JP3561186B2 - Inductive watt-hour meter with average current measurement function - Google Patents

Inductive watt-hour meter with average current measurement function Download PDF

Info

Publication number
JP3561186B2
JP3561186B2 JP25722299A JP25722299A JP3561186B2 JP 3561186 B2 JP3561186 B2 JP 3561186B2 JP 25722299 A JP25722299 A JP 25722299A JP 25722299 A JP25722299 A JP 25722299A JP 3561186 B2 JP3561186 B2 JP 3561186B2
Authority
JP
Japan
Prior art keywords
current
circuit
pulse
hour meter
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25722299A
Other languages
Japanese (ja)
Other versions
JP2001083180A (en
Inventor
順一 家高
光治 大野
久夫 飛澤
弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Denki Co Ltd
Shikoku Electric Power Co Inc
Original Assignee
Osaka Denki Co Ltd
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Denki Co Ltd, Shikoku Electric Power Co Inc filed Critical Osaka Denki Co Ltd
Priority to JP25722299A priority Critical patent/JP3561186B2/en
Publication of JP2001083180A publication Critical patent/JP2001083180A/en
Application granted granted Critical
Publication of JP3561186B2 publication Critical patent/JP3561186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械的な回転子によって被測定回路の使用電力量を検出し、検出した使用電力量を電気パルスに変換して被測定回路の使用電力量を電子的に算出する誘導形電力量計に関する。
【0002】
【従来の技術】
従来、この種のハイブリッド型の誘導形電力量計では、被測定回路の電圧が電圧コイル,被測定回路の電流が電流コイルに検出され、これら電圧コイルおよび電流コイルが発生する電磁界に誘導されて機械的な回転子が回転する。この回転子の回転は光センサによって電気パルスに変換され、このパルス数はマイクロコンピュータを用いた電子回路によってカウントされる。変換される電気パルスの数は、回転子の回転数が被測定回路の使用電力量に応じたものであるため、使用電力量に応じたパルス数になる。従って、パルス数の積算カウント値から被測定回路の使用電力量が積算値として算出され、算出された電力量は液晶表示器に表示される。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の誘導形電力量計は、電力量のみを計測するために使用されており、被測定回路に流れる電流を計測することは出来ない。従って、電流を計測するためには、従来、CT(電流変成器)といった電流計測用センサと、このセンサで検出された電流を可視表示する専用の測定器とが別途に用意され、これらが電力量計に設置されて電流計測が行われることが多い。
【0004】
このため、従来の誘導形電力量計で電流計測を行う場合には、電流計測用センサと専用の測定器とを設置するためのスペースが電力量計用設置スペースとは別に必要とされる。誘導形電力量計は一般的に需要家の家屋の壁面に設置されるため、大きな機器設置スペースを需要家家屋の壁面に確保することは難しい。また、このような機器が需要家家屋の壁面に大きなスペースを占めて設置されると、家屋の美観は損なわれてしまう。また、家屋の美観を保つためには、美観を考慮した機器を壁面に設置する必要がある。
【0005】
また、被測定回路に流れる電流を単に目安として計測したい場合にも、精密に電流を計測するためのものと同様な測定器を設置することになり、コスト高になる。
【0006】
【課題を解決するための手段】
本発明はこのような課題を解決するためになされたもので、多相配電方式で配電される被測定回路の使用電力量に応じ,各相の電流コイルが合成して発生する磁束および各相間の電圧コイルが合成して発生する磁束によって電磁誘導されて回転する回転子と、この回転子の回転に応じて単位使用電力量当たり所定数の電気パルスを発生するパルス発生手段と、このパルス発生手段で発生されるパルス数を積算して被測定回路の積算電力量を算出する電力量計測手段とを備えて構成される誘導形電力量計において、予め設定された一定時間の間に上記パルス発生手段で発生されるパルス数を計数するパルス計数手段と、このパルス計数手段で計数されたパルス数に基づいて一定時間の間に被測定回路に平均して流れる電流値を算出する電流演算手段とを内蔵して備えたことを特徴とする。
【0007】
このような構成では、多相配電方式で配電される被測定回路において電力が消費されると、その電力量に応じ、各相の電流コイルが合成して発生する磁束および各相間の電圧コイルが合成して発生する磁束によって電磁誘導されて回転子が回転し、使用電力量に応じた数の電気パルスがパルス発生手段で発生される。このパルス数は電力量計測手段によって積算され、この積算値から被測定回路の積算使用電力量が算出される。また、予め設定された一定時間の間に発生されたパルス数はパルス計数手段によって計数され、この計数値に基づき、電流演算手段は一定時間の間に被測定回路に平均して流れる電流値を算出する。従って、被測定回路の平均電流値は誘導形電力量計単独で計測される。
【0008】
また、本発明は、パルス計数手段が、一定時間毎にパルス発生手段で発生されるパルス数を計数し、また、電流演算手段が、一定時間毎に被測定回路に平均して流れる電流値を算出することを特徴とする。
【0009】
このような構成においては、被測定回路に平均して流れる電流値が一定時間毎に繰り返し算出される。従って、被測定回路の平均電流値は一定時間毎にリアルタイムに把握される。
【0010】
また、本発明は、電流演算手段が、パルス計数手段で計数されたパルス数を、被測定回路の回路電圧とパルス発生手段で単位使用電力量当たりに発生される所定のパルス数と一定時間と被測定回路に配電される配電方式の相に応じた係数との積で除して被測定回路に流れる平均電流値を算出することを特徴とする。
【0011】
誘導形電力量計では被測定回路の回路電圧や力率を計測する手段を備えておらず、また、多相配電方式で配電される被測定回路については各相の合成消費電力に対応した数の電気パルスしか得られないが、電流演算手段によってこのように平均電流値を算出する構成にすると、精密な電流計測は行えないが、目安としての電流計測は行える。
【0012】
【発明の実施の形態】
次に、本発明による平均電流計測機能付き誘導形電力量計の一実施形態について説明する。
【0013】
図1は、本実施形態によるハイブリッド型の誘導形電力量計の構成の概略を示すブロック図である。
【0014】
ハイブリッド型の誘導形電力量計は、需要家の被測定回路の電圧,電流を検出し、使用電力量に応じた電気パルスを発生する電力検出部と、この電力検出部で発生された電気パルス数に基づき、被測定回路の積算使用電力量及び平均電流値を算出処理する演算部とから構成されている。
【0015】
電力検出部は、回転子1,信号円板2,光結合素子3を主要素として構成されている。回転子1は、被測定回路の電圧,電流を検出する電圧コイル,電流コイルが発生する電磁界に誘導され、使用電力量に応じて回転する。信号円板2は、回転子1の回転軸に設けられており、回転子1の回転と共に回転する。この信号円板2には羽部2aと切り欠き部2bとが形成されている。光結合素子3はホトインタラプタといった光センサによって構成され、その「コ」の字状の谷間を回転する信号円板2が通過するように配置されている。
【0016】
光結合素子3は「コ」の字状谷間の間に光線を出射しており、この光線が信号円板2の羽部2aに遮られている間、光結合素子3はロウレベルの信号を出力する。しかし、信号円板2が回転して光線がその切り欠き部2bを横切っている間、光結合素子3はハイレベルの信号を出力する。従って、光結合素子3は信号円板2の回転に応じた電気パルスpを発生する。信号円板2の回転は回転子1の回転に同期しているため、光結合素子3で発生される電気パルスpの数は被測定回路の使用電力量に応じた数になる。単位使用電力量当たり光結合素子3で発生される電気パルスpの数は、その誘導形電力量計に予め設定された計器定数[pulse/kWh]により、所定のパルス数になる。
【0017】
演算部は、予め設定されたプログラムに従って制御動作を行うCPU(中央演算処理装置)4を有している。CPU4は電源回路5から電源供給を受けて動作をする。このCPU4には、パルスI/F(インターフェース)回路6,電力量計測カウンタ7,電流計測カウンタ8,液晶表示器9,通信機能用I/F回路10,停電検出回路11,および不揮発性メモリ12が接続されている。また、電源入力端子には、雷などによる異常電圧等の入来を防護するための保護回路13が接続されている。
【0018】
パルスI/F回路6を介して光結合素子3から入力される電気パルスpは、電力量計測カウンタ7によってその積算値が計数される。また、電流計測カウンタ8は、パルスI/F回路6を介して光結合素子3から入力される電気パルスpを、予め設定された一定時間毎に計数するパルス計数手段を構成している。CPU4は、電流計測カウンタ8で計数されたパルス数に基づいて一定時間の間に被測定回路に平均して流れる電流値を算出する電流演算手段を構成している。液晶表示器9は、電力量計測カウンタ7および電流計測カウンタ8の各計数値に基づき、CPU4によって算出された被測定回路の積算使用電力量および平均電流値を可視表示する。通信機能用インターフェース10は、算出された積算使用電力量および平均電流値を外部機器へ送出する。
【0019】
また、CPU4は停電検出回路11によって停電が検出されると、その時点における電力量計測カウンタ7の計数値を不揮発性メモリ12に書き込む。従って、停電が発生しても、停電時の積算電力量は復電するまで不揮発性メモリ12に記憶保持されている。
【0020】
図2は、電力量計測カウンタ7および電流計測カウンタ8における計数機構を示すタイミングチャートである。
【0021】
同図(b)に示すように電気パルスpが発生すると、電力量計測カウンタ7は同図(d)に示すように、電気パルスpのエッジ変化が検出される毎にその計数値を1,2,3,…とカウントアップし、時間の経過と共にその積算値を高めていく。CPU4は、この電力量計測カウンタ7によって計数された計数値、およびその誘導形電力量計に予め設定された計器定数[pulse/kWh]に基づき、積算使用電力量W[kWh]を算出する。
【0022】
また、電流計測カウンタ8による計数は、同図(a)に示す予め設定された一定時間t毎、例えば30[sec]毎に同図(c)に示すように行われる。つまり、電流計測カウンタ8は、最初の一定時間tの間に、電気パルスpのエッジ変化が検出される毎にその計数値を1,2,3,…,n−1,nとカウントアップする。そして、次の一定時間tの間に、電気パルスpのエッジ変化が検出される毎にその計数値を1,2,3,…,k−1,kとカウントアップする。以後同様にして一定時間t毎に、その時間内に入力される電気パルス数pのエッジ変化を計数する。
【0023】
CPU4は、この一定時間tが経過するタイミングt1,t2,…毎に、電流計測カウンタ8の計数値から電力量パルス数を演算し、この電力量パルス数を、電力量計測カウンタ7によるパルス数とは別に、メモリに格納する。そして、求めたこの計測時間内の電力量パルス数P[puls],被測定回路の定格電圧V[V],計測時間(一定時間)t[h],および計器定数α[pulse/kWh]を以下の演算式(1)〜(4)に代入し、被測定回路の平均電流値I[A]を算出する。演算式(1)は被測定回路の配電方式が単相2線式の場合に使用され、演算式(2)は単相3線式、演算式(3)は3相3線式、演算式(4)は3相4線式の場合に使用される。
【0024】

Figure 0003561186
これら各式において、回路の力率cosφは1として簡易に計算される。
【0025】
このようにして算出された積算使用電力量Wおよび平均電流値Iは、液晶表示器9に表示される。また、必要に応じて通信機能用I/F回路10を介して外部機器へ通信され、外部機器で確認される。
【0026】
本実施形態による誘導形電力量計によれば、従来の誘導形電力量計に電流計測カウンタ8を備え、一定時間t毎に電気パルスpを計数することで、被測定回路に流れる平均電流値Iを求めることができる。従って、被測定回路の平均電流値Iは誘導形電力量計単独で計測される。このため、従来のように専用の電流測定器を設置する必要が無くなり、安価に電流計測が行えるようになる。また、専用の電流測定器を必要としなければ、これを設置するスペースも必要としなくなり、設置機器は需要家家屋の壁面に電力量計単独でコンパクトに収まり、家屋の美観を損ねることもなくなる。
【0027】
また、誘導形電力量計では被測定回路の回路電圧や力率を計測する手段を備えておらず、また、単相2線式以外の配電方式では、複数回路の合成による電力量パルスしか得られない。つまり、被測定回路が多相の場合には、回転子1の回転は、各相の電流コイルが合成して発生する磁束および各相の電圧コイルが合成して発生する磁束によって電磁誘導されるからである。しかし、上述した本実施形態のように、電流計測カウンタ8の計数値に基づき、式(1)〜(4)の演算式によって平均電流値Iを算出する構成にすると、精密な電流計測は行えないが、目安としての電流計測を安価に行えるようになる。
【0028】
また、本実施形態では、被測定回路に平均して流れる電流値が一定時間毎に繰り返し算出されるため、被測定回路の平均電流値Iは一定時間毎にリアルタイムに把握される。しかし、本構成のように、一定時間t毎に繰り返して平均電流値Iを算出する構成に必ずしもする必要はなく、一定時間tの間のみにおいて被測定回路に平均して流れる電流値Iを算出する構成としてもよい。この場合には被測定回路の平均電流値Iはリアルタイムに把握されないが、被測定回路の一定時間tにおける平均電流値Iを把握することは可能である。
【0029】
【発明の効果】
以上説明したように本発明によれば、予め設定された一定時間の間に発生されたパルス数はパルス計数手段によって計数され、この計数値に基づき、電流演算手段は一定時間の間に被測定回路に平均して流れる電流値を算出する。従って、被測定回路の平均電流値は誘導形電力量計単独で計測される。このため、専用の電流測定器を設置する必要が無くなり、安価に電流計測が行え、また、専用の電流測定器を設置するスペースが不要になり、需要家家屋の美観を損ねることもなくなる。
【0030】
また、被測定回路に平均して流れる電流値を一定時間毎に繰り返し算出する構成にすると、被測定回路の平均電流値は一定時間毎にリアルタイムに把握されるようになる。また、電流演算手段で所定の演算式によって平均電流値を算出する構成にすると、精密な電流計測は行えないが、目安としての電流計測を安価に行えるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態によるハイブリッド型の誘導形電力量計の構成の概略を示すブロック図である。
【図2】電流計測カウンタおよび電力量計測カウンタにおける計数機構を示すタイミングチャート図である。
【符号の説明】
1…回転子
2…信号円板
2a…信号円板2の羽部
2b…信号円板2の切り欠き部
3…光結合素子
4…CPU
5…電源回路
6…パルスI/F回路
7…電力量計測カウンタ
8…電流計測カウンタ
9…液晶表示器
10…通信機能用I/F回路
11…停電検出回路
12…不揮発性メモリ
13…保護回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inductive power amount that detects the power consumption of a circuit under measurement by a mechanical rotor, converts the detected power consumption into an electric pulse, and electronically calculates the power consumption of the circuit under test. About the total.
[0002]
[Prior art]
Conventionally, in this type of hybrid inductive watt-hour meter, the voltage of the circuit under test is detected by a voltage coil and the current of the circuit under test is detected by a current coil, and the voltage is induced by the electromagnetic field generated by the voltage coil and the current coil. And the mechanical rotor rotates. The rotation of the rotor is converted into electric pulses by an optical sensor, and the number of pulses is counted by an electronic circuit using a microcomputer. The number of electric pulses to be converted is the number of pulses according to the power consumption since the rotation speed of the rotor is in accordance with the power consumption of the circuit to be measured. Accordingly, the power consumption of the circuit under measurement is calculated as an integrated value from the integrated count value of the pulse number, and the calculated power amount is displayed on the liquid crystal display.
[0003]
[Problems to be solved by the invention]
However, the above-mentioned conventional inductive watt-hour meter is used for measuring only the electric energy, and cannot measure the current flowing through the circuit to be measured. Therefore, in order to measure the current, conventionally, a current measuring sensor such as a CT (current transformer) and a dedicated measuring device for visually displaying the current detected by the sensor are separately prepared, and these are used for power measurement. It is often installed in a meter to measure current.
[0004]
For this reason, when performing current measurement with a conventional inductive watt-hour meter, a space for installing a current measurement sensor and a dedicated measuring device is required separately from a space for installing a watt-hour meter. Since the inductive watt-hour meter is generally installed on the wall of a customer's house, it is difficult to secure a large equipment installation space on the wall of the customer's house. Also, if such equipment is installed on a wall of a customer house occupying a large space, the aesthetic appearance of the house will be impaired. Also, in order to maintain the aesthetics of the house, it is necessary to install equipment that takes into account the aesthetics on the wall.
[0005]
Also, when it is desired to simply measure the current flowing through the circuit under measurement as a guide, a measuring instrument similar to that for accurately measuring the current is installed, which increases the cost.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve such a problem, and the magnetic flux generated by combining the current coils of each phase and the inter-phase magnetic flux according to the amount of electric power used by the circuit to be measured distributed by the polyphase distribution system. A rotor that is electromagnetically induced to rotate by a magnetic flux generated by the combination of the voltage coils, a pulse generator that generates a predetermined number of electric pulses per unit power consumption according to the rotation of the rotor, and a pulse generator. Means for calculating an integrated power amount of the circuit to be measured by integrating the number of pulses generated by the means. Pulse counting means for counting the number of pulses generated by the generating means, and current calculation for calculating a current value flowing through the circuit under test for a predetermined time based on the number of pulses counted by the pulse counting means Characterized by comprising a built-in and stage.
[0007]
In such a configuration, when power is consumed in the circuit under test distributed in the multi-phase distribution system, the magnetic flux generated by the combination of the current coils of each phase and the voltage coil between the phases are generated according to the amount of power. The rotor is rotated by electromagnetic induction by the magnetic flux generated by the combination, and the number of electric pulses corresponding to the power consumption is generated by the pulse generating means. The number of pulses is integrated by the power amount measuring means, and the integrated power consumption of the circuit to be measured is calculated from the integrated value. In addition, the number of pulses generated during a predetermined period of time is counted by the pulse counting unit, and based on the counted value, the current calculation unit averages a current value flowing through the circuit under measurement during the predetermined period of time. calculate. Therefore, the average current value of the circuit under measurement is measured by the inductive watt-hour meter alone.
[0008]
Further, according to the present invention, the pulse counting means counts the number of pulses generated by the pulse generating means at regular time intervals, and the current calculating means averages a current value flowing through the circuit under measurement at regular time intervals. It is characterized in that it is calculated.
[0009]
In such a configuration, the average value of the current flowing through the circuit to be measured is repeatedly calculated at regular intervals. Therefore, the average current value of the circuit to be measured is grasped in real time at regular intervals.
[0010]
Further, according to the present invention, the current calculation means determines the number of pulses counted by the pulse counting means as the circuit voltage of the circuit to be measured, the predetermined number of pulses generated per unit power consumption by the pulse generation means, and a predetermined time. The average current value flowing through the circuit to be measured is calculated by dividing by the product of the coefficient and the coefficient corresponding to the phase of the power distribution system to be distributed to the circuit to be measured.
[0011]
Inductive watt-hour meters do not have means for measuring the circuit voltage or power factor of the circuit under test, and for circuits under test distributed using the multi-phase power distribution method, the number corresponding to the combined power consumption of each phase However, if the average current value is calculated in this manner by the current calculation means, accurate current measurement cannot be performed, but current measurement can be performed as a guide.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of an inductive watt-hour meter with an average current measuring function according to the present invention will be described.
[0013]
FIG. 1 is a block diagram schematically showing a configuration of a hybrid inductive watt-hour meter according to the present embodiment.
[0014]
A hybrid inductive watt-hour meter detects a voltage and a current of a circuit under test of a customer, and generates an electric pulse corresponding to the amount of electric power used, and an electric pulse generated by the power detecting unit. And an arithmetic unit for calculating and processing the integrated power consumption and the average current value of the circuit to be measured based on the number.
[0015]
The power detection unit includes a rotator 1, a signal disk 2, and an optical coupling element 3 as main elements. The rotator 1 is guided by an electromagnetic field generated by a voltage coil and a current coil for detecting the voltage and current of the circuit under measurement, and rotates according to the amount of power used. The signal disk 2 is provided on a rotation shaft of the rotor 1 and rotates with the rotation of the rotor 1. The signal disk 2 has a wing portion 2a and a notch portion 2b. The optical coupling element 3 is configured by an optical sensor such as a photo interrupter, and is arranged so that the signal disk 2 rotating in the “U” -shaped valley passes therethrough.
[0016]
The optical coupling element 3 emits a light beam between the U-shaped valleys, and while the light ray is blocked by the wings 2a of the signal disk 2, the optical coupling element 3 outputs a low-level signal. I do. However, while the signal disk 2 rotates and the light beam crosses the notch 2b, the optical coupling element 3 outputs a high-level signal. Therefore, the optical coupling element 3 generates an electric pulse p according to the rotation of the signal disk 2. Since the rotation of the signal disk 2 is synchronized with the rotation of the rotor 1, the number of electric pulses p generated by the optical coupling element 3 is a number corresponding to the power consumption of the circuit under test. The number of electric pulses p generated by the optical coupling element 3 per unit power consumption becomes a predetermined number of pulses according to an instrument constant [pulse / kWh] preset for the inductive watt-hour meter.
[0017]
The arithmetic unit has a CPU (Central Processing Unit) 4 that performs a control operation according to a preset program. The CPU 4 operates by receiving power supply from the power supply circuit 5. The CPU 4 includes a pulse I / F (interface) circuit 6, a power measurement counter 7, a current measurement counter 8, a liquid crystal display 9, a communication function I / F circuit 10, a power failure detection circuit 11, and a non-volatile memory 12. Is connected. The power input terminal is connected to a protection circuit 13 for protecting an incoming abnormal voltage or the like due to lightning or the like.
[0018]
The integrated value of the electric pulse p input from the optical coupling element 3 via the pulse I / F circuit 6 is counted by the electric energy measurement counter 7. Further, the current measurement counter 8 constitutes a pulse counting unit that counts the electric pulse p input from the optical coupling element 3 via the pulse I / F circuit 6 at a predetermined time interval. The CPU 4 constitutes a current calculation means for calculating a value of a current flowing through the circuit under measurement for a certain period of time based on the number of pulses counted by the current measurement counter 8. The liquid crystal display 9 visually displays the integrated power consumption and the average current value of the circuit to be measured calculated by the CPU 4 based on the count values of the power amount measurement counter 7 and the current measurement counter 8. The communication function interface 10 sends the calculated integrated power consumption and average current value to the external device.
[0019]
Further, when the power failure is detected by the power failure detection circuit 11, the CPU 4 writes the count value of the power amount measurement counter 7 at that time into the nonvolatile memory 12. Therefore, even if a power failure occurs, the integrated power amount at the time of the power failure is stored and held in the nonvolatile memory 12 until the power is restored.
[0020]
FIG. 2 is a timing chart showing a counting mechanism in the electric energy measurement counter 7 and the current measurement counter 8.
[0021]
When the electric pulse p is generated as shown in FIG. 4B, the electric energy measurement counter 7 sets the count value to 1 each time an edge change of the electric pulse p is detected as shown in FIG. Count up to 2, 3, ... and increase the integrated value over time. The CPU 4 calculates an integrated power consumption W [kWh] based on the count value counted by the power measurement counter 7 and an instrument constant [pulse / kWh] preset for the inductive watt-hour meter.
[0022]
Also, the counting by the current measurement counter 8 is performed as shown in FIG. 3C at every predetermined time t, for example, every 30 [sec] shown in FIG. That is, the current measurement counter 8 counts up the count value to 1, 2, 3,..., N−1, n every time the edge change of the electric pulse p is detected during the first fixed time t. . Then, every time the edge change of the electric pulse p is detected during the next fixed time t, the count value is counted up to 1, 2, 3,..., K-1, k. Thereafter, the edge change of the number of electric pulses p input within that time is counted at regular time intervals t in the same manner.
[0023]
The CPU 4 calculates the number of power amount pulses from the count value of the current measurement counter 8 at each of the timings t1, t2,. Separately, it is stored in the memory. Then, the obtained power amount pulse number P [pulses] within the measurement time, the rated voltage V [V] of the circuit to be measured, the measurement time (constant time) t [h], and the instrument constant α [pulse / kWh] are obtained. The average current value I [A] of the circuit to be measured is calculated by substituting the following arithmetic expressions (1) to (4). The arithmetic expression (1) is used when the power distribution system of the circuit under measurement is a single-phase two-wire system, the arithmetic expression (2) is a single-phase three-wire system, the arithmetic expression (3) is a three-phase three-wire system, and an arithmetic expression (4) is used in the case of a three-phase four-wire system.
[0024]
Figure 0003561186
In each of these equations, the power factor cos φ of the circuit is simply calculated as 1.
[0025]
The integrated power consumption W and average current value I thus calculated are displayed on the liquid crystal display 9. In addition, communication is performed with an external device via the communication function I / F circuit 10 as necessary, and the external device confirms the communication.
[0026]
According to the inductive watt-hour meter according to the present embodiment, the conventional inductive watt-hour meter is provided with the current measuring counter 8 and counts the electric pulse p at every predetermined time t, so that the average current value flowing through the circuit to be measured I can be obtained. Therefore, the average current value I of the circuit to be measured is measured by the inductive watt-hour meter alone. For this reason, it is not necessary to install a dedicated current measuring device unlike the related art, and current measurement can be performed at low cost. In addition, if a dedicated current measuring device is not required, a space for installing the current measuring device is not required, and the installed device is compactly fitted on the wall surface of the customer's house with the watt-hour meter alone, so that the appearance of the house is not spoiled.
[0027]
In addition, inductive watt-hour meters do not have means for measuring the circuit voltage or power factor of the circuit under test, and in power distribution systems other than the single-phase two-wire system, only electric energy pulses obtained by combining multiple circuits are obtained. I can't. That is, when the circuit to be measured has multiple phases, the rotation of the rotor 1 is electromagnetically induced by the magnetic flux generated by the combination of the current coils of each phase and the magnetic flux generated by the combination of the voltage coils of each phase. Because. However, when the average current value I is calculated based on the count values of the current measurement counter 8 using the arithmetic expressions of the equations (1) to (4) as in the above-described embodiment, accurate current measurement can be performed. However, current measurement as a guide can be performed at low cost.
[0028]
Further, in the present embodiment, the average value of the current flowing through the circuit under measurement is repeatedly calculated at regular intervals, so that the average current value I of the circuit under measurement is grasped in real time at regular intervals. However, it is not always necessary to adopt a configuration in which the average current value I is repeatedly calculated every predetermined time t as in the present configuration, and the current value I flowing through the circuit under measurement only during the predetermined time t is calculated. It is good also as a structure which performs. In this case, the average current value I of the circuit under test is not grasped in real time, but it is possible to grasp the average current value I of the circuit under test at a fixed time t.
[0029]
【The invention's effect】
As described above, according to the present invention, the number of pulses generated during a predetermined period of time is counted by the pulse counting unit. The average value of the current flowing through the circuit is calculated. Therefore, the average current value of the circuit under measurement is measured by the inductive watt-hour meter alone. For this reason, it is not necessary to install a dedicated current measuring device, and the current can be measured at low cost. Further, a space for installing the dedicated current measuring device is not required, and the aesthetic appearance of the customer house is not spoiled.
[0030]
Further, if the average current value flowing through the circuit under measurement is repeatedly calculated at regular time intervals, the average current value of the circuit under measurement can be grasped in real time at regular time intervals. In addition, when the average current value is calculated by a predetermined arithmetic expression by the current arithmetic means, accurate current measurement cannot be performed, but current measurement as a guide can be performed at low cost.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing a configuration of a hybrid inductive watt-hour meter according to an embodiment of the present invention.
FIG. 2 is a timing chart illustrating a counting mechanism in a current measurement counter and a power amount measurement counter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Signal disk 2a ... Wing part 2b of signal disk 2 ... Notch 3 of signal disk 2 ... Optical coupling element 4 ... CPU
5 power supply circuit 6 pulse I / F circuit 7 electric power measurement counter 8 current measurement counter 9 liquid crystal display 10 communication function I / F circuit 11 power failure detection circuit 12 nonvolatile memory 13 protection circuit

Claims (3)

多相配電方式で配電される被測定回路の使用電力量に応じ,各相の電流コイルが合成して発生する磁束および各相間の電圧コイルが合成して発生する磁束によって電磁誘導されて回転する回転子と、この回転子の回転に応じて単位使用電力量当たり所定数の電気パルスを発生するパルス発生手段と、このパルス発生手段で発生されるパルス数を積算して前記被測定回路の積算電力量を算出する電力量計測手段とを備えて構成される誘導形電力量計において、
予め設定された一定時間の間に前記パルス発生手段で発生されるパルス数を計数するパルス計数手段と、このパルス計数手段で計数されたパルス数に基づいて前記一定時間の間に前記被測定回路に平均して流れる電流値を算出する電流演算手段とを内蔵して備えたことを特徴とする平均電流計測機能付き誘導形電力量計。
According to the power consumption of the circuit to be measured distributed by the multi-phase power distribution method, the magnetic flux generated by combining the current coils of each phase and the magnetic flux generated by combining the voltage coils between each phase are electromagnetically induced to rotate. A rotor, pulse generating means for generating a predetermined number of electric pulses per unit power consumption according to the rotation of the rotor, and integrating the number of pulses generated by the pulse generating means to integrate the circuit to be measured. In an induction-type watt-hour meter comprising: a power-amount measuring unit for calculating the power amount,
A pulse counting unit for counting the number of pulses generated by the pulse generating unit during a predetermined period of time; and the circuit to be measured during the predetermined period of time based on the number of pulses counted by the pulse counting unit. An inductive watt-hour meter with an average current measuring function, which comprises a built-in current calculating means for calculating a current value flowing on average.
前記パルス計数手段は前記一定時間毎に前記パルス発生手段で発生されるパルス数を計数し、前記電流演算手段は前記一定時間毎に前記被測定回路に平均して流れる電流値を算出することを特徴とする請求項1に記載の平均電流計測機能付き誘導形電力量計。The pulse counting means counts the number of pulses generated by the pulse generation means at each fixed time, and the current calculation means calculates a current value flowing on average to the circuit under measurement at each fixed time. The inductive watt-hour meter with an average current measuring function according to claim 1. 前記電流演算手段は、前記パルス計数手段で計数されたパルス数を、前記被測定回路の回路電圧と前記パルス発生手段で単位使用電力量当たりに発生される所定のパルス数と前記一定時間と前記被測定回路に配電される配電方式の相に応じた係数との積で除して前記被測定回路に流れる平均電流値を算出することを特徴とする請求項1または請求項2に記載の平均電流計測機能付き誘導形電力量計。The current calculation means, the number of pulses counted by said pulse counting means, wherein a predetermined number of pulses generated in the unit power usage per in the circuit voltage of the circuit under test wherein the pulse generating means and said predetermined time and said The average according to claim 1 or 2, wherein an average current value flowing through the circuit under test is calculated by dividing by a product of a coefficient corresponding to a phase of a power distribution method distributed to the circuit under test. Inductive watt-hour meter with current measurement function.
JP25722299A 1999-09-10 1999-09-10 Inductive watt-hour meter with average current measurement function Expired - Fee Related JP3561186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25722299A JP3561186B2 (en) 1999-09-10 1999-09-10 Inductive watt-hour meter with average current measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25722299A JP3561186B2 (en) 1999-09-10 1999-09-10 Inductive watt-hour meter with average current measurement function

Publications (2)

Publication Number Publication Date
JP2001083180A JP2001083180A (en) 2001-03-30
JP3561186B2 true JP3561186B2 (en) 2004-09-02

Family

ID=17303374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25722299A Expired - Fee Related JP3561186B2 (en) 1999-09-10 1999-09-10 Inductive watt-hour meter with average current measurement function

Country Status (1)

Country Link
JP (1) JP3561186B2 (en)

Also Published As

Publication number Publication date
JP2001083180A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
TWI464416B (en) Device and method for detecting the energy quantity in the charging station for an electric vehicle
US6112158A (en) Service type recognition in electrical utility meter
US6112159A (en) Robust electrical utility meter
AU676998B2 (en) Solid state electric power usage meter and method for determining power usage
CN108802462B (en) Voltage measurement
EP1397693B1 (en) Measuring devices
US6815942B2 (en) Self-calibrating electricity meter
AU2002310615A1 (en) Measuring devices
JP2016526683A (en) Detection of magnetic tampering on utility meters
US9470727B2 (en) Detection of magnetic fields using leading power factor
US7058523B2 (en) Electricity meter having gas consumption correction processing
US6141626A (en) Two-element energy meter having systems for automatic service type detection
KR101164009B1 (en) Automatic Meter Reading, remote meter reading service electric meter which includes a leakage rheometry function
JP3561187B2 (en) Inductive watt-hour meter with average power measurement function
JP3561186B2 (en) Inductive watt-hour meter with average current measurement function
JP2010038716A (en) Measurement output apparatus and electric energy measuring system
PT862746E (en) Electronic metering device including automatic service sensing
Pawaskar et al. Design and implementation of low cost three phase energy meter
Nwagbo et al. A comparative study of basic types of energy meters and metering
Ramesh Chapter-5 An Automatic Smart Energy Meter Reading System for Consumer Appliances
KR200183283Y1 (en) Display apparatus for power consumption rates
Markow Microcontroller-based energy metering using the AD7755
AU6522696A (en) Electronic metering device including automatic service sensing
JPH1183903A (en) Watthour meter with oscillator
KR19990045993A (en) Display apparatus for power consumption rates

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040527

R150 Certificate of patent or registration of utility model

Ref document number: 3561186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160604

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees