力電流とから横流を検出する横流検出器と、該横流と無停電電源装置の出力電圧の指令値とから横流の有効電力成分を検出する乗算演算器と、該有効電力成分の積分演算をして出力する積分演算器と、乗算演算器の出力から積分演算器の入力の経路に挿入されたスイッチと、位相差検出器の出力値と積分演算器の出力値とを加算する加算演算器と、加算演算器の出力に基づいて、無停電電源装置の出力の電圧の位相を調整する周波数調節器と、第1電磁接触器の接点を介して負荷に給電中に、第2電磁接触器に複数回の寸動動作を行わせ、この寸動動作により第2電磁接触器の接点が閉路している期間内の所定の時間、前記スイッチの接点を閉路させる操作回路とを備える。
【0009】
また第2の発明は、複数(n)台の無停電電源装置それぞれの出力に接続されたn個の電磁接触器の接点のいずれか1個以上を閉路させ、閉路したそれぞれの電磁接触器の接点を介して負荷に給電する無停電電源システムであって、それぞれの無停電電源装置の出力電圧の位相を負荷の端子電圧の位相に同期させるそれぞれの無停電電源装置の制御回路において、
この無停電電源装置の出力電圧と負荷の電圧との位相差を検出する位相差検出器と、前記負荷に流れる電流とこの無停電電源装置の出力電流とから横流を検出する横流検出器と、該横流とこの無停電電源装置の出力電圧の指令値とから横流の有効電力成分を検出する乗算演算器と、該有効電力成分の積分演算をして出力する積分演算器と、乗算演算器の出力から積分演算器の入力への経路に挿入されたスイッチと、位相差検出器の出力値と積分演算器の出力値とを加算する加算演算器と、加算演算器の出力に基づいて、この無停電電源装置の出力の電圧の位相を調整する周波数調節器と、前記n個の電磁接触器の内、接点が開路しているいずれか1個の電磁接触器に複数回の寸動動作を行わせ、この寸動動作により該電磁接触器の接点が閉路している期間内の所定の時間、前記スイッチを閉路させる操作回路とを備える。
【0010】
この発明によれば、前記負荷に流れる電流と無停電電源装置の出力電流とから横流を検出し、該横流とこの無停電電源装置の出力電圧の指令値(交流量)とから横流の有効電力成分を検出し、該有効電力成分の積分演算をし、この積分演算値を前記位相差検出器の出力に加算することにより、前記位相差の調整を精度よく、自動的に行うことができる。
【0011】
なお前記積分演算器の出力は、前記位相差の調整量を保持することができるので、この無停電電源システムを立ち上げた後に、数回程度、前記操作回路により該積分演算器の演算動作をさせればよい。
【0012】
【発明の実施の形態】
図1は、この発明の第1の実施例を示す無停電電源システムの回路構成図であり、図3に示した従来例と同一機能を有するものには同一符号を付して、その説明を省略する。
すなわち図1において、この無停電電源システムは商用電源1,電磁接触器2,15の他に、負荷3に流れる電流を検出するCT4と、主回路10と制御回路31とからなる無停電電源装置30と、無停電電源装置30の出力電流を検出するCT16とを備えている。
【0013】
また、制御回路31は位相差検出器21,加算演算器23,周波数調節器24,電圧指令値25,電圧調節器26,PWM制御回路27の他に、CT4の二次電流とCT16の二次電流とから横流を検出する横流検出器32と、検出した横流と電圧指令器25の指令値(交流量)とを乗算演算して該横流の有効電力成分を出力する乗算演算器33と、該有効成分の積分演算をする積分演算器34と、スイッチ35と、電磁接触器2の接点を介して負荷3に給電中に、電磁接触器15に複数回の寸動動作を行わせ、この寸動動作により電磁接触器15の接点が閉路している期間内の所定の時間、スイッチ35の接点を閉路させる操作回路36とを備えている。
【0014】
この無停電電源装置30の位相差検出器21が検出した位相差のオフセットに対する調整操作を以下に説明をする。
図1に示す如く、商用電源1から閉路した電磁接触器2を介して、無負荷状態の負荷3に給電中に、操作回路36により電磁接触器15に複数回の寸動動作を行わせ、この寸動動作により電磁接触器15の接点が閉路している期間(例えば、50〜60ミリ秒程度)に、商用電源1の電圧と無停電電源装置30の出力電圧とに位相差があると、横流検出器32の出力に横流が検出され、この横流と、商用電源1の電圧すなわち負荷3の端子電圧と等価である電圧指令器25の指令値(交流力)との乗算演算値は、この横流の有効電力成分が出力されることは、公知の技術である。
【0015】
前記電磁接触器15の接点が閉路している期間内の所定の時間(例えば、5ミリ秒程度)、スイッチ35の接点を閉路させると、積分演算器34は前記有効電力成分の積分演算を行い、その後スイッチ35の接点を開路すると積分演算器34の出力値は直前の値を保持し、前記寸動動作を2〜3回行うことにより、位相差検出器21が検出した位相差のオフセット量が調整される。
【0016】
なお、積分演算器34の積分演算を動作させる期間を5ミリ秒程度としたのは、前記位相差のオフセット量が加算演算器23を介して調整された後は、位相差検出器21の出力に基づいて、周波数調節器24が無停電電源装置30の出力の電圧の位相を調整するからである。
図2は、この発明の第2の実施例を示す無停電電源システムの回路構成図であり、図1に示したこの発明の第1の実施例と同一機能を有するものには同一符号を付して、その説明を省略する。
【0017】
すなわち図1と異なる点は、この無停電電源システムは無停電電源装置30と、無停電電源装置30と同一構成の無停電電源装置40,50の計3台構成であり、電磁接触器15,41,51を介して負荷3に給電し、無停電電源装置40,50それぞれの出力電流とCT4の二次電流とからそれぞれの無停電電源装置40,50の出力電圧の位相と負荷3の端子電圧の位相との位相差のオフセット量の調整動作が、上述の如く行われた後に、これらの無停電電源装置30,40,50が並列運転を行うことである。
【0018】
【発明の効果】
この発明によれば、無停電電源システムの負荷に流れる電流と無停電電源装置の出力電流とから横流を検出し、該横流とこの無停電電源装置の出力電圧の指令値(交流量)とから横流の有効電力成分を検出し、該有効電力成分の積分演算をし、この積分演算値を前記位相差検出器の出力に加算することにより、前記位相差の調整を精度よく、自動的に行うことができる。
【0019】
特に、この無停電電源システムの据え付け場所においても、何ら特別な測定器などを使用することなく調整ができる。
【図面の簡単な説明】
【図1】この発明の第1の実施例を示す無停電電源システムの回路構成図
【図2】この発明の第2の実施例を示す無停電電源システムの回路構成図
【図3】従来例を示す無停電電源システムの回路構成図
【符号の説明】
1…商用電源、2…電磁接触器、3…負荷、4…CT、10,30,40,50…無停電電源装置、11…主回路、12…直流電源、13…インバータ、14…LCフィルタ、15,41,51…電磁接触器、16…CT、20,31…制御回路、21…位相差検出器、22…オフセット設定器、23…加算演算器、24…周波数調節器、25…電圧指令器、26…電圧調節器、27…PWM制御回路、32…横流検出器、33…乗算演算器、34…積分演算器、35…スイッチ、36…操作回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control circuit of an uninterruptible power supply device constituting an uninterruptible power supply system.
[0002]
[Prior art]
FIG. 3 is a circuit diagram showing a conventional configuration example of this type of uninterruptible power supply system.
In FIG. 3, the uninterruptible power supply system includes a commercial power supply 1 as an AC power supply, an electromagnetic contactor 2 connected to an output of the commercial power supply 1, an uninterruptible power supply 10 including a main circuit 11 and a control circuit 20, The electromagnetic contactor 15 is connected to the output of the uninterruptible power supply 10 and the load 3 of the uninterruptible power supply system. The electromagnetic contactor 2 and the electromagnetic contactor 15 are alternately excited by a sequence circuit (not shown). As a result, power is supplied to the load 3.
[0003]
The main circuit 11 includes a DC power supply 12 such as a rectified power supply and a storage battery, an inverter 13 including a semiconductor switch element, and an LC filter 14 for shaping the output voltage of the inverter 13.
Further, the control circuit 20 includes a phase difference detector 21 for detecting a phase difference between the output voltage of the uninterruptible power supply 10 and the voltage of the commercial power supply 1, and an offset setting unit 22 for correcting an offset amount of the detected phase difference. , An addition operator 23 that adds the output of the phase difference detector 21 and the set value of the offset setting device 22, and adjusts the phase of the voltage of the output of the uninterruptible power supply 10 based on the output of the addition operator 23. A frequency adjuster 24, a voltage adjuster 26 for adjusting the output voltage of the uninterruptible power supply 10 based on a command value (AC amount) of a voltage commander 25, and an output of the frequency adjuster 24 and the voltage adjuster 26 And a PWM control circuit 27 that supplies a drive signal to the inverter 13 to synchronize the amplitude, frequency, and phase of the output voltage of the uninterruptible power supply 10 with the voltage and frequency of the commercial power supply 1.
[0004]
Since each component forming the control circuit 20 of the above-described uninterruptible power supply 10 can be constructed using a known technique, detailed description of its operation is omitted.
[0005]
[Problems to be solved by the invention]
In the phase difference detector 21 for detecting the phase difference between the output voltage of the conventional uninterruptible power supply 10 and the voltage of the commercial power supply 1, the voltage ripple and waveform distortion of the output voltage of the uninterruptible power supply 10 are removed. A phase difference is detected based on the zero-cross point of the output of the filter and the zero-cross point of the voltage of the commercial power supply 1. The phase lag of the output voltage of the uninterruptible power supply 10 by the filter is determined by the offset of the offset setting unit 22. The adjustment was made according to the amount.
[0006]
However, the adjustment of the offset amount is performed by observing the waveform of the output voltage of the uninterruptible power supply 10 and the waveform of the voltage of the commercial power supply 1 using an oscilloscope or the like. Due to the voltage ripple and waveform distortion of the output voltage of the device 10, a great deal of labor and skill were required to adjust the offset amount with high accuracy.
[0007]
An object of the present invention is to provide a control circuit for an uninterruptible power supply that solves the above problems.
[0008]
[Means for Solving the Problems]
This first invention alternately closes a contact of a first electromagnetic contactor connected to an output of an AC power supply such as a commercial power supply and a contact of a second electromagnetic contactor connected to an output of an uninterruptible power supply. An uninterruptible power supply system for supplying power to a load via a contact of a closed first or second electromagnetic contactor, wherein a phase of an output voltage of the uninterruptible power supply is synchronized with a phase of a voltage of the AC power supply. In the control circuit of the power failure power supply,
A phase difference detector that detects a phase difference between the output voltage of the uninterruptible power supply and the voltage of the AC power supply, and a cross current detector that detects a cross current from the current flowing through the load and the output current of the uninterruptible power supply, A multiplying operation unit for detecting an active power component of the cross current from the cross current and a command value of the output voltage of the uninterruptible power supply, an integration operation unit for performing an integration operation of the active power component, and outputting the output; A switch inserted in the input path of the integrating arithmetic unit, an adding arithmetic unit for adding the output value of the phase difference detector and the output value of the integrating arithmetic unit, and an uninterruptible power supply based on the output of the adding arithmetic unit. A frequency adjuster for adjusting the phase of the voltage of the output of the device, and a second electromagnetic contactor performing a plurality of inching operations while supplying power to the load via the contacts of the first electromagnetic contactor. In the period during which the contact of the second electromagnetic contactor is closed by operation Time, and an operation circuit for closing the contacts of the switch.
[0009]
Further, the second invention closes at least one of the contacts of the n electromagnetic contactors connected to the respective outputs of the plurality of (n) uninterruptible power supply devices, and closes each of the closed electromagnetic contactors. An uninterruptible power supply system for supplying power to a load via a contact, wherein a control circuit of each uninterruptible power supply synchronizes a phase of an output voltage of each uninterruptible power supply with a phase of a terminal voltage of the load.
A phase difference detector that detects a phase difference between the output voltage of the uninterruptible power supply and the voltage of the load, a cross current detector that detects a cross current from the current flowing through the load and the output current of the uninterruptible power supply, A multiplying operation unit for detecting an active power component of the cross current from the cross current and a command value of an output voltage of the uninterruptible power supply, an integration operation unit for performing an integration operation of the active power component and outputting the multiplication operation unit; A switch inserted in the path from the output to the input of the integration calculator, an addition calculator for adding the output value of the phase difference detector and the output value of the integration calculator, and a switch based on the output of the addition calculator. A frequency adjuster that adjusts the phase of the voltage of the output of the uninterruptible power supply, and a plurality of inching operations performed on any one of the n electromagnetic contactors whose contacts are open, The contact of the electromagnetic contactor is closed by this inching operation. A predetermined time in periods, and an operation circuit for closing said switch.
[0010]
According to this invention, a cross current is detected from the current flowing to the load and the output current of the uninterruptible power supply, and the cross-flow active power is determined from the cross current and the command value (AC amount) of the output voltage of the uninterruptible power supply. By detecting the component, performing an integration operation on the active power component, and adding the integration operation value to the output of the phase difference detector, the phase difference can be automatically and accurately adjusted.
[0011]
Since the output of the integral computing unit can hold the adjustment amount of the phase difference, after starting up the uninterruptible power supply system, the operation of the integrating computing unit is performed several times by the operation circuit. You can do it.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit configuration diagram of an uninterruptible power supply system according to a first embodiment of the present invention. Components having the same functions as those of the conventional example shown in FIG. Omitted.
That is, in FIG. 1, this uninterruptible power supply system includes a commercial power supply 1, an electromagnetic contactor 2, 15, a CT 4 for detecting a current flowing through a load 3, a main circuit 10 and a control circuit 31. 30 and a CT 16 for detecting an output current of the uninterruptible power supply 30.
[0013]
The control circuit 31 includes a phase difference detector 21, an addition calculator 23, a frequency adjuster 24, a voltage command value 25, a voltage adjuster 26, a PWM control circuit 27, a secondary current of CT4 and a secondary of CT16. A cross current detector 32 for detecting a cross current from the current, a multiplication calculator 33 for multiplying the detected cross current by a command value (AC amount) of the voltage commander 25 and outputting an active power component of the cross current; While the power is supplied to the load 3 via the integration calculator 34 for performing the integration calculation of the effective component, the switch 35, and the contact of the electromagnetic contactor 2, the electromagnetic contactor 15 is caused to perform the jogging operation a plurality of times. An operation circuit for closing the contact of the switch for a predetermined time within a period in which the contact of the electromagnetic contactor is closed by a dynamic operation.
[0014]
The operation for adjusting the phase difference offset detected by the phase difference detector 21 of the uninterruptible power supply 30 will be described below.
As shown in FIG. 1, the operation circuit 36 causes the electromagnetic contactor 15 to perform a plurality of inching operations while the power is supplied to the load 3 in a no-load state from the commercial power supply 1 via the closed electromagnetic contactor 2. If there is a phase difference between the voltage of the commercial power supply 1 and the output voltage of the uninterruptible power supply 30 during a period (for example, about 50 to 60 milliseconds) during which the contact of the electromagnetic contactor 15 is closed due to the inching operation. , A cross current is detected in the output of the cross current detector 32, and a multiplication operation value of the cross current and a command value (AC force) of the voltage command device 25 equivalent to the voltage of the commercial power supply 1, that is, the terminal voltage of the load 3, is Outputting this cross-flow active power component is a known technique.
[0015]
When the contact of the switch 35 is closed for a predetermined time (for example, about 5 milliseconds) within the period in which the contact of the electromagnetic contactor 15 is closed, the integration calculator 34 performs integration of the active power component. After that, when the contact of the switch 35 is opened, the output value of the integration calculator 34 retains the immediately preceding value, and the inching operation is performed two or three times, whereby the phase difference offset amount detected by the phase difference detector 21 is detected. Is adjusted.
[0016]
The reason why the period during which the integration operation of the integration operation unit 34 is performed is set to about 5 milliseconds is that after the offset amount of the phase difference is adjusted via the addition operation unit 23, the output of the phase difference detector 21 is adjusted. This is because the frequency adjuster 24 adjusts the phase of the voltage of the output of the uninterruptible power supply 30 based on
FIG. 2 is a circuit configuration diagram of an uninterruptible power supply system showing a second embodiment of the present invention. Components having the same functions as those of the first embodiment of the present invention shown in FIG. The description is omitted.
[0017]
That is, the difference from FIG. 1 is that this uninterruptible power supply system has an uninterruptible power supply 30 and uninterruptible power supplies 40 and 50 having the same configuration as the uninterruptible power supply 30, that is, a total of three units. Power is supplied to the load 3 via the power supply 41, 51, and the output current of each uninterruptible power supply 40, 50 and the secondary current of the CT 4 are used to determine the phase of the output voltage of the power supply 40, 50 and the terminal of the load 3. After the operation of adjusting the offset amount of the phase difference from the voltage phase is performed as described above, the uninterruptible power supply devices 30, 40, and 50 perform parallel operation.
[0018]
【The invention's effect】
According to the present invention, a cross current is detected from the current flowing to the load of the uninterruptible power supply system and the output current of the uninterruptible power supply, and the cross current is detected from the command value (AC amount) of the output voltage of the uninterruptible power supply. By detecting the cross-flow active power component, performing an integral operation of the active power component, and adding the integral operation value to the output of the phase difference detector, the phase difference is automatically and accurately adjusted. be able to.
[0019]
In particular, the adjustment can be made without using any special measuring device even at the place where the uninterruptible power supply system is installed.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of an uninterruptible power supply system showing a first embodiment of the present invention; FIG. 2 is a circuit configuration diagram of an uninterruptible power supply system showing a second embodiment of the present invention; FIG. Circuit diagram of uninterruptible power supply system showing
DESCRIPTION OF SYMBOLS 1 ... Commercial power supply, 2 ... Magnetic contactor, 3 ... Load, 4 ... CT, 10, 30, 40, 50 ... Uninterruptible power supply, 11 ... Main circuit, 12 ... DC power supply, 13 ... Inverter, 14 ... LC filter , 15, 41, 51: electromagnetic contactor, 16: CT, 20, 31: control circuit, 21: phase difference detector, 22: offset setter, 23: addition operator, 24: frequency adjuster, 25: voltage Commander, 26: voltage regulator, 27: PWM control circuit, 32: cross current detector, 33: multiplication operator, 34: integration operator, 35: switch, 36: operation circuit.

Claims (2)

商用電源などの交流電源の出力に接続された第1電磁接触器の接点と、無停電電源装置の出力に接続された第2電磁接触器の接点とを交互に閉路させ、閉路した第1又は第2電磁接触器の接点を介して負荷に給電する無停電電源システムであって、
無停電電源装置の出力電圧の位相を前記交流電源の電圧の位相に同期させる無停電電源装置の制御回路において、
無停電電源装置の出力電圧と前記交流電源の電圧との位相差を検出する位相差検出器と、
前記負荷に流れる電流と無停電電源装置の出力電流とから横流を検出する横流検出器と、
該横流と無停電電源装置の出力電圧の指令値とから横流の有効電力成分を検出する乗算演算器と、
該有効電力成分の積分演算をして出力する積分演算器と、
乗算演算器の出力から積分演算器の入力の経路に挿入されたスイッチと、
位相差検出器の出力値と積分演算器の出力値とを加算する加算演算器と、
加算演算器の出力に基づいて、無停電電源装置の出力の電圧の位相を調整する周波数調節器と、
第1電磁接触器の接点を介して負荷に給電中に、第2電磁接触器に複数回の寸動動作を行わせ、この寸動動作により第2電磁接触器の接点が閉路している期間内の所定の時間、前記スイッチの接点を閉路させる操作回路とを備えたことを特徴とする無停電電源装置の制御回路。
The contact of the first electromagnetic contactor connected to the output of an AC power supply such as a commercial power supply and the contact of the second electromagnetic contactor connected to the output of the uninterruptible power supply are alternately closed, and the closed first or An uninterruptible power supply system for supplying power to a load via a contact of a second electromagnetic contactor,
In the control circuit of the uninterruptible power supply that synchronizes the phase of the output voltage of the uninterruptible power supply with the phase of the voltage of the AC power supply,
A phase difference detector that detects a phase difference between the output voltage of the uninterruptible power supply and the voltage of the AC power supply,
A cross current detector that detects a cross current from the current flowing through the load and the output current of the uninterruptible power supply,
A multiplying operation unit for detecting a cross-flow active power component from the cross-flow and a command value of an output voltage of the uninterruptible power supply;
An integration calculator that performs integration calculation of the active power component and outputs the integration calculation;
A switch inserted from the output of the multiplication operator to the input path of the integration operator,
An addition calculator for adding the output value of the phase difference detector and the output value of the integration calculator,
A frequency adjuster that adjusts a phase of a voltage of an output of the uninterruptible power supply based on an output of the addition arithmetic unit;
While the power is being supplied to the load via the contact of the first electromagnetic contactor, the second electromagnetic contactor performs a plurality of inching operations, and the period in which the contact of the second electromagnetic contactor is closed by the inching operation A control circuit for closing a contact of the switch for a predetermined time within the control circuit.
複数(n)台の無停電電源装置それぞれの出力に接続されたn個の電磁接触器の接点のいずれか1個以上を閉路させ、閉路したそれぞれの電磁接触器の接点を介して負荷に給電する無停電電源システムであって、
それぞれの無停電電源装置の出力電圧の位相を負荷の端子電圧の位相に同期させるそれぞれの無停電電源装置の制御回路において、
この無停電電源装置の出力電圧と負荷の電圧との位相差を検出する位相差検出器と、
前記負荷に流れる電流とこの無停電電源装置の出力電流とから横流を検出する横流検出器と、
該横流とこの無停電電源装置の出力電圧の指令値とから横流の有効電力成分を検出する乗算演算器と、
該有効電力成分の積分演算をして出力する積分演算器と、
乗算演算器の出力から積分演算器の入力への経路に挿入されたスイッチと、
位相差検出器の出力値と積分演算器の出力値とを加算する加算演算器と、
加算演算器の出力に基づいて、この無停電電源装置の出力の電圧の位相を調整する周波数調節器と、
前記n個の電磁接触器の内、接点が開路しているいずれか1個の電磁接触器に複数回の寸動動作を行わせ、この寸動動作により該電磁接触器の接点が閉路している期間内の所定の時間、前記スイッチを閉路させる操作回路とを備えたことを特徴とする無停電電源装置の制御回路。
At least one of the contacts of the n electromagnetic contactors connected to the output of each of the plurality (n) of uninterruptible power supplies is closed, and power is supplied to the load via the contacts of the closed electromagnetic contactors. An uninterruptible power supply system
In the control circuit of each uninterruptible power supply that synchronizes the phase of the output voltage of each uninterruptible power supply with the phase of the terminal voltage of the load,
A phase difference detector that detects a phase difference between an output voltage of the uninterruptible power supply and a voltage of the load;
A cross current detector for detecting a cross current from the current flowing through the load and the output current of the uninterruptible power supply,
A multiplying operation unit for detecting an active power component of the cross current from the cross current and a command value of the output voltage of the uninterruptible power supply;
An integration calculator that performs integration calculation of the active power component and outputs the integration calculation;
A switch inserted in the path from the output of the multiplication operator to the input of the integration operator,
An addition calculator for adding the output value of the phase difference detector and the output value of the integration calculator,
A frequency adjuster that adjusts a phase of a voltage of an output of the uninterruptible power supply based on an output of the addition arithmetic unit;
Out of the n electromagnetic contactors, one of the electromagnetic contactors whose contacts are open is caused to perform a plurality of inching operations, and the inching operation closes the contacts of the electromagnetic contactor. And a control circuit for closing the switch for a predetermined time within a given period.
JP32144896A 1996-12-02 1996-12-02 Uninterruptible power supply control circuit Expired - Fee Related JP3564476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32144896A JP3564476B2 (en) 1996-12-02 1996-12-02 Uninterruptible power supply control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32144896A JP3564476B2 (en) 1996-12-02 1996-12-02 Uninterruptible power supply control circuit

Publications (2)

Publication Number Publication Date
JPH10164773A JPH10164773A (en) 1998-06-19
JP3564476B2 true JP3564476B2 (en) 2004-09-08

Family

ID=18132680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32144896A Expired - Fee Related JP3564476B2 (en) 1996-12-02 1996-12-02 Uninterruptible power supply control circuit

Country Status (1)

Country Link
JP (1) JP3564476B2 (en)

Also Published As

Publication number Publication date
JPH10164773A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
WO2015198448A1 (en) Uninterruptible power supply
JPH08126228A (en) Power supply
JP2006230137A (en) Converter controller
JP3564476B2 (en) Uninterruptible power supply control circuit
JP2005033890A (en) Control method and control circuit of uninterruptible power supply system
JPH09121472A (en) Ac power supply apparatus
JPS59201697A (en) Synchronization changer
JP2913889B2 (en) Predictive instantaneous value control method for PWM inverter
JPS6114737B2 (en)
JPH0740225Y2 (en) Overcurrent tester
JPS6338945B2 (en)
JPS648528B2 (en)
RU2281524C2 (en) Electrified electrical-machine test facility
JPH07257238A (en) Voltage compensation device for ac electricity railway
JPS6223332A (en) Parallel operation controller for generator
JPH069596Y2 (en) Synchronous control circuit for inverter device
JPH10336904A (en) Synchronizer for batch processing a plurality of generators
JPS611292A (en) Power converter
JP2002064945A (en) Power converter
JP2000139029A (en) Control of synchronization in power facility
JP4606999B2 (en) Power supply
JPS5932362A (en) Dc power supply
JPH02303326A (en) Power system fluctuation suppressing device and method
JPS6022474A (en) Parallel power source system by inverter
JPS649819B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees