JP3519760B2 - Islanding detection device - Google Patents

Islanding detection device

Info

Publication number
JP3519760B2
JP3519760B2 JP27521193A JP27521193A JP3519760B2 JP 3519760 B2 JP3519760 B2 JP 3519760B2 JP 27521193 A JP27521193 A JP 27521193A JP 27521193 A JP27521193 A JP 27521193A JP 3519760 B2 JP3519760 B2 JP 3519760B2
Authority
JP
Japan
Prior art keywords
voltage
inverter
current
interconnection
extracting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27521193A
Other languages
Japanese (ja)
Other versions
JPH07131930A (en
Inventor
政樹 湯郷
健仁 井家
康弘 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27521193A priority Critical patent/JP3519760B2/en
Publication of JPH07131930A publication Critical patent/JPH07131930A/en
Application granted granted Critical
Publication of JP3519760B2 publication Critical patent/JP3519760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電圧形電流制御方式の
インバータを用いた系統連系システムにおける単独運転
検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an islanding operation detecting device in a system interconnection system using a voltage type current control type inverter.

【0002】[0002]

【従来の技術】近年、太陽電池や燃料電池などの数KW
程度の直流電源と、その出力を交流に変換するインバー
タとを備えた分散電源設備を商用電力系統と連系(接
続)し、家電製品などの負荷に給電する系統連系システ
ムが種々提案されている。
2. Description of the Related Art In recent years, several kW for solar cells, fuel cells, etc.
Various grid-connected systems have been proposed that connect (connect) a distributed power supply system equipped with a DC power supply of a certain degree and an inverter that converts its output to AC with a commercial power grid to supply power to loads such as home appliances. There is.

【0003】系統連系システムでは、商用電力系統の保
全作業の安全を確保するため、商用電力系統の不測の停
電時及び作業停電時において、直ちにインバータの動作
を停止させるか、又は直ちに開閉器を作動させて連系を
解除することにより、インバータを商用電力系統から解
列させる機能、すなわちインバータ回路の単独運転を防
止する機能が不可欠である。
In the grid interconnection system, in order to ensure the safety of maintenance work of the commercial power system, the operation of the inverter is immediately stopped or the switch is immediately opened at the time of an unexpected power failure and a work power failure of the commercial power system. The function of disconnecting the inverter from the commercial power system by operating it to release the interconnection, that is, the function of preventing independent operation of the inverter circuit is essential.

【0004】従来の系統連系システムは、インバータの
出力電圧変動や出力周波数変動により系統停電を検出
し、インバータを商用電力系統から解列させるように構
成されていた。しかし、このような系統連系システムで
は、インバータの出力電力と負荷の消費電力とがほぼ等
しい負荷平衡状態のときには、インバータの出力電圧や
出力周波数がほとんど変動しないことから、系統停電を
検出できないという問題があった。
A conventional system interconnection system is configured to detect a system power failure due to output voltage fluctuations and output frequency fluctuations of the inverter and disconnect the inverter from the commercial power system. However, in such a system interconnection system, when the output power of the inverter and the power consumption of the load are substantially equal to each other in the load balanced state, the output voltage and the output frequency of the inverter hardly change, and therefore, the system outage cannot be detected. There was a problem.

【0005】そこで、周波数変動による系統停電の検出
を確実なものにするため、インバータにおけるフィード
バック制御に際して、制御目標値に数ヘルツ程度のゆら
ぎを与えておき、停電時にインバータの出力周波数を積
極的に変化させる能動的検出方法が提案されている。
Therefore, in order to ensure detection of a system power failure due to frequency fluctuations, fluctuations of several hertz are given to the control target value during feedback control in the inverter, and the output frequency of the inverter is positively set at the time of power failure. A varying active detection method has been proposed.

【0006】[0006]

【発明が解決しようとする課題】連系点には、各種高調
波成分や負荷変動による低周波成分などのノイズが重畳
するので、系統停電による周波数変動を誤りなく検出す
ることが困難であるという問題があった。
Since noises such as various harmonic components and low frequency components due to load fluctuations are superimposed on the interconnection points, it is difficult to detect frequency fluctuations due to system power failure without error. There was a problem.

【0007】本発明は、検出精度の向上を図ることを目
的としている。
An object of the present invention is to improve detection accuracy.

【0008】[0008]

【課題を解決するための手段】請求項1の発明に係る装
置は、上述の課題を解決するため、商用周波数より低い
低周波成分を重畳した電流を出力する電圧形電流制御方
式の連系用インバータの単独運転検出装置であって、前
記インバータと商用電力系統との連系点の電圧の前記低
周波成分を抽出する電圧波形抽出手段と、前記インバー
タの出力電流の前記低周波成分を抽出する電流波形抽出
手段と、前記電圧波形抽出手段及び電流波形抽出手段の
それぞれの出力の積を求める乗算手段と、前記積が閾値
を越えたときに単独運転検出信号を出力する比較手段と
を備える。
In order to solve the above-mentioned problems, the device according to the invention of claim 1 is for interconnection of a voltage type current control system for outputting a current superposed with a low frequency component lower than a commercial frequency. An islanding operation detection device for an inverter, wherein the voltage waveform extraction means extracts the low frequency component of the voltage at the interconnection point between the inverter and the commercial power system, and the low frequency component of the output current of the inverter. A current waveform extracting means, a multiplying means for obtaining a product of respective outputs of the voltage waveform extracting means and the current waveform extracting means, and a comparing means for outputting an islanding operation detection signal when the product exceeds a threshold value.

【0009】請求項2の発明に係る装置は、前記連系点
の電圧の絶対値を前記電圧波形抽出手段に入力させる全
波整流回路と、前記インバータの出力電流の絶対値を前
記電流波形抽出手段に入力させる全波整流回路とを備え
る。
According to a second aspect of the invention, a full-wave rectifier circuit for inputting the absolute value of the voltage at the interconnection point to the voltage waveform extracting means, and the absolute value of the output current of the inverter for extracting the current waveform. A full-wave rectification circuit for inputting to the means.

【0010】請求項3の発明に係る装置は、前記電圧波
形抽出手段及び電流波形抽出手段が、それぞれ2次以上
の高次フィルタ回路を含んで構成される。
According to a third aspect of the present invention, the voltage waveform extracting means and the current waveform extracting means each include a second-order or higher-order filter circuit.

【0011】[0011]

【作用】連系運転時には、インバータの出力電流の変化
は、商用電力系統によって吸収され、連系点の電圧周波
数はほぼ商用周波数に維持される。
In the interconnection operation, the change in the output current of the inverter is absorbed by the commercial power system, and the voltage frequency at the interconnection point is maintained at the commercial frequency.

【0012】系統停電時には、インバータの出力電流の
変化にともなって負荷電圧も変化し、連系点の電圧にイ
ンバータの出力電流と同相の低周波成分が重畳する。イ
ンバータの出力電流の低周波成分と、連系点の電圧の低
周波成分とをそれぞれ抽出して掛け合わせることによ
り、同相成分が強調されて大きな信号変化として現れる
ので、電流ノイズ及び電圧ノイズの影響が軽減されるこ
とになり、系統停電に起因するインバータの出力変化を
高精度で検出できる。
At the time of system power failure, the load voltage also changes with the change of the output current of the inverter, and the low frequency component in phase with the output current of the inverter is superimposed on the voltage at the interconnection point. By extracting and multiplying the low-frequency component of the inverter output current and the low-frequency component of the voltage at the interconnection point, the in-phase component is emphasized and appears as a large signal change, so the effects of current noise and voltage noise Therefore, the output change of the inverter due to the power failure can be detected with high accuracy.

【0013】[0013]

【実施例】図1は本発明に係る単独運転検出装置40を
備えた太陽光発電システム1のブロック図、図2は図1
のインバータ20のブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a photovoltaic power generation system 1 equipped with an islanding operation detecting device 40 according to the present invention, and FIG.
3 is a block diagram of the inverter 20 of FIG.

【0014】図1において、太陽光発電システム1は、
定格電圧が200V程度の太陽電池10、電圧形電流制
御方式のインバータ20、系統保護用の開閉装置30、
及び単独運転検出装置40から構成され、図示しない変
圧器などを介して商用電力系統2と連系されている。配
電線Lには各種の家電製品などの負荷Zが接続されてい
る。
In FIG. 1, the solar power generation system 1 is
A solar cell 10 having a rated voltage of about 200 V, a voltage source current control type inverter 20, a system protection switchgear 30,
And the islanding operation detection device 40, and is connected to the commercial power system 2 via a transformer or the like (not shown). A load Z such as various home appliances is connected to the distribution line L.

【0015】インバータ20は、複数のスイッチング素
子からなるインバータ回路21及びその制御系22を有
している。図2に示すように、インバータ20において
は、日射量に応じて変動する太陽電池10の出力電圧V
1が、アイソレーションアンプなどによって検出され、
差動増幅器220によって太陽電池10の出力電圧V1
と電圧指令値Vrefとの差を増幅した入力誤差信号S
aが生成される。入力誤差信号Saは、乗算器221の
一方の入力信号となる。このとき、電圧指令値Vref
として、太陽電池10の最適動作点の近辺の値が設定さ
れる。ただし、インバータ20の単独運転を検出するた
めに、電圧指令値Vrefには、4Hz程度の低周波の
重畳によって、ゆらぎが与えられる。
The inverter 20 has an inverter circuit 21 composed of a plurality of switching elements and a control system 22 thereof. As shown in FIG. 2, in the inverter 20, the output voltage V of the solar cell 10 that changes according to the amount of solar radiation.
1 is detected by an isolation amplifier or the like,
The output voltage V1 of the solar cell 10 is controlled by the differential amplifier 220.
Of the input error signal S that is the difference between the voltage command value Vref and the voltage command value Vref
a is generated. The input error signal Sa becomes one input signal of the multiplier 221. At this time, the voltage command value Vref
As, a value near the optimum operating point of the solar cell 10 is set. However, in order to detect the islanding operation of the inverter 20, fluctuations are given to the voltage command value Vref by superimposing a low frequency of about 4 Hz.

【0016】乗算器221には、他方の入力信号とし
て、変圧器24とバンドパスフィルタ224とによって
抽出された連系点電圧V3の基本周波数成分が入力され
る。そして、入力誤差信号Saと基本周波数成分との乗
算によって制御の目標値を示す電流指令値信号Siが生
成される。つまり、入力誤差信号Saによってインバー
タ回路2の出力電流の大きさ(振幅)が設定され、連系
点の系統電圧によって出力電流の位相が設定される。
The fundamental frequency component of the interconnection point voltage V3 extracted by the transformer 24 and the bandpass filter 224 is input to the multiplier 221 as the other input signal. Then, by multiplying the input error signal Sa by the fundamental frequency component, the current command value signal Si indicating the control target value is generated. That is, the magnitude (amplitude) of the output current of the inverter circuit 2 is set by the input error signal Sa, and the phase of the output current is set by the system voltage at the interconnection point.

【0017】電流指令値信号Siと、変流器23などに
よって検出された実際の出力電流値とが演算増幅器(エ
ラーアンプ)222に入力され、電流誤差信号SΔiが
生成される。この電流誤差信号SΔiはPWM制御部2
23に入力される。
The current command value signal Si and the actual output current value detected by the current transformer 23 or the like are input to the operational amplifier (error amplifier) 222, and the current error signal SΔi is generated. This current error signal SΔi is applied to the PWM control unit 2
23 is input.

【0018】PWM制御部223では、電流誤差信号S
Δiと20kHz程度の基準三角波信号との比較によ
り、電流誤差信号SΔiが零となるようにパルス幅を調
整したスイッチング信号が生成されてインバータ回路2
1へ出力される。
In the PWM control section 223, the current error signal S
By comparing Δi with the reference triangular wave signal of about 20 kHz, a switching signal whose pulse width is adjusted so that the current error signal SΔi becomes zero is generated, and the inverter circuit 2
It is output to 1.

【0019】このようなフィードバック制御により、通
常動作としては、太陽電池10から最大電力を引き出す
ように電流値が設定され、且つ電流位相が系統電圧と同
一である力率1の交流電力がインバータ回路21から出
力されることになる。
By such feedback control, as a normal operation, the current value is set so as to extract the maximum power from the solar cell 10, and the AC power with a power factor of 1 whose current phase is the same as the system voltage is the inverter circuit. It will be output from 21.

【0020】さて、図1に戻って、単独運転検出装置4
0は、全波整流回路41,42、波形抽出部43,4
4、乗算器47、及び16ビットのマイクロコンピュー
タ48から構成されている。波形抽出部43,44は、
それぞれ高次(例えば8次)のローパスフィルタ45
と、ハイパスフィルタ46とから構成され、入力信号か
ら電圧指令値Vrefのゆらぎに対応した低周波成分を
抽出する。
Now, returning to FIG. 1, the islanding operation detecting device 4
0 is a full-wave rectification circuit 41, 42, a waveform extraction unit 43, 4
4, a multiplier 47, and a 16-bit microcomputer 48. The waveform extraction units 43 and 44 are
High-order (for example, 8th-order) low-pass filter 45
And a high pass filter 46, and extracts a low frequency component corresponding to the fluctuation of the voltage command value Vref from the input signal.

【0021】一方の全波整流回路41には、変圧器24
によって検出された連系点電圧Vが入力され、全波整流
回路41から波形抽出部43へ連系点電圧Vの絶対値を
示す信号が入力される。また、他方の全波整流回路42
には、変流器23によって検出されたインバータ20の
出力電流Iが入力され、全波整流回路42から波形抽出
部44へ出力電流Iの絶対値を示す信号が入力される。
One full-wave rectification circuit 41 includes a transformer 24
The interconnection point voltage V detected by is input, and the signal indicating the absolute value of the interconnection point voltage V is input from the full-wave rectifier circuit 41 to the waveform extracting unit 43. The other full-wave rectification circuit 42
The output current I of the inverter 20 detected by the current transformer 23 is input to the, and a signal indicating the absolute value of the output current I is input from the full-wave rectifier circuit 42 to the waveform extraction unit 44.

【0022】波形抽出部43,44により抽出された低
周波成分は、それぞれ乗算器47に加えられ、電圧Vの
低周波成分と電流Iの低周波成分との積である変化成分
信号S47が乗算器47から出力される。
The low frequency components extracted by the waveform extracting sections 43 and 44 are respectively added to the multiplier 47 and multiplied by the change component signal S47 which is the product of the low frequency component of the voltage V and the low frequency component of the current I. It is output from the device 47.

【0023】ここで、商用電力系統2の稼働中は、商用
電力系統2の電源容量が太陽電池10の電源容量に比べ
て桁違いに大きく且つ周波数が安定であるので、インバ
ータ20の出力電流Iの微小変動を補う形で負荷Zに電
流が供給される。すなわち、インバータ20の出力電流
Iのゆらぎが商用電力系統2によって吸収され、連系点
電圧Vの周波数は商用周波数に維持される。その結果、
波形抽出部43の出力は0レベルになる。
During operation of the commercial power system 2, the power capacity of the commercial power system 2 is orders of magnitude larger than the power capacity of the solar cell 10 and the frequency is stable, so that the output current I of the inverter 20 is stable. The current is supplied to the load Z in a form of compensating for the minute fluctuation of That is, the fluctuation of the output current I of the inverter 20 is absorbed by the commercial power system 2, and the frequency of the interconnection point voltage V is maintained at the commercial frequency. as a result,
The output of the waveform extraction unit 43 becomes 0 level.

【0024】これに対して、系統停電時には、インバー
タ20の出力電流Iの変化にともなって負荷電圧も変化
し、連系点電圧Vに出力電流Iと同相の低周波成分が重
畳する。
On the other hand, at the time of system power failure, the load voltage also changes with the change of the output current I of the inverter 20, and the low frequency component in phase with the output current I is superimposed on the interconnection point voltage V.

【0025】インバータ20の出力電流I及び連系点電
圧Vからそれぞれ低周波成分を抽出して掛け合わせるこ
とにより、同相の変化成分が強調されて大きな信号変化
として変化成分信号S47に現れる。
By extracting and multiplying low frequency components from the output current I of the inverter 20 and the interconnection point voltage V, respectively, the in-phase change component is emphasized and appears in the change component signal S47 as a large signal change.

【0026】太陽光発電システム1では、このような変
化成分信号S47に基づいて、マイクロコンピュータ4
8によって単独運転状態が検出される。すなわち、マイ
クロコンピュータ48は、アナログポートに入力された
変化成分信号S47のA/D変換値と、予め格納されて
いる閾値データとを比較する。そして、マイクロコンピ
ュータ48は、変化成分信号S47が閾値を越えたとき
に、単独運転検出信号SDを開閉装置30へ出力する。
In the solar power generation system 1, the microcomputer 4 is based on such a change component signal S47.
The isolated operation state is detected by 8. That is, the microcomputer 48 compares the A / D converted value of the change component signal S47 input to the analog port with the threshold data stored in advance. Then, the microcomputer 48 outputs the islanding operation detection signal SD to the switchgear device 30 when the change component signal S47 exceeds the threshold value.

【0027】開閉装置30は、単独運転検出信号SDに
呼応して作動し、インバータ20と商用電力系統2との
連系を解除する。これにより太陽光発電システム1が商
用電力系統2から解列される。
The switchgear 30 operates in response to the islanding operation detection signal SD to release the interconnection between the inverter 20 and the commercial power system 2. As a result, the solar power generation system 1 is disconnected from the commercial power system 2.

【0028】マイクロコンピュータ48を用いることに
より、検出の分解能や開閉装置30の制御タイミングな
どの任意の設定が容易となる。また、マイクロコンピュ
ータ48をインバータ20の制御と兼用することもでき
る。
The use of the microcomputer 48 facilitates arbitrary setting of detection resolution, control timing of the opening / closing device 30, and the like. Further, the microcomputer 48 can also be used for controlling the inverter 20.

【0029】上述の実施例によれば、波形抽出部43,
44のローパスフィルタ45を高次として選択度を高め
たので、ゆらぎの側帯波成分をカットして基本成分のみ
を抽出することができることから、ゆらぎを可及的に低
い周波数としてインバータ20の運転効率を高めること
ができる。
According to the above-mentioned embodiment, the waveform extracting section 43,
Since the low pass filter 45 of 44 has a higher order to increase the selectivity, it is possible to cut the sideband component of the fluctuation and extract only the basic component. Therefore, the fluctuation is set as low as possible and the operating efficiency of the inverter 20 is reduced. Can be increased.

【0030】上述の実施例によれば、全波整流回路4
1,42を設けたので、検知の迅速化及び波形抽出部4
3,44の低耐圧化によるコスト低減を図ることができ
る。つまり、原理的には系統停電時における電圧の変化
は電流と同相になるが、電圧及び電流のそれぞれの検出
手段の特性によっては、検出後の段階で電圧と電流との
間に位相差が生じる場合がある。この場合、全波整流回
路41,42を省略すると、電圧の極性と電流の極性と
が異なるときに、これらの乗算結果が負になり、マイク
ロコンピュータ48は例えば0〜5Vの正極性の信号の
レベルを判定するので、乗算結果が負になる期間は検出
の不感期間となって検出が遅れる。また、半波整流回路
を設けた場合には、電圧と電流とが同相であっても、極
性が負のときに不感期間となってしまう。
According to the above embodiment, the full-wave rectifier circuit 4
Since 1, 42 are provided, the detection is speeded up and the waveform extraction unit 4 is provided.
The cost can be reduced by lowering the breakdown voltage of 3,44. That is, in principle, the change in voltage at the time of system power failure is in phase with the current, but depending on the characteristics of the voltage and current detection means, a phase difference may occur between the voltage and current after detection. There are cases. In this case, if the full-wave rectification circuits 41 and 42 are omitted, when the polarity of the voltage and the polarity of the current are different, the multiplication result of these becomes negative, and the microcomputer 48 outputs a positive polarity signal of 0 to 5V, for example. Since the level is determined, the period in which the multiplication result is negative becomes a dead period for detection and the detection is delayed. Further, when the half-wave rectifier circuit is provided, even if the voltage and the current are in phase, the dead period occurs when the polarity is negative.

【0031】[0031]

【発明の効果】本発明によれば、乗算により同相の変化
成分が強調されるので、ノイズの影響を抑えた高精度の
検出を実現することができる。
According to the present invention, since the in-phase change component is emphasized by multiplication, it is possible to realize highly accurate detection while suppressing the influence of noise.

【0032】請求項2の発明によれば、単一極性の信号
を扱うプロセッサを用いて迅速且つ高精度の検出を実現
することができるとともに、波形抽出手段のコスト低減
を図ることができる。
According to the second aspect of the present invention, it is possible to realize rapid and highly accurate detection by using a processor that handles a signal of a single polarity, and to reduce the cost of the waveform extracting means.

【0033】請求項3の発明によれば、インバータの出
力電流の能動的変化をより確実に検出することができ
る。
According to the third aspect of the invention, the active change in the output current of the inverter can be detected more reliably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単独運転検出装置を備えた太陽光
発電システムのブロック図である。
FIG. 1 is a block diagram of a photovoltaic power generation system including an islanding operation detection device according to the present invention.

【図2】図1のインバータのブロック図である。FIG. 2 is a block diagram of the inverter of FIG.

【符号の説明】[Explanation of symbols]

2 商用電力系統 20 インバータ(連系用インバータ) 40 単独運転検出装置 43 波形抽出部(電圧波形抽出手段) 44 波形抽出部(電流波形抽出手段) 47 乗算器(乗算手段) 48 マイクロコンピュータ(比較手段) SD 単独運転検出信号 41,42 全波整流回路 45 ローパスフィルタ(高次フィルタ回路) 2 Commercial power system 20 Inverter (Inverter for interconnection) 40 islanding operation detector 43 Waveform Extraction Unit (Voltage Waveform Extraction Means) 44 Waveform Extraction Section (Current Waveform Extraction Means) 47 multiplier (multiplication means) 48 microcomputer (comparison means) SD islanding detection signal 41,42 Full-wave rectifier circuit 45 Low-pass filter (higher-order filter circuit)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−40373(JP,A) 特開 昭62−71428(JP,A) 特開 昭62−89429(JP,A) 特開 昭62−95933(JP,A) 特開 昭62−110166(JP,A) 特開 平5−244717(JP,A) 特開 平6−332553(JP,A) 特開 平7−131937(JP,A) 丁路,牧野康弘,桑野幸徳,双峰形帯 域フィルタによる系統連係インバータの 単独運転防止,電気学会論文誌B,日 本,電気学会,1994年 4月20日,第 114巻第4号,p.425−426 (58)調査した分野(Int.Cl.7,DB名) G01R 23/00 - 23/20 H02J 3/38 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-57-40373 (JP, A) JP-A-62-71428 (JP, A) JP-A-62-89429 (JP, A) JP-A-62- 95933 (JP, A) JP 62-110166 (JP, A) JP 5-244717 (JP, A) JP 6-332553 (JP, A) JP 7-131937 (JP, A) Dingji, Yasuhiro Makino, Yukinori Kuwano, Prevention of islanding operation of grid-coupling inverter with bimodal bandpass filter, Transactions of the Institute of Electrical Engineers of Japan B, Japan, The Institute of Electrical Engineers of Japan, April 20, 1994, Vol. 114, No. 4, p. 425-426 (58) Fields investigated (Int.Cl. 7 , DB name) G01R 23/00-23/20 H02J 3/38

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】商用周波数より低い低周波成分を重畳した
電流を出力する電圧形電流制御方式の連系用インバータ
の単独運転検出装置であって、 前記インバータと商用電力系統との連系点の電圧の前記
低周波成分を抽出する電圧波形抽出手段と、 前記インバータの出力電流の前記低周波成分を抽出する
電流波形抽出手段と、 前記電圧波形抽出手段及び電流波形抽出手段のそれぞれ
の出力の積を求める乗算手段と、 前記積が閾値を越えたときに単独運転検出信号を出力す
る比較手段と、 を備えたことを特徴とする単独運転検出装置。
1. An islanding operation detection device for a voltage-type current control type interconnection inverter that outputs a current in which a low-frequency component lower than a commercial frequency is superposed, wherein an interconnection operation point of the inverter and the commercial power system is provided. A voltage waveform extracting means for extracting the low frequency component of the voltage, a current waveform extracting means for extracting the low frequency component of the output current of the inverter, and a product of outputs of the voltage waveform extracting means and the current waveform extracting means. And a comparing means for outputting an isolated operation detection signal when the product exceeds a threshold value.
【請求項2】前記連系点の電圧の絶対値を前記電圧波形
抽出手段に入力させる全波整流回路と、 前記インバータの出力電流の絶対値を前記電流波形抽出
手段に入力させる全波整流回路と、 を備えたことを特徴とする請求項1記載の単独運転検出
装置。
2. A full-wave rectification circuit for inputting the absolute value of the voltage at the interconnection point into the voltage waveform extraction means, and a full-wave rectification circuit for inputting the absolute value of the output current of the inverter into the current waveform extraction means. The islanding operation detection device according to claim 1, further comprising:
【請求項3】前記電圧波形抽出手段及び電流波形抽出手
段が、それぞれ2次以上の高次フィルタ回路を含む ことを特徴とする請求項1又は請求項2記載の単独運転
検出装置。
3. The islanding operation detecting device according to claim 1, wherein the voltage waveform extracting means and the current waveform extracting means each include a second-order or higher-order filter circuit.
JP27521193A 1993-11-04 1993-11-04 Islanding detection device Expired - Lifetime JP3519760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27521193A JP3519760B2 (en) 1993-11-04 1993-11-04 Islanding detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27521193A JP3519760B2 (en) 1993-11-04 1993-11-04 Islanding detection device

Publications (2)

Publication Number Publication Date
JPH07131930A JPH07131930A (en) 1995-05-19
JP3519760B2 true JP3519760B2 (en) 2004-04-19

Family

ID=17552249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27521193A Expired - Lifetime JP3519760B2 (en) 1993-11-04 1993-11-04 Islanding detection device

Country Status (1)

Country Link
JP (1) JP3519760B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733776B1 (en) * 2010-05-19 2011-07-27 積水化学工業株式会社 Power monitoring device
CN102468647A (en) * 2010-11-19 2012-05-23 北京市电力公司 Control device and control method of distribution box and distribution box
JP6500676B2 (en) * 2015-07-27 2019-04-17 富士電機株式会社 Sole operation detection device, sole operation detection method, and sole operation detection program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁路,牧野康弘,桑野幸徳,双峰形帯域フィルタによる系統連係インバータの単独運転防止,電気学会論文誌B,日本,電気学会,1994年 4月20日,第114巻第4号,p.425−426

Also Published As

Publication number Publication date
JPH07131930A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US7843082B2 (en) Islanding detection apparatus for a distributed generation power system and detection method therefor
Chiang et al. Active islanding detection method for inverter-based distribution generation power system
EP2761715B1 (en) Power converter islanding detection
Elshrief et al. Fast and accurate islanding detection technique for microgrid connected to photovoltaic system
Marei et al. PV interface system with LVRT capability based on a current controlled HFAC link converter
EP2928035B1 (en) Detection of islanding conditions in an electricity network
JP3108282B2 (en) Islanding detection device
JPH11127542A (en) Method and device for detecting isolated operation of inverter and power conditioner
JP3519760B2 (en) Islanding detection device
JP3139834B2 (en) Grid connection protection device
Zhou et al. Sag detection algorithm for dynamic voltage restorer used in wind farms under unbalanced and distorted grid voltage conditions
JP3448325B2 (en) Islanding detection method for distributed power supply equipment
JP3180991B2 (en) Grid connection protection device
JP3432882B2 (en) Islanding detection method
JP2940777B2 (en) Grid connection system and its disconnection control method
Chiang et al. Novel active islanding detection method for distributed power generation system
JP3231605B2 (en) Control device of AC / DC converter
JP2000023470A (en) Transformerless inverter protection apparatus
JP2023517420A (en) Method and apparatus for detecting grid islanding
Sharma et al. A brief review regarding sensor reduction and faults in shunt active power filter
JPH06141470A (en) Protective device of system-interconnection inverter
Reddy et al. Grid Voltage Sensor-less Protection Scheme for One Cycle-Controlled Single-phase Photovoltaic Inverter Systems
JPH06245388A (en) Reverse charge protecting device for system linkage inverter
JP3022152B2 (en) Islanding detection method
JPH07107672A (en) System interconnection type inverter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term