JP3534428B2 - Manufacturing method of oxide high temperature superconducting wire - Google Patents

Manufacturing method of oxide high temperature superconducting wire

Info

Publication number
JP3534428B2
JP3534428B2 JP14064193A JP14064193A JP3534428B2 JP 3534428 B2 JP3534428 B2 JP 3534428B2 JP 14064193 A JP14064193 A JP 14064193A JP 14064193 A JP14064193 A JP 14064193A JP 3534428 B2 JP3534428 B2 JP 3534428B2
Authority
JP
Japan
Prior art keywords
wire
metal
rods
long
wire rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14064193A
Other languages
Japanese (ja)
Other versions
JPH06349358A (en
Inventor
英仁 向井
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Sumitomo Electric Industries Ltd filed Critical Japan Science and Technology Agency
Priority to JP14064193A priority Critical patent/JP3534428B2/en
Publication of JPH06349358A publication Critical patent/JPH06349358A/en
Application granted granted Critical
Publication of JP3534428B2 publication Critical patent/JP3534428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物高温超電導線材
の製造方法に関するもので、特に、曲げ歪み特性に優
れ、高性能でより長尺の酸化物高温超電導線材を製作す
るための改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide high temperature superconducting wire, and more particularly to an improvement for producing a high performance and longer oxide high temperature superconducting wire having excellent bending strain characteristics. It is a thing.

【0002】[0002]

【従来の技術】近年、より高い臨界温度を示す超電導材
料として、セラミックス系のもの、すなわち酸化物高温
超電導材料が注目されている。
2. Description of the Related Art In recent years, as a superconducting material exhibiting a higher critical temperature, a ceramic material, that is, an oxide high temperature superconducting material has been attracting attention.

【0003】その中で、イットリウム系は90K、ビス
マス系は110K、タリウム系は120K程度の高い臨
界温度を示すことから、その実用化が期待されている。
Among them, yttrium type has a high critical temperature of about 90 K, bismuth type has a high temperature of 110 K, and thallium type has a high critical temperature of about 120 K, so that they are expected to be put into practical use.

【0004】このような酸化物高温超電導体を用いて長
尺の酸化物高温超電導線材あるいは適宜の基板上に配線
される酸化物高温超電導パターンのような酸化物高温超
電導線材を得るための方法として、原料粉末を金属シー
スにて被覆した状態とし、これを熱処理することによ
り、原料粉末を超電導体化して、超電導体が金属シース
にて被覆されてなる酸化物高温超電導線材を製造する方
法が知られている。
As a method for obtaining a long oxide high-temperature superconducting wire using such an oxide high-temperature superconductor or an oxide high-temperature superconducting wire such as an oxide high-temperature superconducting pattern wired on an appropriate substrate. A method of producing an oxide high-temperature superconducting wire in which the raw material powder is covered with a metal sheath and then heat-treated to convert the raw material powder into a superconductor and the superconductor is covered with the metal sheath is known. Has been.

【0005】上述したような酸化物高温超電導線材をケ
ーブルやマグネットに応用するには、高い臨界温度に加
えて、高い臨界電流密度を有していることが必要であ
る。特に、使用する磁場において必要な臨界電流密度を
確保しなければならないだけでなく、使用される歪みの
もとでの高い臨界電流密度が必要である。
In order to apply the above-mentioned high-temperature oxide superconducting wire to cables and magnets, it is necessary to have a high critical current density in addition to a high critical temperature. In particular, not only must the required critical current density be ensured in the magnetic field used, but also a high critical current density under the strain used.

【0006】そこで、熱処理後も曲げ歪み特性に優れて
おり、使用される歪みのもとでも高い臨界電流密度を確
保することができる長尺の酸化物高温超電導線材を製造
するため、原料粉末を金属シースにて被覆してなる金属
被覆超電導線材を複数本金属パイプ内に再充填し、これ
に伸線加工を施すことで細径化した後、金属パイプに対
して厚み方向に圧縮荷重が加わる塑性加工を施すことで
テープ状に変形加工し、これに熱処理を施すことによっ
て原料粉末を超電導体化して酸化物多芯超電導線材を製
造する方法が開発されてきた。
Therefore, in order to produce a long oxide high temperature superconducting wire which has excellent bending strain characteristics even after heat treatment and can secure a high critical current density even under the strain used, a raw material powder is used. After refilling a plurality of metal-coated superconducting wires covered with a metal sheath into a metal pipe and drawing it to reduce the diameter, a compressive load is applied to the metal pipe in the thickness direction. A method has been developed for producing a multifilamentary oxide superconducting wire by subjecting a raw material powder to a superconductor by subjecting it to a tape-like deformation by subjecting it to plastic working and subjecting it to heat treatment.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た製造方法においては、歪み特性に優れた酸化物多芯超
電導線材を得られるものの、複数の金属被覆超電導線材
を再度金属パイプに嵌合する工程をとるため、図7
(b)に示すように、最終線材の最外周部の金属被覆1
0の厚みが大きくなり、線材の断面全体に占める超電導
体20の占有率が低く抑えられてしまう傾向があった。
However, in the above-mentioned manufacturing method, although an oxide multi-core superconducting wire having excellent strain characteristics can be obtained, a step of fitting a plurality of metal-coated superconducting wires into a metal pipe again is required. In order to take
As shown in (b), the metal coating 1 on the outermost periphery of the final wire
There was a tendency that the thickness of 0 increased and the occupation rate of the superconductor 20 in the entire cross section of the wire rod was kept low.

【0008】また、上述した製造方法では、金属被覆線
材を嵌合する金属パイプの開始長や開始径によって最終
的に得られる線材の長さが制限されてしまうという問題
があった。このため、開始長や開始径のより大きな金属
パイプを用いると、複数の金属被覆線材が嵌合された金
属パイプを押出加工法により伸線する際の加工度が大き
くなり、このため押出加工には大掛かりでかつ高価な装
置の使用が不可欠となっていた。
Further, the above-mentioned manufacturing method has a problem that the length of the finally obtained wire rod is limited by the starting length and the starting diameter of the metal pipe into which the metal-coated wire rod is fitted. Therefore, if a metal pipe with a larger starting length or starting diameter is used, the workability at the time of drawing a metal pipe in which a plurality of metal-coated wire rods are fitted by the extrusion processing method becomes large, and therefore the extrusion processing is performed. It was essential to use large-scale and expensive equipment.

【0009】本発明は、上述した従来の製造方法の課題
を解消するためになされたものであって、使用時の歪み
特性を良好に備え、線材全断面積あたりの臨界電流密度
がより向上された、高性能でかつ長尺の酸化物多芯超電
導線材を手軽な装置でより簡便に製造できる方法を提供
することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the conventional manufacturing method, and has excellent strain characteristics during use, and the critical current density per total cross-sectional area of the wire is further improved. Another object of the present invention is to provide a method capable of easily producing a high-performance and long-length oxide multi-core superconducting wire with a simple device.

【0010】[0010]

【課題を解決するための手段】本発明に係る酸化物高温
超電導線材の製造方法は、酸化物超電導体またはその原
料が長手方向に沿って金属で被覆されてなる線材を複数
本準備する第1の工程と、複数本の線材を束ねた状態に
おいて、線材間で金属被覆同士を接着させることによ
り、複数の線材を接合する第2の工程と、接合された複
数の線材に塑性加工を施して長尺の線材を得る第3の工
程と、長尺の線材に熱処理を施すことにより、焼結され
た酸化物超電導体が長手方向に沿って形成された多芯超
電導線材を得る第4の工程とを備えることを特徴として
いる。
A method of manufacturing an oxide high temperature superconducting wire according to the present invention comprises first preparing a plurality of wires in which an oxide superconductor or a raw material thereof is coated with a metal along a longitudinal direction. In the state of bundling a plurality of wire rods, the second step of joining the plurality of wire rods by adhering the metal coatings between the wire rods and the plastic working of the joined wire rods Third step of obtaining a long wire and fourth step of obtaining a multi-core superconducting wire in which a sintered oxide superconductor is formed along the longitudinal direction by subjecting the long wire to a heat treatment It is characterized by having and.

【0011】本発明においては、第4の工程前に、前記
第3の工程で得られた長尺の線材を複数本集合する工程
と、複数本の線材を束ねた状態において、線材間で金属
被覆同士を接着させることにより、集合した複数の線材
を接合する工程と、接合された複数の線材に塑性加工を
施して長尺の線材を得る工程とをさらに備えてもよい。
In the present invention, before the fourth step, a step of assembling a plurality of long wire rods obtained in the third step and a step of bundling the plurality of wire rods with each other are performed. The method may further include a step of joining the plurality of assembled wire rods by adhering the coatings together, and a step of subjecting the joined plurality of wire rods to plastic working to obtain a long wire rod.

【0012】本発明において、第1の工程で酸化物超電
導体を構成する超電導体およびその原料としては、ビス
マス(Bi)、タリウム(Tl)、イットリウム(Y)
系のものを用いることが可能であるが、線材の長尺化の
容易さ、臨界電流密度の高さ等から中でもビスマス(B
i)系超電導体を用いることがより好ましい。
In the present invention, bismuth (Bi), thallium (Tl), and yttrium (Y) are used as the superconductor and the raw material for the oxide superconductor in the first step.
Although it is possible to use a bismuth-based material, bismuth (B) is particularly preferable because of the ease of lengthening the wire and the high critical current density.
It is more preferable to use i) -based superconductor.

【0013】また、酸化物超電導体およびその原料を被
覆する金属としては、銀または銀合金を用いることが好
ましい。
Further, silver or a silver alloy is preferably used as the metal for coating the oxide superconductor and the raw material thereof.

【0014】金属被覆酸化物高温超電導線材は、その製
造工程において酸化物超電導体およびその原料の粉末に
吸着されたガスあるいは金属被覆内に残留したガスによ
り、平角テープ状に塑性加工した後の熱処理時に膨張あ
るいは部分的に破裂することがある。このような膨張ま
たは部分的な破裂が起こった線材をマグネットやケーブ
ルの導体として使用した場合には特性の低下を招く。
The metal-coated oxide high-temperature superconducting wire is heat-treated after being plastically worked into a rectangular tape shape by the gas adsorbed to the oxide superconductor and the powder of the raw material or the gas remaining in the metal coating in the manufacturing process. It may sometimes expand or partially rupture. When a wire rod that has undergone such expansion or partial rupture is used as a conductor of a magnet or a cable, the characteristics are deteriorated.

【0015】そこで、本発明の第1の工程において、酸
化物超電導体またはその原料が長手方向に沿って金属に
被覆されてなる線材を準備するため、金属シース内に充
填される酸化物超電導体またはその原料の粉末には予め
熱処理等により十分な脱気処理を施しておくことが望ま
しい。また、金属シース内に酸化物超電導体またはその
原料の粉末を充填した後は、金属シースの両側に蓋を被
せて金属シース内部に残留する気体を真空排気による脱
気処理により十分脱気し、さらにその後気体の再吸着を
防止するため金属シースの両端を密閉しておくことが望
ましい。
Therefore, in the first step of the present invention, in order to prepare a wire rod in which the oxide superconductor or the raw material thereof is coated with metal along the longitudinal direction, the oxide superconductor filled in the metal sheath is prepared. Alternatively, it is desirable that the raw material powder be subjected to sufficient deaeration by heat treatment or the like in advance. In addition, after filling the metal sheath with the oxide superconductor or the powder of the raw material thereof, the both sides of the metal sheath are covered and the gas remaining inside the metal sheath is sufficiently degassed by degassing by vacuum exhaust, Furthermore, it is desirable to seal both ends of the metal sheath to prevent re-adsorption of gas thereafter.

【0016】また、金属シース内に充填する酸化物超電
導体またはその原料の粉末は、その平均粒度がサブミク
ロン単位にまで微細化されることが望ましい。これによ
り、線材の塑性加工性を向上することができる。
Further, it is desirable that the oxide superconductor or the powder of the raw material thereof, which is filled in the metal sheath, has an average particle size reduced to a submicron unit. As a result, the plastic workability of the wire can be improved.

【0017】本発明の複数の線材を接合する工程におい
て、束ね合わせる線材の種類、本数および配置は任意に
決定することができる。たとえば、超電導体またはその
原料が金属で被覆されてなる金属被覆単芯素線のみを複
数本集合させることができる。
In the step of joining a plurality of wire rods of the present invention, the type, the number and the arrangement of the wire rods to be bundled can be arbitrarily determined. For example, it is possible to assemble a plurality of metal-coated single-core wires in which the superconductor or its raw material is coated with a metal.

【0018】この場合、たとえば、図1に示すように、
金属被覆の占める比率が等しい単芯素線1のみを束ね合
わせてもよい。
In this case, for example, as shown in FIG.
You may bundle only the single core strand 1 with the same ratio of a metal coating.

【0019】また、金属被覆の占める比率が異なる単芯
素線を組み合わせて束ねてもよい。たとえば、図5に示
すように、金属被覆の占める比率が大きい単芯素線3を
最外周部に任意の本数配置することで、加工特性を向上
することができる。
Further, single-core element wires having different ratios of metal coating may be combined and bundled. For example, as shown in FIG. 5, the processing characteristics can be improved by arranging an arbitrary number of single-core strands 3 having a large proportion of metal coating in the outermost peripheral portion.

【0020】しかしさらに良好な加工特性を確保するた
めに、最終線材における超電導体の占有率の低下が許容
され得る範囲内で、集合構成の一部に金属素線2をたと
えば、図2、図3、図4に示すように、最外周部、中心
部または放射状の任意の位置に任意の本数配置すること
ができる。
However, in order to secure better working characteristics, the metal element wire 2 is provided as a part of the aggregate structure within a range in which the reduction of the occupation ratio of the superconductor in the final wire can be allowed, for example, as shown in FIG. As shown in FIG. 3 and FIG. 4, any number can be arranged at the outermost peripheral portion, the central portion, or any radial position.

【0021】さらに、金属被覆単芯素線および金属被覆
多芯線材を組み合わせて束ねてもよい。たとえば、図6
に示すように、中心部に金属被覆単芯素線1、最外周部
に金属被覆多芯線材4を任意の本数配置することもでき
る。
Further, the metal-coated single-core wire and the metal-coated multicore wire may be combined and bundled. For example, in FIG.
As shown in, the metal-coated single-core wire 1 can be arranged in the central part and the metal-coated multi-core wire 4 can be arranged in an arbitrary number in the outermost peripheral part.

【0022】なお、図1〜図6において、白い部分は金
属被覆を、黒い部分は酸化物超電導体を示すものとす
る。ここでは、線材を91本束ね合わせる例について図
示したが、束ね合わせる本数は任意である。
In FIGS. 1 to 6, the white portion indicates the metal coating and the black portion indicates the oxide superconductor. Here, an example in which 91 wire rods are bundled is illustrated, but the number of bundled wires is arbitrary.

【0023】本発明の複数の線材を接合する工程におい
て、束ね合わせる線材の断面形状は、線材間で線材の金
属被覆同士を接着する点からは、面接触可能な六角形状
に加工されていることが好ましいが、線接触可能な円形
状であってもよく、特に限定されるものではない。
In the step of joining a plurality of wire rods of the present invention, the cross-sectional shape of the wire rods to be bundled is processed into a hexagonal shape capable of surface contact from the point of adhering the metal coatings of the wire rods between the wire rods. However, the shape may be a circular shape that allows line contact, and is not particularly limited.

【0024】本発明の集合した複数の線材を接合する工
程において、束ね合わせた状態において複数の線材を接
合する方法は、特に限定されないが、金属被覆同士を熱
拡散により接着する方法や束ねられた複数の線材に熱間
伸線加工を施すことにより接着する方法を適用すること
ができる。
In the step of joining a plurality of assembled wire rods of the present invention, the method of joining a plurality of wire rods in a bundled state is not particularly limited, but a method of bonding metal coatings by thermal diffusion or a bundle A method of bonding by applying hot wire drawing processing to a plurality of wire rods can be applied.

【0025】本発明の複数の線材を接合する工程におい
て、複数の線材間の接合程度は、次工程における塑性加
工性、最終線材における超電導フィラメントの形状の健
全性ひいては超電導特性に影響を及ぼす。
In the step of joining a plurality of wire rods of the present invention, the degree of joining between the plurality of wire rods affects the plastic workability in the next step, the soundness of the shape of the superconducting filament in the final wire rod, and the superconducting properties.

【0026】たとえば、複数の線材間の接合程度が不十
分な場合には、伸線加工において線材に大きな応力が急
激にかかると、加工途中に束ねられた線材がばらばらに
裂けた状態となってしまったり、また断線が生じて健全
な伸線材を得ることが困難となってしまう。
For example, if the degree of joining between a plurality of wire rods is insufficient, and if a large stress is suddenly applied to the wire rod during wire drawing, the wire rods bundled during the wire cutting will be broken apart. Otherwise, wire breakage occurs and it becomes difficult to obtain a sound wire drawing material.

【0027】このようなことから、線材間で金属被覆同
士を接着する程度は、少なくとも次工程において接合さ
れた複数の線材が引抜き張力に耐えて塑性加工を施すこ
とができかつ伸線加工中に超電導フィラメントの断傷等
を引き起こさない程度であることが求められる。
From the above, the extent to which the metal coatings are adhered to each other between the wire rods is such that at least the plurality of wire rods joined in the next step can withstand the drawing tension and undergo plastic working, and during wire drawing. It is required that the superconducting filaments are not damaged.

【0028】このような観点からより具体的には、たと
えば複数本の線材を集合した後、これらを密に束ねるよ
うにして耐熱性の繊維からなるテープ、より具体的にい
えば石英製ガラステープを線材の長手方向にずらせなが
ら螺旋状に巻き付けることにより、機械的に接触させた
状態で、500〜800℃の熱処理を加えることで、各
線材の表面を覆う金属被覆同士を熱拡散させて、複数の
線材を接合することが好ましい。
From this point of view, more specifically, for example, a tape made of heat-resistant fibers by gathering a plurality of wire rods and then tightly bundling them, more specifically, a quartz glass tape By spirally winding while shifting in the longitudinal direction of the wire rod, in a mechanical contact state, by applying heat treatment at 500 to 800 ° C., the metal coatings covering the surface of each wire rod are thermally diffused, It is preferable to join a plurality of wires.

【0029】また、より簡便な方法として、複数本の線
材を束ねた状態にした後、連続的に熱間伸線加工を施す
ことで線材間を新鮮な金属面で接着することができる。
すなわち、この工程を採ることで線材同士の十分な接合
と接合された複数の線材への塑性加工とが同時に行なわ
れる。
As a simpler method, after a plurality of wire rods are bundled, hot wire drawing is continuously performed to bond the wire rods with a fresh metal surface.
That is, by adopting this step, sufficient joining of the wire rods and plastic working of the joined wire rods are simultaneously performed.

【0030】本発明において、接合された複数の線材に
塑性加工を施して長尺の線材を得る工程は、一体化した
複数の線材を長尺に伸線する伸線加工と、長尺に伸線し
た多芯線材を平角テープ状に変形加工する圧延加工とを
含むことができる。
In the present invention, the step of subjecting a plurality of joined wire rods to plastic working to obtain a long wire rod includes a wire drawing process for drawing a plurality of integrated wire rods into a long wire and a long wire drawing. Rolling processing for deforming the drawn multifilamentary wire into a rectangular tape shape can be included.

【0031】本発明の塑性加工を施して長尺の線材を得
る工程において、超電導体の緻密化および配向性の向上
を図るためには、伸線加工を施した長尺の多芯線材に圧
延加工を施して平角テープ状に変形加工をした後、さら
に熱処理を施すことが好ましい。この場合、圧延加工と
熱処理とを少なくとも2回以上繰返すことがより好まし
い。ただし、長尺の多芯線材に圧延加工を施す際には、
超電導特性の向上、線材製造における生産性の向上の観
点から、1回の圧延作業で完了させることが好ましい。
In the process of obtaining a long wire by applying the plastic working of the present invention, in order to densify and improve the orientation of the superconductor, it is rolled into a long multifilamentary wire which has been drawn. It is preferable to further heat-treat after processing and deforming into a rectangular tape shape. In this case, it is more preferable to repeat the rolling process and the heat treatment at least twice. However, when rolling a long multifilamentary wire,
From the viewpoint of improving superconducting properties and productivity in wire production, it is preferable to complete the rolling operation once.

【0032】また、長尺の多芯線材に施す少なくとも1
回目の圧延加工は、圧延前の線材の厚みに対する厚みの
減少量の割合、すなわち圧延圧下率が70%以上である
ことが好ましい。圧延加工の圧延圧下率を70%以上に
することにより、最外周部の金属被覆の薄い多芯超電導
線材を側部で破裂させることなく変形加工を施すことが
できる。
Further, at least 1 to be applied to a long multifilamentary wire
In the rolling process for the second time, it is preferable that the ratio of the thickness reduction amount to the thickness of the wire rod before rolling, that is, the rolling reduction is 70% or more. By setting the rolling reduction of the rolling process to 70% or more, it is possible to perform the deformation process on the outermost peripheral portion of the metal-coated thin multi-core superconducting wire without causing the side portion to burst.

【0033】[0033]

【作用】本発明に従う酸化物高温超電導線材の製造方法
では、酸化物超電導体またはその原料が長手方向に沿っ
て金属で被覆されてなる線材を複数本準備し、複数本の
線材を束ねた状態において、線材間で金属被覆同士を接
着させる。本発明では、従来のように金属パイプ内に複
数の金属被覆線材を嵌合する工程を採らずに、複数の線
材を一体的に接合することができる。
In the method for producing an oxide high-temperature superconducting wire according to the present invention, a plurality of wires in which the oxide superconductor or the raw material thereof is coated with metal along the longitudinal direction are prepared, and the plurality of wires are bundled. In, the metal coatings are adhered between the wire rods. In the present invention, it is possible to integrally join a plurality of wire rods without taking the step of fitting a plurality of metal-coated wire rods in a metal pipe as in the conventional case.

【0034】本発明では、金属被覆多芯超電導線材の作
製にあたって、束ね合わせる線材が従来のようにその長
さおよびその本数について制約を受けることがない。し
たがって、従来のように金属パイプの開始長および開始
径によって最終線材の長さが制限されることはない。本
発明では、接合する金属被覆超電導線材の本数および長
さに応じて任意に長尺の線材を製造することができる。
In the present invention, when producing a metal-coated multi-core superconducting wire, there is no restriction on the length and the number of the wires to be bundled as in the conventional case. Therefore, the length of the final wire is not limited by the starting length and the starting diameter of the metal pipe as in the conventional case. In the present invention, a long wire can be manufactured arbitrarily according to the number and length of metal-coated superconducting wires to be joined.

【0035】この結果、金属パイプの開始長および開始
径によって制約を受けていた従来法では得られない長尺
の線材を提供することができる。
As a result, it is possible to provide a long wire which cannot be obtained by the conventional method which is restricted by the starting length and the starting diameter of the metal pipe.

【0036】また、本発明に従う酸化物高温超電導線材
の製造方法では、第2の工程において複数の線材を接合
する際に、最終線材における超電導体の占有率の低下が
許容され得る範囲内で、たとえば束ね合わせた線材の一
部に塑性加工特性に優れた金属線材や金属被覆の占める
比率の大きな線材を、上述したように任意の位置に任意
の本数配置することができる。したがって、線材の最外
周部に厚い金属被覆を設けなくても、良好な加工特性を
確保しながら、接合された複数の線材に塑性加工を施す
ことができる。
Further, in the method for producing a high-temperature oxide superconducting wire according to the present invention, when a plurality of wires are joined in the second step, a decrease in the occupation ratio of the superconductor in the final wire can be allowed, For example, as described above, it is possible to arrange, in a part of the bundled wires, a metal wire having excellent plastic working characteristics or a wire having a large proportion of the metal coating at any position and at any number. Therefore, it is possible to perform plastic working on a plurality of joined wire rods while ensuring good working characteristics without providing a thick metal coating on the outermost peripheral portion of the wire rod.

【0037】この結果、図7(a)に示すように、最終
線材の最外周部の金属被覆10の厚みが極めて薄く抑え
られ、その分量だけ線材の断面全体に占める超電導体2
0の占有率が高められた金属被覆多芯超電導線材を得る
ことができる。したがって、熱処理後も曲げ歪み特性に
優れた金属被覆多芯超電導線材の線材全断面積あたりの
臨界電流密度、すなわちオーバオールJcをさらに向上
させることができる。
As a result, as shown in FIG. 7 (a), the thickness of the metal coating 10 at the outermost peripheral portion of the final wire is kept extremely thin, and the superconductor 2 occupies the entire cross section of the wire by that amount.
It is possible to obtain a metal-coated multi-core superconducting wire having an increased occupancy rate of 0. Therefore, even after the heat treatment, it is possible to further improve the critical current density per total cross-sectional area of the metal-coated multi-core superconducting wire having excellent bending strain characteristics, that is, the overall Jc.

【0038】また、本発明において、第1〜第3の工程
により得られた線材を複数本束ねてより多芯化された酸
化物超電導線材を作製することができる。
Further, in the present invention, a plurality of wire rods obtained by the first to third steps can be bundled to produce a more multi-core oxide superconducting wire rod.

【0039】この場合、線材を束ね合わせるにあたっ
て、従来のように金属パイプを使わずに線材間で金属被
覆同士を接着する。したがって、複数の線材を接合する
に際して余分な金属材料を使用することなく、必要最低
限の金属被覆材料とともに塑性加工を施すことができ
る。
In this case, when the wires are bundled, the metal coatings are adhered between the wires without using a metal pipe as in the conventional case. Therefore, it is possible to perform plastic working together with the minimum necessary metal coating material without using an extra metal material when joining a plurality of wires.

【0040】これに対して従来法では、多芯化するため
線材を束ね合わせるごとに金属パイプの使用が必要であ
る。従来法では、多芯化の工程を重ねるごとに、集合さ
れる線材の径が金属パイプによって大きくなり、そのた
め加工が困難になってくる。したがって、従来法では金
属パイプを使用する分だけ線材の最外周部の金属被覆の
厚みが大きくなり、加工度も大きくならざるを得ない。
On the other hand, in the conventional method, it is necessary to use a metal pipe every time the wire rods are bundled in order to have multiple cores. In the conventional method, the diameter of the assembled wire increases due to the metal pipe each time the multi-core process is repeated, which makes processing difficult. Therefore, in the conventional method, the thickness of the metal coating on the outermost peripheral portion of the wire is increased by the amount of the metal pipe used, and the workability is inevitably increased.

【0041】一方、本発明法では金属パイプを一切使用
しないため、低い加工度でしかも金属被覆の厚みを大き
くすることなく、より多芯化された酸化物超電導線材を
得ることができる。
On the other hand, in the method of the present invention, since no metal pipe is used at all, it is possible to obtain an oxide superconducting wire having a multi-core structure with a low workability and without increasing the thickness of the metal coating.

【0042】このように、本発明では、従来法のように
接合された複数の線材に所定の塑性加工を施すのに、大
掛かりでかつ高価な装置の使用を必要とせず、より手軽
で廉価な装置の使用でもこれを簡便に実現化することが
できる。
As described above, according to the present invention, it is not necessary to use a large-scale and expensive apparatus to perform a predetermined plastic working on a plurality of joined wire rods as in the conventional method, and it is easier and cheaper. This can be easily realized even by using the device.

【0043】[0043]

【実施例】【Example】

実施例I 例1 Bi2 3 、PbO、SrCO3 、CaCO3 およびC
uOを用いて、Bi:Pb:Sr:Ca:Cu=1.8
0:0.40:2.01:2.21:3.02の組成比
になるように、これらを配合した。この配合した粉末
を、大気中において、700℃で12時間、次いで80
0℃で8時間熱処理した。さらに減圧雰囲気1Torr
において、760℃で8時間の熱処理をした。なお、各
熱処理後において、それぞれ粉砕を行なった。このよう
な熱処理を経て得られた粉末を、さらにボールミルによ
り粉砕し、平均粒径がサブミクロンの粉末を得た。この
粉末に対して、減圧雰囲気において760度、10分間
の熱処理により脱気を行なった。
Example I Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and C
Using uO, Bi: Pb: Sr: Ca: Cu = 1.8
These were blended so that the composition ratio was 0: 0.40: 2.01: 2.21: 3.02. This blended powder was heated in air at 700 ° C. for 12 hours and then at 80 ° C.
Heat treatment was performed at 0 ° C. for 8 hours. Reduced pressure atmosphere 1 Torr
In, the heat treatment was performed at 760 ° C. for 8 hours. After each heat treatment, pulverization was performed. The powder obtained through such heat treatment was further pulverized by a ball mill to obtain a powder having an average particle size of submicron. This powder was degassed by heat treatment at 760 ° C. for 10 minutes in a reduced pressure atmosphere.

【0044】脱気後、得られた粉末を外径6mm、厚さ
0.75mmの銀パイプに充填し、溝を設けた銀製冶具
で蓋をした後、2×10-5Torrで10時間真空引き
した後、両端を電子ビーム溶接した。この銀パイプを直
径2.91mmに伸線加工を施した後、対辺の長さが
2.44mmの正六角形状のダイズで伸線加工を施し
た。これによって素線材を得た。
After degassing, the obtained powder was filled in a silver pipe having an outer diameter of 6 mm and a thickness of 0.75 mm, the lid was covered with a grooved silver jig, and then vacuum was applied at 2 × 10 −5 Torr for 10 hours. After pulling, both ends were electron beam welded. After this silver pipe was drawn to a diameter of 2.91 mm, it was drawn with regular hexagonal soybean having an opposite side length of 2.44 mm. This obtained the wire material.

【0045】上記のようにして得られた六角形状の素線
材を61本密に束ねて、石英製のガラス繊維で螺旋状に
巻きつけることにより密着させた後、大気中800℃、
10時間の熱処理を施し、銀被覆を拡散接合させて一体
化した。
Sixty-one hexagonal wire rods obtained as described above were tightly bundled and spirally wound with quartz glass fibers for close contact, and then in air, at 800 ° C.
After heat treatment for 10 hours, the silver coating was diffusion bonded and integrated.

【0046】このようにして得られた線材に1回の断面
減少率約20.7%で直径1.02mmまで伸線加工を
行なった。伸線加工の途中断線することなく加工性は良
好であった。
The wire thus obtained was drawn once to a diameter of 1.02 mm at a cross-section reduction rate of about 20.7%. The workability was good without breaking during wire drawing.

【0047】さらに、得られた伸線材を1回の平ロール
圧延作業で0.255mmの厚さの平角テープ状に加工
した後、大気中845℃、50時間の熱処理を行なっ
た。その後、さらに1回の平ロール圧延作業で0.22
2mmの厚さの平角テープ状に加工した。テープ材の幅
は2.70mmであった。さらに、大気中、840℃で
50時間の熱処理を実施した後、液体窒素に浸漬した状
態で全長の臨界電流を測定したところ、比抵抗10-13
Ω・m定義で36.0Aであった。
Further, the drawn wire obtained was processed into a flat tape having a thickness of 0.255 mm by one flat roll rolling operation, and then heat-treated at 845 ° C. for 50 hours in the atmosphere. After that, one more flat roll rolling operation resulted in 0.22
It was processed into a rectangular tape having a thickness of 2 mm. The width of the tape material was 2.70 mm. Furthermore, after performing a heat treatment at 840 ° C. for 50 hours in the atmosphere, the critical current of the entire length was measured in a state of being immersed in liquid nitrogen, and the specific resistance was 10 −13.
It was 36.0 A in terms of Ω · m definition.

【0048】例2 例1と同様にして粉末を調製した。ただし、例2では粉
末に脱ガス処理を施さないものとした。このような粉末
を用いて、例1と同様にして多芯超電導線材を製作し、
超電導特性を評価した。
Example 2 A powder was prepared as in Example 1. However, in Example 2, the powder was not degassed. Using such powder, a multi-core superconducting wire is manufactured in the same manner as in Example 1,
The superconducting property was evaluated.

【0049】液体窒素に浸漬した状態で全長の臨界電流
を測定したところ、比抵抗10-13Ω・m定義で18.
0Aであった。
When the critical current of the entire length was measured in the state of being immersed in liquid nitrogen, the specific resistance was 10.sup.-13 .OMEGA..multidot.m.
It was 0A.

【0050】例3 例1と同様にして粉末を調製した。この粉末に対して、
減圧雰囲気において800℃で10分間熱処理により脱
気を行なった。
Example 3 A powder was prepared in the same manner as in Example 1. For this powder,
Degassing was performed by heat treatment at 800 ° C. for 10 minutes in a reduced pressure atmosphere.

【0051】例3では、得られた粉末を外径6mm、厚
さ0.75mmの銀パイプに充填した後、真空引きとパ
イプ両端の密閉は施さなかった。
In Example 3, the obtained powder was filled in a silver pipe having an outer diameter of 6 mm and a thickness of 0.75 mm, and then vacuum evacuation and sealing of both ends of the pipe were not performed.

【0052】このような銀パイプを直径2.91mmに
伸線加工した後、さらに対辺の長さが2.44mmの正
六角形状のダイズで伸線加工した。その後、例1と同じ
方法で多芯線材を作製し、超電導特性を評価した。
After such a silver pipe was drawn to a diameter of 2.91 mm, it was further drawn with regular hexagonal soybean having a length of the opposite side of 2.44 mm. Then, a multifilamentary wire was prepared in the same manner as in Example 1 and evaluated for superconducting properties.

【0053】液体窒素に浸漬した状態で全長の臨界電流
を測定したところ、比抵抗10-13Ω・m定義で18.
0Aであった。
When the critical current of the entire length was measured in the state of being immersed in liquid nitrogen, the specific resistance was 18.sup.-13 .OMEGA.m.
It was 0A.

【0054】例4 例1と同様にして粉末を調製した。ただし、例4では大
気中、減圧雰囲気1Torrで、760℃、8時間の熱
処理を行なった後のボールミル粉砕時間を短縮すること
により、平均粒径を5μmの粗粉末とした。このような
粉末を用いて、例1と同様の方法で対辺の長さが2.4
4mmの六角形状の素線材61本を一体化した61芯線
材を断面減少率20.7%で伸線加工しようとしたとこ
ろ、直径5.83mmより断線し始め、直径1.02m
mまで伸線できなかった。
Example 4 A powder was prepared in the same manner as in Example 1. However, in Example 4, a coarse powder having an average particle size of 5 μm was obtained by shortening the ball mill crushing time after performing heat treatment at 760 ° C. for 8 hours in a reduced pressure atmosphere of 1 Torr in the air. Using such a powder, the opposite side length was 2.4 in the same manner as in Example 1.
When we tried to wire-draw a 61-core wire rod with 61 hexagonal-shaped wire rods of 4 mm integrated at a cross-section reduction rate of 20.7%, we started to break from a diameter of 5.83 mm and a diameter of 1.02 m.
The wire could not be drawn up to m.

【0055】例5(従来例) 例1と同様にして得られた粉末を減圧雰囲気において7
60℃で10分間熱処理により脱気した後、外径6m
m、厚さ0.75mmの銀パイプに充填し、直径2.9
1mmになるまで伸線加工を施した後、さらに対辺の長
さが2.44mmの正六角形状のダイズで伸線加工を施
した。これによって素線材を得た。
Example 5 (Conventional Example) The powder obtained in the same manner as in Example 1 was used in a reduced pressure atmosphere.
After degassing by heat treatment at 60 ℃ for 10 minutes, outer diameter is 6m
m, 0.75 mm thick silver pipe filled, diameter 2.9
After wire drawing was performed to 1 mm, wire drawing was further performed with regular hexagonal soybean having opposite sides of 2.44 mm. This obtained the wire material.

【0056】このようにして得られた六角形状の素線材
について、61本を再度銀パイプに充填した状態とし、
直径20.6mmまで伸線加工を施し、大気中800℃
で10時間の熱処理を加え、銀被覆を拡散接合させた。
このようにして得られた線材に1回の断面減少率約2
0.7%で直径1.02mmまで伸線加工を行なった。
With respect to the hexagonal wire rod thus obtained, 61 pieces were again filled in the silver pipe,
Wire drawing is performed up to a diameter of 20.6 mm, and the temperature is 800 ° C in the atmosphere
A heat treatment was applied for 10 hours at 10 ° C. to diffusion-bond the silver coating.
The cross-section reduction rate of the wire thus obtained is about 2
Wire drawing was performed at 0.7% to a diameter of 1.02 mm.

【0057】さらに伸線材を1回の平ロール圧延作業で
0.255mmの厚みの平角テープ状に加工した後、大
気中、845℃で50時間の熱処理を行なった。その
後、さらに1回の平ロール圧延作業で0.222mmの
厚さの平角テープ状に加工した。テープ材の幅は2.7
0mmであった。さらに、大気中、840℃で50時間
の熱処理を実施した後、液体窒素に浸漬した状態で全長
の臨界電流を測定したところ、比抵抗10-13 Ω・m定
義で16.4Aであった。
Further, the drawn wire material was processed into a flat tape having a thickness of 0.255 mm by one flat roll rolling operation, and then heat-treated in the air at 845 ° C. for 50 hours. After that, it was further processed into a flat tape having a thickness of 0.222 mm by one flat roll rolling operation. The width of the tape material is 2.7
It was 0 mm. Furthermore, after performing a heat treatment at 840 ° C. for 50 hours in the air, the critical current of the entire length was measured in a state of being immersed in liquid nitrogen, and the specific resistance was 16.4 A as defined by 10 −13 Ω · m.

【0058】上述した例1、例2、例3および例5で得
られた多芯超電導線材をエポキシ樹脂に埋込んで銀およ
び超電導体の断面積(以後、それぞれSAg、Sscと略
す)を画像処理により測定し、超電導体の臨界電流密度
(以後、Jcと略す)、超電導線材全体の臨界電流密度
(以後、オーバーオールJcと略す)を算出し、その結
果を表1に示した。
The multifilamentary superconducting wires obtained in Examples 1, 2, 3, and 5 described above were embedded in an epoxy resin and the cross-sectional areas of silver and superconductor (hereinafter abbreviated as S Ag and S sc , respectively). Was measured by image processing to calculate the critical current density of the superconductor (hereinafter abbreviated as Jc) and the critical current density of the entire superconducting wire (hereinafter abbreviated as Jc), and the results are shown in Table 1.

【0059】[0059]

【表1】 [Table 1]

【0060】表1から明らかなように、例1ないし例5
の結果から、金属被覆素線材を銀パイプに再度嵌合する
ものに比べて、金属被覆素線材の銀被覆を拡散接合させ
て一体化するものでは、最終線材における銀被覆の占有
率が小さく抑えられ超電導体の占有率がより高められて
いることがわかる。例1の多芯超電導線材のオーバーオ
ールJcは、例5(従来例)の多芯超電導線材のオーバ
ーオールJcの倍以上の値となっており、同一空間に倍
以上の電流を流せることがわかる。
As is clear from Table 1, Examples 1 to 5
From the results of the above, compared with the case where the metal-coated wire rod is re-fitted to the silver pipe, in the case where the silver coating of the metal-coated wire rod is integrated by diffusion bonding, the occupancy ratio of the silver coating in the final wire is suppressed to be small. It can be seen that the occupation rate of the superconductor is further increased. The overall Jc of the multifilamentary superconducting wire of Example 1 is more than twice the overall Jc of the multifilamentary superconducting wire of Example 5 (conventional example), and it can be seen that more than twice the current can flow in the same space.

【0061】また、金属被覆素線材の銀被覆を拡散接合
させて一体化する方法をとる場合は、線材の最外周部を
覆う金属被覆の厚みが薄くなるため、例2、例3に対し
て例1のように超電導粉末および金属被覆内に残留した
ガスの脱気を十分に行なう場合には、圧延加工後の焼結
の際にテープ材の膨張あるいは部分的な破裂等が生じる
ことがなく超電導特性をさらに向上できることがわか
る。
When the method of diffusing and joining the silver coatings of the metal-coated wire rods to integrate them is adopted, the thickness of the metal coating that covers the outermost peripheral portion of the wire rod becomes thin. When the gas remaining in the superconducting powder and the metal coating is sufficiently degassed as in Example 1, expansion or partial rupture of the tape material does not occur during sintering after rolling. It can be seen that the superconducting property can be further improved.

【0062】また、例1ないし例4の結果から、充填す
る超電導粉末の平均粒度をサブミクロン単位に微細化す
れば、良好な伸線加工性が確保されることがわかる。
Further, from the results of Examples 1 to 4, it is understood that if the average particle size of the superconducting powder to be filled is made finer to the submicron unit, good wire drawability can be secured.

【0063】実施例II 例1 実施例Iの例1と同様な方法で作製し、脱気して得られ
た粉末を図8に示すような外径68mm、厚さ8.5m
mの銀容器内に充填し蓋をした。さらに、2×10-5
orrで10時間真空引きした後、両端を電子ビーム溶
接した。
Example II Example 1 A powder obtained by degassing in the same manner as in Example 1 of Example I was used to obtain an outer diameter of 68 mm and a thickness of 8.5 m as shown in FIG.
It was filled in a silver container of m and capped. Furthermore, 2 × 10 -5 T
After vacuuming at orr for 10 hours, both ends were electron beam welded.

【0064】次に、この銀容器を押出し力が400トン
の静水圧押出機を用いて、室温で直径30mmに静水圧
押出しした。その後、直径2.91mmに伸線加工を施
した後、さらに対辺の長さが2.44mmの正六角形状
のダイズで伸線加工を行ない、110m長の六角形状の
超電導素線材を得た。
Next, this silver container was subjected to hydrostatic extrusion at a room temperature to a diameter of 30 mm by using a hydrostatic extruder having an extrusion force of 400 tons. Then, after wire drawing to a diameter of 2.91 mm, wire drawing was further performed with regular hexagonal soybean having an opposite side length of 2.44 mm to obtain a 110 m long hexagonal superconducting element wire.

【0065】このようにして得られた六角形状の素線材
について、61本を密に束ねてその周囲に石英製のガラ
ス繊維を螺旋状に巻きつけることにより密着させた後、
連続熱処理炉を用いて、大気中で800℃、線材各部の
正味の熱処理時間が10時間になるよう熱処理を加え、
銀被覆を拡散接合させて一体化した。このようにして得
られた線材に1回の断面減少率約20.7%で直径1.
02mmまで伸線加工を行なった。伸線加工の途中断線
することはなく加工性は良好であった。このようにして
42km単長の多芯超電導線材を作製した。
With respect to the hexagonal wire rods thus obtained, 61 wires were tightly bundled, and quartz glass fibers were spirally wound around them to make them adhere to each other.
Using a continuous heat treatment furnace, heat treatment is performed in the air at 800 ° C so that the net heat treatment time of each part of the wire is 10 hours,
The silver coating was diffusion bonded and integrated. The wire rod thus obtained had a cross-section reduction rate of about 20.7% once and a diameter of 1.
Wire drawing was performed up to 02 mm. There was no breakage during wire drawing, and workability was good. In this way, a 42-km single-length multicore superconducting wire was produced.

【0066】さらに、伸線材を1回の平ロール圧延作業
で0.255mmの厚さの平角テープ状に加工した後、
2km間隔で100m材を22本切出し、大気中845
℃、50時間の熱処理を行なった。その後、液体窒素に
浸漬した状態で全長の臨界電流を測定したところ、比抵
抗10-13 Ω・m定義で22本の平均臨界電流が11.
0A、標準偏差が1Aであった。
Further, after the drawn wire material was processed into a flat tape having a thickness of 0.255 mm by one flat roll rolling operation,
Twenty-two pieces of 100m material are cut out at 2km intervals and 845 in the atmosphere
A heat treatment was performed at 50 ° C. for 50 hours. After that, when the full-length critical current was measured in a state of being immersed in liquid nitrogen, 22 average critical currents were 11. with a specific resistance of 10 −13 Ω · m.
The standard deviation was 0A and the standard deviation was 1A.

【0067】その後さらに1回の平ロール圧延作業で
0.222mmの厚さの平角テープ状に加工した。テー
プ材の幅は2.70mmであった。その後、大気中84
0℃、50時間の熱処理を実施した後、液体窒素に浸漬
した状態で全長の臨界電流を測定したところ、比抵抗1
-13 Ω・m定義で22本の平均臨界電流が33.0
A、標準偏差が2Aと均一な特性を示した。また、比抵
抗10-13 Ω・m定義で決定した臨界電流を、超電導体
の断面積で除した商であるJcおよび線材全体の断面積
で除した商である、オーバーオールJcを表2に示す。
After that, it was further processed into a flat tape having a thickness of 0.222 mm by one flat roll rolling operation. The width of the tape material was 2.70 mm. Then, in the atmosphere 84
After performing a heat treatment at 0 ° C. for 50 hours, the full-length critical current was measured while immersed in liquid nitrogen.
22 average critical current is 33.0 with 0 -13 Ω · m definition
A, the standard deviation was 2A, showing uniform characteristics. Table 2 shows Jc, which is the quotient of the critical current determined by the definition of the specific resistance of 10 -13 Ω · m, divided by the cross-sectional area of the superconductor and the quotient of the overall wire, which is the quotient Jc. .

【0068】例2 例1と同じ方法で作製した42km単長の多芯超電導線
材を用いて、次のようなパススケジュールで平ロールに
よる圧延を試みた。
Example 2 Using a 42-km single-length multi-core superconducting wire produced by the same method as in Example 1, rolling with a flat roll was attempted according to the following pass schedule.

【0069】例2では、伸線材を1回目の平ロール圧延
作業で厚さ0.408mmに加工した後、さらに2回目
の平ロール圧延作業で厚さ0.255mmの厚さまで圧
延加工した。その後、大気中840℃で50時間の熱処
理を実施した。さらに1回の平ロール圧延作業で0.2
22mmの厚さの平角テープ状に加工した。その後大気
中840℃で50時間の熱処理を実施した。液体窒素に
浸漬した状態での全長の臨界電流を測定した。比抵抗1
-13 Ω・m定義で決定した臨界電流を超電導体の断面
積で除した商であるJcおよび超電導線材の断面積で除
した商である、オーバーオールJcを表2に併せて示し
た。
In Example 2, the wire-drawn material was processed into a thickness of 0.408 mm in the first flat roll rolling operation, and further rolled into a thickness of 0.255 mm in the second flat roll rolling operation. Then, heat treatment was performed at 840 ° C. for 50 hours in the atmosphere. 0.2 in one flat roll rolling operation
It was processed into a rectangular tape having a thickness of 22 mm. After that, heat treatment was performed at 840 ° C. for 50 hours in the atmosphere. The full-length critical current in the state of being immersed in liquid nitrogen was measured. Specific resistance 1
Table 2 also shows Jc, which is the quotient of the critical current determined by the definition of 0 −13 Ω · m, divided by the cross-sectional area of the superconductor and Jc, which is the quotient divided by the cross-sectional area of the superconducting wire.

【0070】例3 例1と同じ方法で作製した42km単長の多芯超電導線
材を用いて、次のようなパススケジュールで平ロール作
業による圧延を試みた。
Example 3 Using a 42-km single-length multi-core superconducting wire produced by the same method as in Example 1, rolling was performed by flat roll work according to the following pass schedule.

【0071】例3では、伸線材を1回目の平ロール圧延
作業で厚さ0.612mmに加工した。この際平角テー
プ状の側部に亀裂の発生が見られた。さらに、2回目の
平ロール圧延作業で0.367mmに、3回目の平ロー
ル圧延作業で0.225mmまで圧延加工した後、大気
中845℃で50時間の熱処理を実施した。その後さら
に1回の平ロール圧延作業で厚さ0.222mmの平角
テープ状に加工した。テープ材の幅は2.70mmであ
った。その後大気中840℃で50時間の熱処理を実施
した。液体窒素に浸漬した状態での全長の臨界電流を測
定し、比抵抗10-13 Ω・m定義で決定した臨界電流を
超電導体の断面積で除した商であるJcおよび超電導線
材の断面積で除した商である、オーバーオールJcを併
せて表2に示した。
In Example 3, the drawn wire material was processed into a thickness of 0.612 mm by the first flat roll rolling operation. At this time, cracking was observed on the side of the rectangular tape. Furthermore, after rolling to 0.367 mm in the second flat roll rolling work to 0.225 mm in the third flat roll rolling work, heat treatment was carried out at 845 ° C. for 50 hours in the atmosphere. Then, it was further processed into a flat tape having a thickness of 0.222 mm by one flat roll rolling operation. The width of the tape material was 2.70 mm. After that, heat treatment was performed at 840 ° C. for 50 hours in the atmosphere. By measuring the critical current of the full length in the state of being immersed in liquid nitrogen, and dividing the critical current determined by the specific resistance of 10 -13 Ω · m by the cross-sectional area of the superconductor, Jc and the cross-sectional area of the superconducting wire. The total Jc, which is the quotient obtained by dividing, is also shown in Table 2.

【0072】[0072]

【表2】 [Table 2]

【0073】表2の結果からも明らかなように、伸線し
た円形線材を平角テープ状に変形する際の圧延作業は1
回で完了し、かつ1回の平ロール圧延作業前後の線材の
厚さをそれぞれt0 ,t1 としたとき、 圧延圧下率(%)=(t0 −t1 )/t0 ×100 で定義される圧延圧下率が70%より大きい例1の超電
導線材では、良好な加工性が確保され、高い臨界電流密
度を示すことがわかる。
As is clear from the results shown in Table 2, the rolling work for transforming the drawn circular wire into the shape of a rectangular tape is one
The rolling reduction ratio (%) = (t 0 −t 1 ) / t 0 × 100, where t 0 and t 1 are the thicknesses of the wire before and after the flat roll rolling operation. It can be seen that the superconducting wire of Example 1 having a defined rolling reduction of more than 70% has good workability and exhibits a high critical current density.

【0074】実施例III 上述した実施例Iの例1と同様の方法で作製し脱気して
得られた粉末を外径6mm、厚さ0.75mmの銀パイ
プに充填し、溝を設けた銀製冶具で蓋をした後、2×1
-5Torrで10時間真空引きをした後、両端を電子
ビーム溶接した。直径2.91mmまで伸線加工を施し
た後、対辺の長さが2.44mmの正六角形状のダイズ
で伸線加工を施し、これによって素線材を得た。
Example III A powder prepared by the same method as in Example 1 of Example I described above and degassed was filled in a silver pipe having an outer diameter of 6 mm and a thickness of 0.75 mm to form a groove. 2 x 1 after covering with a silver jig
After vacuuming at 0 -5 Torr for 10 hours, both ends were electron beam welded. After wire drawing to a diameter of 2.91 mm, wire drawing was performed with regular hexagonal soybean having a length of opposite sides of 2.44 mm to obtain a wire rod.

【0075】このようにして得られた六角形状の素線材
について、7本を密に束ねて、その周囲に石英製のガラ
ス繊維を螺旋状に巻きつけることにより密着させた後、
大気中800℃、10時間の熱処理を加え、銀被覆を拡
散接合させて一体化した。このようにして得られた線材
に1回の断面減少率約20.7%で直径2.91mmま
で伸線加工を行なった後、さらに対辺の長さが2.44
mmの正六角形状のダイズで伸線加工を行なった。さら
に、伸線して得られた六角形状の7芯線を再度7本密に
束ねて、その周囲に石英製のガラス繊維を螺旋状に巻き
つけることにより密着させた後、大気中800℃、10
時間の熱処理を加え、銀被覆を拡散接合して一体化させ
た。このようにして得られた線材に1回の断面減少率約
20.7%で直径1.02mmまで伸線加工を行ない、
49芯線材を作製した。この49芯線材を1回の平ロー
ル圧延作業で0.255mmの厚さの平角テープ状に加
工した後、大気中845℃、50時間の熱処理を行なっ
た。その後さらに1回の平ロール圧延作業で0.222
mmの厚さの平角テープ状に加工した。テープ材の幅は
2.70mmであった。さらに、大気中840℃、50
時間の熱処理を実施した後、液体窒素に浸漬した状態で
全長の臨界電流を測定したところ、比抵抗10-13 Ω・
m定義で36.0Aであった。臨界電流を超電導体の断
面積で除した商であるJcは15,000A/cm2
臨界電流を超電導線材の断面積で除した商である、オー
バーオールJcは6,000A/cm2 と良好な特性を
示した。
With respect to the hexagonal wire rod thus obtained, seven wires are tightly bundled, and a glass fiber made of quartz is spirally wound around the wire rods to be closely adhered to each other.
A heat treatment was performed at 800 ° C. for 10 hours in the atmosphere, and the silver coating was diffusion-bonded and integrated. The wire rod thus obtained was drawn once to a diameter of 2.91 mm at a cross-section reduction rate of about 20.7%, and then the opposite side length was 2.44.
Wire drawing was performed with a regular hexagonal soybean of mm. Further, 7 hexagonal-shaped 7-core wires obtained by drawing are tightly bundled again, and glass fibers made of quartz are spirally wound around them to make them adhere to each other.
Heat treatment was applied for a period of time, and the silver coating was diffusion bonded and integrated. The wire rod thus obtained is drawn once to a diameter of 1.02 mm at a cross-section reduction rate of about 20.7%,
A 49-core wire rod was produced. This 49-core wire was processed into a flat tape having a thickness of 0.255 mm by one flat roll rolling operation, and then heat-treated at 845 ° C. for 50 hours in the atmosphere. After that, 0.222 in one flat roll rolling operation.
It was processed into a rectangular tape having a thickness of mm. The width of the tape material was 2.70 mm. Furthermore, in the atmosphere, 840 ℃, 50
After heat treatment for a period of time, the critical current of the entire length was measured while immersed in liquid nitrogen, and the specific resistance was 10 −13 Ω.
It was 36.0 A by m definition. Jc, which is the quotient of the critical current divided by the cross-sectional area of the superconductor, is 15,000 A / cm 2 ,
Overall Jc, which is the quotient of the critical current divided by the cross-sectional area of the superconducting wire, showed good characteristics of 6,000 A / cm 2 .

【0076】[0076]

【発明の効果】これまで述べてきたように、本発明に従
う酸化物高温超電導線材の製造方法を用いれば、使用時
の曲げ歪み特性を良好に備え、線材あたりの臨界電流密
度がより向上された、高性能でかつ長尺の酸化物高温超
電導線材を手軽な装置で簡便に作製することが可能とな
る。
As described above, the use of the method for producing an oxide high temperature superconducting wire according to the present invention provides good bending strain characteristics during use and further improves the critical current density per wire. Thus, it becomes possible to easily produce a high-performance and long-length oxide high-temperature superconducting wire with a simple device.

【0077】それゆえ、本発明法を、たとえば、ブスバ
ー、超電導ケーブル、超電導マグネットおよび超電導マ
グネットへの電流リードなどに応用される長尺の酸化物
高温超電導線材の製作に有効に用いることができる。
Therefore, the method of the present invention can be effectively used for producing a long oxide high-temperature superconducting wire applied to, for example, bus bars, superconducting cables, superconducting magnets, and current leads to superconducting magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う酸化物高温超電導線材の製造方法
に含まれる工程において複数の金属被覆線材を集合する
場合の集合構成の一例を示す図である。
FIG. 1 is a diagram showing an example of an assembly configuration in which a plurality of metal-coated wires are assembled in a step included in the method for manufacturing an oxide high temperature superconducting wire according to the present invention.

【図2】本発明に従う酸化物高温超電導線材の製造方法
に含まれる工程において複数の金属被覆線材を集合する
場合の集合構成の一例を示す図である。
FIG. 2 is a diagram showing an example of an assembly structure in which a plurality of metal-coated wires are assembled in a step included in the method for producing an oxide high temperature superconducting wire according to the present invention.

【図3】本発明に従う酸化物高温超電導線材の製造方法
に含まれる工程において複数の金属被覆線材を集合する
場合の集合構成の一例を示す図である。
FIG. 3 is a diagram showing an example of an assembly structure in the case of assembling a plurality of metal-coated wires in the steps included in the method for producing an oxide high temperature superconducting wire according to the present invention.

【図4】本発明に従う酸化物高温超電導線材の製造方法
に含まれる工程において複数の金属被覆線材を集合する
場合の集合構成の一例を示す図である。
FIG. 4 is a diagram showing an example of an assembly structure in the case of assembling a plurality of metal-coated wires in the steps included in the method for producing an oxide high temperature superconducting wire according to the present invention.

【図5】本発明に従う酸化物高温超電導線材の製造方法
に含まれる工程において複数の金属被覆線材を集合する
場合の集合構成の一例を示す図である。
FIG. 5 is a diagram showing an example of an assembly structure in the case of assembling a plurality of metal-coated wires in the steps included in the method for producing an oxide high temperature superconducting wire according to the present invention.

【図6】本発明に従う酸化物高温超電導線材の製造方法
に含まれる工程において複数の金属被覆線材を集合する
場合の集合構成の一例を示す図である。
FIG. 6 is a diagram showing an example of an assembly structure in which a plurality of metal-coated wires are assembled in a step included in the method for producing an oxide high temperature superconducting wire according to the present invention.

【図7】(a)は、本発明法に従い製造した圧延加工前
の線材の断面構造を示す図であり、(b)は、従来法に
従い製造した圧延加工前の線材の断面構造を示す図であ
る。
FIG. 7 (a) is a diagram showing a sectional structure of a wire rod manufactured according to the method of the present invention before rolling, and FIG. 7 (b) is a diagram showing a sectional structure of a wire rod manufactured according to a conventional method before rolling. Is.

【図8】本発明に従う実施例において用いる金属容器の
構造を示す断面図である。
FIG. 8 is a cross-sectional view showing the structure of a metal container used in an example according to the present invention.

【符号の説明】[Explanation of symbols]

1,3 金属被覆単芯素線 2 金属線材 4 金属被覆多芯線材 10 金属被覆 20 超電導体 なお、各図中、同一符号は同一または相当部分を示す。 1,3 Metal coated single core wire 2 metal wire 4 Metal-coated multi-core wire 10 metal coating 20 Superconductor In each drawing, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 謙一 大阪市此花区島屋一丁目1番3号 住友 電気工業株式会社 大阪製作所内 (56)参考文献 特開 昭63−279511(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Sato, 1-3 1-3 Shimaya, Konohana-ku, Osaka, Sumitomo Electric Industries, Ltd. (56) Reference JP-A-63-279511 (JP, A) ( 58) Fields investigated (Int.Cl. 7 , DB name) H01B 12/00-13/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超電導体またはその原料が長手方
向に沿って金属で被覆されてなる線材を複数本準備する
第1の工程と、 前記複数本の線材を束ねた状態において、線材間で前記
金属被覆同士を接着させることにより、前記複数の線材
を接合する第2の工程と、 前記接合された複数の線材に塑性加工を施して長尺の線
材を得る第3の工程と、 前記長尺の線材に熱処理を施すことにより、焼結された
酸化物超電導体が長手方向に沿って形成された多芯超電
導線材を得る第4の工程とを備える、酸化物高温超電導
線材の製造方法。
1. A first step of preparing a plurality of wire rods in which an oxide superconductor or a raw material thereof is coated with a metal along a longitudinal direction, and between the wire rods in a state in which the plurality of wire rods are bundled. A second step of joining the plurality of wire rods by adhering the metal coatings together, a third step of subjecting the joined plurality of wire rods to plastic working to obtain a long wire rod, And a fourth step of obtaining a multifilamentary superconducting wire in which a sintered oxide superconductor is formed along the longitudinal direction by subjecting a lengthy wire to a heat treatment.
【請求項2】 前記第4の工程前に、前記第3の工程で
得られた長尺の線材を複数本集合する工程と、 前記複数本の線材を束ねた状態において、線材間で前記
金属被覆同士を接着させることにより、前記集合した複
数の線材を接合する工程と、 前記接合された複数の線材に塑性加工を施して長尺の線
材を得る工程とをさらに備える、請求項1に記載の酸化
物高温超電導線材の製造方法。
2. A step of collecting a plurality of long wire rods obtained in the third step before the fourth step, and a step of bundling the plurality of wire rods with each other, wherein the metal is provided between the wire rods. The method further comprising: a step of joining the plurality of assembled wire rods by adhering the coatings together, and a step of subjecting the joined plurality of wire rods to plastic working to obtain a long wire rod. Manufacturing method of oxide high-temperature superconducting wire.
【請求項3】 複数の線材を接合する工程において、前
記金属被覆同士の接着が、金属の熱拡散により実現され
る、請求項1または請求項2に記載の酸化物高温超電導
線材の製造方法。
3. The method for producing an oxide high temperature superconducting wire according to claim 1, wherein in the step of joining a plurality of wires, the adhesion of the metal coatings is realized by thermal diffusion of metal.
【請求項4】 前記第1の工程が、 前記酸化物超電導体またはその原料の粉末を脱気処理す
るステップと、 前記脱気処理した酸化物超電導体またはその原料の粉末
を金属管内に充填するステップと、 前記酸化物超電導体またはその原料の粉末が充填された
金属管の両端に蓋を被せて前記金属管内を真空排気した
後、前記金属管内の両端を密閉するステップと、 前記両端が密閉された金属管に塑性加工を施して長尺の
線材を得るステップとを含む、請求項1に記載の酸化物
高温超電導線材の製造方法。
4. The step of degassing the powder of the oxide superconductor or the raw material thereof, wherein the first step fills the metal tube with the powder of the oxide superconductor or the raw material of the degassed oxide superconductor. A step of covering the both ends of the metal tube filled with the oxide superconductor or the powder of the raw material thereof with a lid to evacuate the inside of the metal tube, and then sealing both ends of the metal tube; The method for producing an oxide high-temperature superconducting wire according to claim 1, further comprising the step of subjecting the formed metal tube to plastic working to obtain a long wire.
【請求項5】 前記接合された複数の線材に塑性加工を
施して長尺の線材を得る工程が、 前記接合された複数の線材に伸線加工を施して長尺に伸
線するステップと、 前記長尺に伸線された線材に圧延加工を施して平角テー
プ状に変形加工するステップと、 前記平角テープ状に変形加工された線材に熱処理を施す
ステップとを含む、請求項1または請求項2に記載の酸
化物高温超電導線材の製造方法。
5. A step of subjecting the joined plurality of wire rods to plastic working to obtain a long wire rod, a step of subjecting the joined plurality of wire rods to a wire drawing work to obtain a long wire rod, The method according to claim 1 or 2, further comprising: a step of rolling the wire rod that has been drawn to a long length to deform it into a rectangular tape shape; and a step of heat-treating the wire rod that has been deformed into a rectangular tape shape. 2. The method for producing an oxide high temperature superconducting wire according to 2.
【請求項6】 前記接合された複数の線材に塑性加工を
施して長尺の線材を得る工程において、前記長尺に伸線
された線材に圧延加工を施して平角テープ状に変形加工
するステップと、前記平角テープ状に変形加工された線
材に熱処理を施すステップとが複数回繰返される、請求
項5に記載の酸化物高温超電導線材の製造方法。
6. A step of subjecting a plurality of the joined wire rods to plastic working to obtain a long wire rod, by rolling the wire rod that has been drawn to a long length and deforming it into a rectangular tape shape. The method for producing an oxide high temperature superconducting wire according to claim 5, wherein the step of heat treating the wire deformed into the rectangular tape shape is repeated a plurality of times.
【請求項7】 前記長尺に伸線された線材に圧延加工を
施して平角テープ状に変形加工するステップにおいて、
圧延加工は1回の圧延作業により完了される、請求項5
または請求項6に記載の酸化物高温超電導線材の製造方
法。
7. In the step of subjecting the wire rod drawn into a long shape to a rolling process to deform it into a rectangular tape shape,
The rolling process is completed by one rolling operation.
Or the manufacturing method of the oxide high temperature superconducting wire of Claim 6.
【請求項8】 接合された複数の線材に塑性加工を施し
て長尺の線材を得る工程において、少なくとも1回目の
平角テープ状への変形加工は、圧延加工前の線材の厚み
に対する厚みの減少量の割合が70%以上である圧延加
工により施される、請求項6または請求項7に記載の酸
化物高温超電導線材の製造方法。
8. In the step of subjecting a plurality of joined wire rods to plastic working to obtain a long wire rod, at least the first deformation work into a rectangular tape shape reduces the thickness with respect to the thickness of the wire rod before rolling. The method for producing an oxide high-temperature superconducting wire according to claim 6 or 7, which is carried out by a rolling process in which the amount ratio is 70% or more.
JP14064193A 1993-06-11 1993-06-11 Manufacturing method of oxide high temperature superconducting wire Expired - Lifetime JP3534428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14064193A JP3534428B2 (en) 1993-06-11 1993-06-11 Manufacturing method of oxide high temperature superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14064193A JP3534428B2 (en) 1993-06-11 1993-06-11 Manufacturing method of oxide high temperature superconducting wire

Publications (2)

Publication Number Publication Date
JPH06349358A JPH06349358A (en) 1994-12-22
JP3534428B2 true JP3534428B2 (en) 2004-06-07

Family

ID=15273399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14064193A Expired - Lifetime JP3534428B2 (en) 1993-06-11 1993-06-11 Manufacturing method of oxide high temperature superconducting wire

Country Status (1)

Country Link
JP (1) JP3534428B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247224B1 (en) 1995-06-06 2001-06-19 American Superconductor Corporation Simplified deformation-sintering process for oxide superconducting articles
JP4722258B2 (en) * 2000-06-30 2011-07-13 株式会社フジクラ Superconducting cable
KR20050027141A (en) * 2002-08-05 2005-03-17 스미토모 덴키 고교 가부시키가이샤 Method of producing superconductive wire material
JP5123200B2 (en) * 2005-11-25 2013-01-16 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Process for continuous production of magnesium diboride-based superconductors
JP5353215B2 (en) * 2008-12-04 2013-11-27 住友電気工業株式会社 Superconducting wire manufacturing method and superconducting wire

Also Published As

Publication number Publication date
JPH06349358A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
US20030024730A1 (en) Filaments for composite oxide superconductors
JP3356852B2 (en) Manufacturing method of oxide superconducting wire
JP3534428B2 (en) Manufacturing method of oxide high temperature superconducting wire
US6542760B2 (en) Method of decoupling an HTc superconductive multi-filament strand having a silver-based matrix, and a multifilament strand made thereby
AU729277B2 (en) Processing of oxide superconductor cables
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP2002507824A (en) Superconducting tape
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP3884222B2 (en) Manufacturing method of oxide superconducting composite multi-core wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JP2757575B2 (en) Method for manufacturing high-temperature superconducting wire
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
JPH07114838A (en) Oxide superconducting cable
JPH04264315A (en) Manufacture of large-capacity oxide superconducting conductor
JP3350935B2 (en) Multi-core superconducting wire
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPH0644833A (en) Ceramics superconductive conductor
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP2001118444A (en) Oxide superconductive wire and method for fabrication
JPH01220308A (en) Superconductive composite cable having high critical current density and high strength, and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9