JP3524626B2 - Static power converter - Google Patents

Static power converter

Info

Publication number
JP3524626B2
JP3524626B2 JP09622695A JP9622695A JP3524626B2 JP 3524626 B2 JP3524626 B2 JP 3524626B2 JP 09622695 A JP09622695 A JP 09622695A JP 9622695 A JP9622695 A JP 9622695A JP 3524626 B2 JP3524626 B2 JP 3524626B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
current command
command signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09622695A
Other languages
Japanese (ja)
Other versions
JPH08275531A (en
Inventor
吉明 上村
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP09622695A priority Critical patent/JP3524626B2/en
Publication of JPH08275531A publication Critical patent/JPH08275531A/en
Application granted granted Critical
Publication of JP3524626B2 publication Critical patent/JP3524626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、交流電源から見た力率
を100%にし、しかも、入力交流電圧をトランス等で
降圧することなく、静止型電力変換装置の負荷にかかる
電圧を低くすることを可能にした静止型電力変換装置に
関するものである。 【0002】 【従来の技術】PWM変換器のパルス幅変調制御を行
い、交流電源から供給される電流、または、交流電源に
回生する電流を正弦波電流にし、かつ、力率を100%
にする場合、従来より行われている方法では、PWM変
換器の交流入力電圧は交流電源電圧より高くなる。以
下、その詳細を図3および図4を用いて説明する。 【0003】図3は、従来の静止型電力変換装置の主回
路構成図であり、1は交流電源、2は静止型電力変換装
置、21はPWM変換器、22は交流電源1とPWM変換器
21の間に挿入されたリアクトル、23はPWM変換器21の
直流側に接続され、フィルタとして作用する直流コンデ
ンサである。PWM変換器21はオン・オフ可能な半導体
素子と、該半導体素子と逆並列に接続されたダイオード
から構成され、三相ブリッジ回路として接続されてい
る。 【0004】図4は図3の交流電源1の電圧Eと、PW
M変換器21の交流入力電圧Vと,PWM変換器21の交流
入力電流Iの関係を示すベクトル図であり、(a)は順
変換動作の場合、(b)は逆変換動作の場合を示す。
(a)あるいは(b)に示すように、PWM変換器21に
交流電源1から供給される電流I、または、交流電源1
に回生する電流Iは、交流電源1の電圧Eと同位相ある
いは逆位相になるように制御することにより電源から見
た力率を100%にすることができる。 【0005】 【発明が解決しようとする課題】しかしながら、図4
(a)、(b)のいずれにおいても、PWM変換器21の
交流入力電圧Vはリアクトル22の両端電圧XIにより、
交流電源1の電圧より大きくなる。このため、PWM変
換器21の出力電圧も高くなる。PWM変換器21の負荷と
して、VVVFインバータ(図示せず)など半導体素子
を使用した装置を使用すると、半導体素子のスイッチン
グ動作に伴い、サージ電圧が発生するが、PWM変換器
21の出力電圧が高いため、サージ電圧も高くなってしま
うという不具合がある。 【0006】また、VVVFインバータにより電動機
(図示せず)を駆動するような場合、VVVFインバー
タから電動機までのケーブルの長さによっては、さらに
大きなサージ電圧が電動機に加わり、既設の電動機の中
には巻線の絶縁破壊に至るものもあった。また、VVV
Fインバータを構成する半導体素子の破損や、直流側に
接続される直流コンデンサ23等も耐圧的に苦しくなると
言う不具合があった。 【0007】このような不具合を解消するために、半導
体素子や直流コンデンサを高耐圧品にしたり、電動機の
絶縁レベルを変えたり、あるいは、電源側にトランスを
設けてPWM変換器の入力電圧を下げて使用していた
が、コストが高くなり、重量も増加するという不具合が
あった。 【0008】 【課題を解決するための手段】本発明は、かかる不具合
を解消するためになされたものであり、その目的とする
ところは、高耐圧半導体素子や絶縁レベルの高い電動機
の使用、あるいはトランスを用いるなどの特別な対策を
しないで、PWM変換器の入力電圧を交流入力電圧以下
にし、かつ、交流電源から見た力率を100%にする静
止型電力変換装置を提供することにある。 【0009】本発明の静止型電力変換装置は、オン・オ
フ可能な半導体素子および、それと逆並列に接続される
ダイオードにより構成されるPWM変換器と、該PWM
変換器の交流側に直列に接続されるリアクトルと、該リ
アクトルの交流電源側に接続される進相コンデンサと、
前記交流電源電圧を検出する手段と、前記直流出力電圧
の設定値と実際値を比較して電圧偏差信号を出力する手
段と、前記交流電源電圧に対し位相が90゜遅れ、か
つ、前記進相コンデンサに流れる電流に等しく、かつ、
逆位相の無効電流指令信号を出力する手段と、前記電圧
偏差信号と前記交流電源電圧との積により有効電流指令
信号を出力する手段と、該有効電流指令信号と前記無効
電流指令信号を加算して電流指令信号を出力する手段
と、該電流指令信号に応じて前記PWM変換器の点弧制
御を行う手段より構成される。 【0010】 【作用】図2は本発明の原理を示すベクトル図であり、
(a)はPWM変換器が順変換領域で動作する場合のベ
クトル図である。図中Ifは、交流電源より進相コンデ
ンサに流入する進相分電流、Ipは直流出力の電圧偏差
信号ΔVに比例した有効分電流(電源電圧の同相電流成
分)、Iqは大きさが進相分電流Ifに等しく、かつ電
源電圧に対して90゜位相の遅れた無効分電流(したが
って、進相分電流Ifより180゜位相の遅れた電流成
分)である。 【0011】すなわち、このような電流成分IpとIq
の合成成分がPWM変換器に流入するようにPWM変換
器を制御することにより、リアクトル22には交流電源電
圧に対して位相の遅れた電流Icが流れることになる。
PWM変換器に入力される電圧は交流電源電圧から遅れ
電流Icによるリアクタンスドロップ分を差し引いた電
圧が加わるので、図2(a)に示すように交流電源電圧
Eよりも低い電圧Vが加わることになる。 【0012】図2(b)はPWM変換器を逆変換領域で
動作させた場合のベクトル図で、この場合はIpが交流
電源電圧に対して180゜位相がずれるが、PWM変換
器に入力される電圧は図2(b)に示す通りであり、図
2(a)の場合と同様に交流電源電圧Eよりも低い電圧
Vが加わることになる。 【0013】 【実施例】以下、本発明の詳細を図1により説明する。
図中、3は静止型電力変換装置、4は静止型電力変換装
置の負荷であり、電動機を駆動するVVVFインバータ
などが接続される。31は進相コンデンサ、32は交流電圧
検出器、33は変流器、34は電圧設定回路、35は直流電圧
検出器、36は電圧比較器、37は掛算器、38は無効電流指
令回路、39は加算器、40は比較器、41はゲート回路、42
は変流器である。なお、図3と同一部分については同一
符号を付した。 【0014】図1において、電圧設定回路34の設定値V
sと直流電圧検出器35で検出した実際値Vdは電圧比較
器36で比較され、電圧偏差信号ΔVが出力される。図2
に示す有効分電流Ipの大きさは、この電圧偏差信号Δ
Vによって制御され、PWM変換器21の出力に接続され
ているフィルタ用直流コンデンサ23の充放電を行い、ま
た、PWM変換器の負荷に電流が供給される。掛算器37
は、交流電圧検出器32で検出した交流電源電圧Esと電
圧偏差信号ΔVを入力とし、それらの積を有効電流指令
信号Spとして加算器37に出力する。無効電流指令回路
38は、交流電源電圧Esと進相コンデンサ31に流れる電
流Ifの検出信号Sfを入力とし、電流Ifと同じ大き
さを有し、交流電源電圧Esに対して位相が90゜遅れ
た無効分電流Iqを流すための無効電流指令信号Sqを
加算器39に出力する。 【0015】加算器39は有効電流指令信号Spと無効電
流指令信号Sqを加算し、電流指令信号Sを比較器40に
出力する。比較器40は変流器33で検出したPWM変換器
21の入力電流Icの検出信号Scと加算器39より入力さ
れた電流指令信号Sを比較し、電流指令信号Sに検出信
号Scが追従するようにPWM信号Gsをゲート回路41
に出力する。ゲート回路41はPWM信号Gsに基づいて
PWM変換器21の半導体素子にゲート信号Gを出力す
る。 【0016】 【発明の効果】以上の実施例で詳細について説明したよ
うに、交流電源から見た力率を100%に保ちながら、
PWM変換器の交流入力電圧を交流電源電圧よりも下げ
ることができるので、静止型電力変換装置の出力直流電
圧は交流電源電圧の波高値よりも低くすることができ、
軽量で安価な静止型電力変換装置を提供することができ
るようになった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static power supply with a power factor of 100% as viewed from an AC power supply, and without reducing an input AC voltage with a transformer or the like. The present invention relates to a static power converter that can reduce a voltage applied to a load of the converter. 2. Description of the Related Art A pulse width modulation control of a PWM converter is performed to convert a current supplied from an AC power supply or a current regenerated to the AC power supply into a sine wave current, and a power factor of 100%.
In the conventional method, the AC input voltage of the PWM converter is higher than the AC power supply voltage. Hereinafter, the details will be described with reference to FIGS. FIG. 3 is a main circuit configuration diagram of a conventional static power converter, wherein 1 is an AC power source, 2 is a static power converter, 21 is a PWM converter, 22 is an AC power source 1 and a PWM converter.
Reactor 23 inserted between 21 and 23 is a DC capacitor connected to the DC side of PWM converter 21 and acting as a filter. The PWM converter 21 includes a semiconductor element that can be turned on and off, and a diode connected in anti-parallel with the semiconductor element, and is connected as a three-phase bridge circuit. FIG. 4 shows the voltage E of the AC power supply 1 shown in FIG.
FIG. 7 is a vector diagram showing a relationship between an AC input voltage V of the M converter 21 and an AC input current I of the PWM converter 21, wherein (a) shows a case of a forward conversion operation and (b) shows a case of an inverse conversion operation. .
As shown in (a) or (b), the current I supplied from the AC power supply 1 to the PWM converter 21 or the AC power supply 1
The power factor viewed from the power supply can be made 100% by controlling the current I that is regenerated to the same phase or opposite phase to the voltage E of the AC power supply 1. [0005] However, FIG.
In both cases (a) and (b), the AC input voltage V of the PWM converter 21 is determined by the voltage XI across the reactor 22.
It becomes larger than the voltage of the AC power supply 1. Therefore, the output voltage of the PWM converter 21 also increases. When a device using a semiconductor device such as a VVVF inverter (not shown) is used as a load of the PWM converter 21, a surge voltage is generated with the switching operation of the semiconductor device.
Since the output voltage of 21 is high, there is a problem that the surge voltage also increases. When a motor (not shown) is driven by a VVVF inverter, a larger surge voltage is applied to the motor depending on the length of a cable from the VVVF inverter to the motor. Some even resulted in winding breakdown. Also, VVV
There has been such a problem that the semiconductor element constituting the F inverter is damaged, and the DC capacitor 23 connected to the DC side is also difficult to withstand in pressure. In order to solve such a problem, a semiconductor element or a DC capacitor is made to have a high withstand voltage, an insulation level of a motor is changed, or a transformer is provided on a power supply side to reduce an input voltage of a PWM converter. However, there was a problem that the cost increased and the weight increased. SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and has as its object to use a high-voltage semiconductor element or a motor having a high insulation level, or It is an object of the present invention to provide a static power converter in which an input voltage of a PWM converter is set to an AC input voltage or less and a power factor viewed from an AC power supply is 100% without taking special measures such as using a transformer. . A static power converter according to the present invention comprises a semiconductor element which can be turned on and off, a PWM converter comprising a diode connected in anti-parallel to the semiconductor element, and a PWM converter comprising the same.
A reactor connected in series to the AC side of the converter, and a phase advance capacitor connected to the AC power supply side of the reactor;
Means for detecting the AC power supply voltage, means for comparing a set value and an actual value of the DC output voltage to output a voltage deviation signal, and a phase delay of 90 ° with respect to the AC power supply voltage, and Equal to the current flowing through the capacitor, and
A means for outputting a reactive current command signal having an opposite phase, a means for outputting an effective current command signal by a product of the voltage deviation signal and the AC power supply voltage, and adding the effective current command signal and the reactive current command signal. Means for outputting a current command signal in response to the current command signal, and means for performing ignition control of the PWM converter in accordance with the current command signal. FIG. 2 is a vector diagram showing the principle of the present invention.
(A) is a vector diagram in the case where the PWM converter operates in the forward conversion area. In the diagram, If is a phase leading current flowing from the AC power supply into the phase leading capacitor, Ip is an effective component current (common mode current component of the power supply voltage) proportional to the DC output voltage deviation signal ΔV, and Iq is a phase leading phase. The reactive current is equal to the divided current If and is delayed by 90 ° with respect to the power supply voltage (therefore, the current component is delayed by 180 ° from the leading current If). That is, such current components Ip and Iq
By controlling the PWM converter so that the combined component of the current flows into the PWM converter, a current Ic delayed in phase with respect to the AC power supply voltage flows through the reactor 22.
Since the voltage input to the PWM converter is a voltage obtained by subtracting the reactance drop due to the delay current Ic from the AC power supply voltage, a voltage V lower than the AC power supply voltage E is applied as shown in FIG. Become. FIG. 2 (b) is a vector diagram when the PWM converter is operated in the inverse conversion region. In this case, although Ip is out of phase by 180 ° with respect to the AC power supply voltage, it is input to the PWM converter. 2B, and a voltage V lower than the AC power supply voltage E is applied as in the case of FIG. 2A. The details of the present invention will be described below with reference to FIG.
In the figure, reference numeral 3 denotes a static power converter, and reference numeral 4 denotes a load of the static power converter, to which a VVVF inverter for driving a motor is connected. 31 is a phase advance capacitor, 32 is an AC voltage detector, 33 is a current transformer, 34 is a voltage setting circuit, 35 is a DC voltage detector, 36 is a voltage comparator, 37 is a multiplier, 38 is a reactive current command circuit, 39 is an adder, 40 is a comparator, 41 is a gate circuit, 42
Is a current transformer. The same parts as those in FIG. 3 are denoted by the same reference numerals. In FIG. 1, a set value V of a voltage setting circuit 34 is set.
s and the actual value Vd detected by the DC voltage detector 35 are compared by a voltage comparator 36, and a voltage deviation signal ΔV is output. FIG.
The magnitude of the effective component current Ip shown in FIG.
Controlled by V, the DC capacitor for filtering 23 connected to the output of the PWM converter 21 is charged and discharged, and a current is supplied to the load of the PWM converter. Multiplier 37
Receives the AC power supply voltage Es detected by the AC voltage detector 32 and the voltage deviation signal ΔV, and outputs the product thereof to the adder 37 as an effective current command signal Sp. Reactive current command circuit
Reference numeral 38 designates an input of a detection signal Sf of the AC power supply voltage Es and the current If flowing through the phase advance capacitor 31, and has an ineffective component current having the same magnitude as the current If and having a phase delayed by 90 ° from the AC power supply voltage Es. The reactive current command signal Sq for flowing Iq is output to the adder 39. The adder 39 adds the active current command signal Sp and the reactive current command signal Sq, and outputs a current command signal S to the comparator 40. The comparator 40 is a PWM converter detected by the current transformer 33.
The detection signal Sc of the input current Ic of 21 is compared with the current command signal S input from the adder 39, and the PWM signal Gs is supplied to the gate circuit 41 so that the detection signal Sc follows the current command signal S.
Output to The gate circuit 41 outputs the gate signal G to the semiconductor device of the PWM converter 21 based on the PWM signal Gs. As described in detail in the above embodiments, while keeping the power factor as viewed from the AC power supply at 100%,
Since the AC input voltage of the PWM converter can be lower than the AC power supply voltage, the output DC voltage of the static power converter can be lower than the peak value of the AC power supply voltage,
It has become possible to provide a lightweight and inexpensive static power converter.

【図面の簡単な説明】 【図1】図1は本発明の実施例を示す回路図である。 【図2】図2は本発明の原理を説明するためのベクトル
図である。 【図3】図3は静止型電力変換装置の従来の主回路構成
図である。 【図4】図4は図3の動作原理を説明するためのベクト
ル図である。 【符号の説明】 1 交流電源 2 静止型電力変換装置 3 静止型電力変換装置 4 負荷 21 PWM変換器 22 リアクトル 23 直流コンデンサ 31 進相コンデンサ 32 交流電圧検出器 33 変流器 34 電圧設定回路 35 直流電圧検出器 36 電圧比較器 37 掛算器 38 無効電流指令回路 39 加算器 40 比較器 41 ゲート回路 42 変流器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing an embodiment of the present invention. FIG. 2 is a vector diagram for explaining the principle of the present invention. FIG. 3 is a configuration diagram of a conventional main circuit of a static power converter. FIG. 4 is a vector diagram for explaining the operation principle of FIG. 3; [Description of Signs] 1 AC power supply 2 Static power converter 3 Static power converter 4 Load 21 PWM converter 22 Reactor 23 DC capacitor 31 Leading capacitor 32 AC voltage detector 33 Current transformer 34 Voltage setting circuit 35 DC Voltage detector 36 Voltage comparator 37 Multiplier 38 Reactive current command circuit 39 Adder 40 Comparator 41 Gate circuit 42 Current transformer

Claims (1)

(57)【特許請求の範囲】 【請求項1】 交流電源電圧を直流電圧に変換するPW
M変換器と、該PWM変換器の交流側に直列に接続され
るリアクトルと、該リアクトルの交流電源側に接続され
る進相コンデンサと、前記交流電源電圧を検出する手段
と、前記直流出力電圧の設定値と実際値を比較して電圧
偏差信号を出力する手段と、前記交流電源電圧に対して
位相が90゜遅れ、かつ、前記進相コンデンサに流れる
電流に等しい無効電流指令信号を出力する手段と、前記
電圧偏差信号と前記交流電源電圧との積により有効電流
指令信号を出力する手段と、該有効電流指令信号と前記
無効電流指令信号を加算して電流指令信号を出力する手
段と、該電流指令信号に応じて前記PWM変換器の点弧
制御を行う手段とを備えた静止型電力変換装置。
(57) [Claim 1] A PW for converting an AC power supply voltage to a DC voltage
An M converter, a reactor connected in series to the AC side of the PWM converter, a phase capacitor connected to the AC power supply side of the reactor, a means for detecting the AC power supply voltage, and the DC output voltage Means for comparing the set value with the actual value and outputting a voltage deviation signal; and outputting a reactive current command signal having a phase delayed by 90 ° with respect to the AC power supply voltage and equal to the current flowing through the phase advance capacitor. Means, means for outputting an effective current command signal by the product of the voltage deviation signal and the AC power supply voltage, means for adding the effective current command signal and the reactive current command signal to output a current command signal, Means for performing ignition control of the PWM converter in accordance with the current command signal.
JP09622695A 1995-03-29 1995-03-29 Static power converter Expired - Fee Related JP3524626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09622695A JP3524626B2 (en) 1995-03-29 1995-03-29 Static power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09622695A JP3524626B2 (en) 1995-03-29 1995-03-29 Static power converter

Publications (2)

Publication Number Publication Date
JPH08275531A JPH08275531A (en) 1996-10-18
JP3524626B2 true JP3524626B2 (en) 2004-05-10

Family

ID=14159327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09622695A Expired - Fee Related JP3524626B2 (en) 1995-03-29 1995-03-29 Static power converter

Country Status (1)

Country Link
JP (1) JP3524626B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229723A (en) * 2004-02-13 2005-08-25 Toyo Electric Mfg Co Ltd Reactive current control device of ac-dc converter

Also Published As

Publication number Publication date
JPH08275531A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
JP3248153B2 (en) Multi-level power converter
US20130176753A1 (en) Three Phase Active Rectifier System
KR950010310A (en) Power converter
JP4755504B2 (en) Power converter
JP2624793B2 (en) Control device for PWM boost converter
JP2527911B2 (en) PWM converter
JP3524626B2 (en) Static power converter
JP2003230275A (en) Protection method for pwm cycloconverter
KR100317356B1 (en) Drive control device of boost converter for power factor control
JP3433412B2 (en) Regenerative energy processing method and regenerative energy processing device for inverter
JPH08168101A (en) Power conversion device
JP3576310B2 (en) AC electric vehicle control device
JPH049036B2 (en)
JPH05176553A (en) Inverter control method of non-interruption power supply apparatus and non-interruption power supply apparatus
JP2877577B2 (en) AC electric vehicle control device
JP3295929B2 (en) DC power supply
JPH10164845A (en) Pwm rectifier
JPS5819169A (en) Controlling method for pwm control converter
JPS58107083A (en) Driving regenerative converting power supply device
JP2771191B2 (en) Control method of PWM converter
JP3772649B2 (en) Induction machine speed control device
JP4478303B2 (en) Inverter parallel operation device
JPH0974765A (en) Static type power conversion device
JPH09163751A (en) Pwm controlled self-excited rectifier
JPH10164846A (en) Control device for power conversion apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees