JP3483331B2 - Method for producing porous body made of ultra-high molecular weight polyethylene - Google Patents

Method for producing porous body made of ultra-high molecular weight polyethylene

Info

Publication number
JP3483331B2
JP3483331B2 JP02404395A JP2404395A JP3483331B2 JP 3483331 B2 JP3483331 B2 JP 3483331B2 JP 02404395 A JP02404395 A JP 02404395A JP 2404395 A JP2404395 A JP 2404395A JP 3483331 B2 JP3483331 B2 JP 3483331B2
Authority
JP
Japan
Prior art keywords
porous body
molecular weight
orifice
ultra
uhmwpe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02404395A
Other languages
Japanese (ja)
Other versions
JPH08216264A (en
Inventor
展康 鈴木
完爾 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP02404395A priority Critical patent/JP3483331B2/en
Publication of JPH08216264A publication Critical patent/JPH08216264A/en
Application granted granted Critical
Publication of JP3483331B2 publication Critical patent/JP3483331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、超高分子量ポリエチレ
ン製多孔質体の製造方法に係り、特に、多数の連続気孔
を有し、透過性及び耐薬品性に優れ、微細な物質の濾過
フィルターや反応過程又は処理過程中の特定関与物のキ
ャリヤー等に使用される長尺状の超高分子量ポリエチレ
ン製多孔質体の製造方法に関する。 【0002】 【従来技術とその課題】従来、超高分子量ポリエチレン
(以下「UHMWPE」と云う)を、ブレーカプレート
が配設されたラム押出機を利用して、多孔質体を連続的
に成形加工することが提案されている。即ち、UHMW
PEをラム押出機に投入し、ラム押出機のシリンダー温
度をUHMWPEの融点以上300℃付近以下の温度で
加熱処理すると、UHMWPEがゴム状の粘稠な溶融物
となってラム押出機に配設されているブレーカプレート
のオリフィスを4〜17kg/cm2 の圧力で通過し、
その熱と圧力とによってメルトフラクチャア(成形品の
表面に不規則な凹凸を生ずる現象)を起したものや、粒
子が高い或いは低い嵩密度で紐状に連なったもの等のス
トランド状分散粒子として押出され、引続きそれらスト
ランド状分散粒子を成形金型内に通過させて、ストラン
ド状分散粒子の相互間を融着して多孔質体を成形するも
のであった。 【0003】しかしながら、上記ラム押出機を利用して
得られたUHMWPE製の多孔質体は、押出方向にすじ
状に生じるストランド模様が成形後の多孔質体の外表面
に発生したり、また、比較的気孔度の低い多孔質体が成
形されたりする。即ち、UHMWPEの流動のし難い点
を考慮し、使用するブレーカプレートのオリフィスの孔
径を比較的大きくし、加えて成形金型も高い気孔度の多
孔質体を望む際には、その入口側と出口側の通過断面を
略同じ内通路に設定するので、溶融したストランド状分
散粒子のUHMWPEは、その成形金型を流通しても受
ける背圧が低いままの状態で相互に融着し合い、その結
果ストランド模様を発生したり、逆にストランド模様を
打消すために背圧をやや高めると、気孔度の比較的低い
多孔質体になってしまう等の問題があった。 【0004】また、上記ラム押出方式により成形する場
合のほか、UHMWPEを射出成形用金型のキャビティ
に、剪断速度3.0×104 sec−1 、又は5.0×
104 sec−1 以上で射出した後に、キャビティ容積
を特定量圧縮して多孔質体を成形することが提案されて
いる。 【0005】即ち、微粒子状のUHMWPEを特定の剪
断速度で射出させる場合には、溶融した可塑化UHMW
PEが射出成形金型のキャビティ内に霧状に噴出され、
溶融可塑化した状態で微細な粉末状又は綿状の分散体と
なって射出されるものであり、この粉末状又は綿状の分
散体はキャビティ内で相互に融着、集合して連通気孔を
有する多孔質体に成形されるが、連通気孔の粗・密の程
度(嵩密度)を調整するために、キャビティ内に射出す
る分散体の射出量を調整したり、或いは射出後にキャビ
ティを圧縮する等の方法が講じられている。 【0006】しかしながら、上記射出成形を利用して得
られたUHMWPE製の多孔質体は、比較的複雑な形状
のものを成形することはできるものの、UHMWPEの
集合は比較的疎の状態であるために、冷却後の成形品は
脆いままである。また、射出成形であるが故に必然的に
エンドレスに連続した長尺物を成形することは極めて困
難であると云う問題がある。 【0007】 【課題を解決するための手段】本発明は上記課題を解決
するものであって、その要旨は、弾性率が200℃にお
いて1.0×107 dyne/cm2 以上であって、粘
度平均分子量が300×104 以上のUHMWPEをラ
ム押出機で押出成形するUHMWPE製多孔質体の製造
方法であって、ラム押出機内の先端部に配設してある複
数のオリフィスを有するブレーカプレートのオリフィス
から、少なくとも一部が溶融状態となったUHMWPE
を主体とした組成物を、加熱温度150〜250℃で剪
断速度が1.0×103 〜3.0×104 sec−1
条件のもとに通過させ、ブレーカプレートに連設する成
形金型内で部分溶融箇所を相互に融着して連続多孔質体
とすることを特徴とするUHMWPE製多孔質体の製造
方法である。 【0008】本発明は、特定の特性値を有する粒子状U
HMWPEを、ラム押出機を使用して該ラム押出機のオ
リフィスを特定の剪断速度域の1.0×103 〜3.0
×104 sec−1 範囲の条件のもとに通過させて、粒
子状UHMWPEを粒子状分散体乃至はそれが集合した
塊状の分散体となしたのち、多数の連続気孔を有する多
孔質体に形成するUHMWPE製多孔質体の製造方法で
ある。 【0009】本発明で用いるUHMWPEは、MI値
(メルトインデックス)を測定するような剪断応力が低
い下では流動し得ないことや、融点以上の温度域ではゴ
ム状弾性体となるものであって、汎用のポリエチレン等
と比較してその流動挙動が異なるものである。 上記融
点以上の温度域でゴム状弾性体となるUHMWPEは、
200℃において1.0×107 dyne/cm2 以上
の弾性率(ISO/CD6721−7、ねじれ測定法に
よる弾性率)を示し、粘度法による平均分子量が300
×104 以上、平均粒径が50〜400μmの微粉粒子
状のものである。 【0010】また、上記UHMWPEに、溶融補助剤的
に5〜20重量部の中分子量ポリエチレンや、多孔質体
の気孔度と伸張率の調整剤的に5〜20重量部の高・中
・低密度ポリエチレン中高分子量ポリエチレン等を添加
することができる。更には、0.5〜10重量部、好ま
しくは1.5〜2.5重量部の導電性付与剤、0.5〜
10重量部、好ましくは5重量部以下の滑剤、0.00
3〜0.3重量部、好ましくは0.01〜0.15重量
部の有機過酸化物等を添加することもできる。上記導電
性付与剤としては、ケッケェンブラック、チャンネルブ
ラック、ファーネスブラック、サーマルブラック、アセ
チレンブラック等の導電性カーボンブラックや金属粉、
金属酸化物等であり、上記滑剤としては、モンタン酸エ
ステル系のワックス、脂肪酸誘導体のワックス等であ
り、そして上記有機過酸化物としては、2,5−ジメチ
ル−2,5−(t−ブチルパーオキシ)ヘキサン、ジク
ミルパーオキサイド等である。 【0011】そして、上記ゴム状弾性体をラム押出機の
オリフィスから押出す場合に、そのオリフィスを特定の
剪断速度域の1.0×103 〜3.0×104 sec
−1 範囲に設定すると、オリフィス内で溶融したUHM
WPEのゴム状弾性体は、粒子状乃至はそれが極めてル
ーズに集合した塊状の分散体となって押出され、これら
をブレーカプレートに連設してある成形金型内で相互に
融着させると、ストランド模様が発生することなく、良
好な外表面と所望の形状をした多孔質体を容易に成形す
ることができる。 【0012】ゴム状弾性体を上記剪断速度域を下回っ
て、例えば2.0×102 sec−1以上1.0×10
3 sec−1 未満でオリフィスを通過させると、オリフ
ィスから出たUHMWPEの形態は、メルトフラクチャ
アを起したり粒子が高い或いは低い嵩密度で紐状に連な
ったもの等のストランド状分散粒子となって押出され、
これらを成形金型内で相互に融着させた場合に、成形さ
れた多孔質体の外表面にはストランド模様が発生するも
のであり、また、ゴム状弾性体を上記剪断速度域を上回
って3.0×104 sec−1 を超えた剪断速度では、
現在の条件で良好な多孔質体を連続的に得ることは極め
て困難となるものである。 【0013】 【実施例1】粘度平均分子量330×104 、平均粒径
160μm、嵩比重0.449であって、200℃にお
ける弾性率が3.75×107 dyne/cm2 のUH
MWPEを、円筒状の成形金型を付設したラム押出機を
用い、下記押出条件で、ブレーカプレートのオリフィス
における剪断速度を3.0×103 sec−1 (オリフ
ィス……0.5mmφ×5.0mmL、孔個数:72)
に設定し、外径60mm、内径53mm、肉厚3.5m
mのパイプ状多孔質体を押出成形した。 *押出条件 ・最大押出能力……15kg/hr ・押出量……10kg/hr ・温度……チャンバー:170℃、 シリンダー:20
0℃及び230℃ 成形金型:200℃及び230℃ 【0014】 【実施例2】粘度平均分子量600×104 、平均粒径
187μm、嵩比重0.377であって、200℃にお
ける弾性率が4.15×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様のラム押出機及び押出
条件で、ブレーカプレートのオリフィスにおける剪断速
度を3.0×103 sec−1 (オリフィス……0.5
mmφ×5.0mmL、孔個数:72)に設定し、実施
例1と同様サイズのパイプ状多孔質体を押出成形した。 【0015】 【実施例3】粘度平均分子量330×104 、平均粒径
335μm、嵩比重0.458であって、200℃にお
ける弾性率が3.50×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様の押出機及び押出条件
で、ブレーカプレートのオリフィスにおける剪断速度を
3.0×103 sec−1 (オリフィス……0.5mm
φ×5.0mmL、孔個数:72)に設定し、実施例1
と同様サイズのパイプ状多孔質体を押出成形した。 【0016】 【実施例4】粘度平均分子量440×104 、平均粒径
208μm、嵩比重0.353であって、200℃にお
ける弾性率が6.49×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様のラム押出機及び押出
条件で、ブレーカプレートのオリフィスにおける剪断速
度を3.0×103 sec−1 (オリフィス……0.5
mmφ×5.0mmL、孔個数:72)に設定し、実施
例1と同様サイズのパイプ状多孔質体を押出成形した。 【0017】 【実施例5】粘度平均分子量500×104 、平均粒径
163μm、嵩比重0.466であって、200℃にお
ける弾性率が4.23×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様のラム押出機及び押出
条件で、ブレーカプレートのオリフィスにおける剪断速
度を3.0×103 sec−1 (オリフィス……0.5
mmφ×5.0mmL、孔個数:72)に設定し、実施
例1と同様サイズのパイプ状多孔質体を押出成形した。 【0018】 【実施例6】粘度平均分子量330×104 、平均粒径
160μm、嵩比重0.449であって、200℃にお
ける弾性率が3.75×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様のラム押出機及び押出
条件で、ブレーカプレートのオリフィスにおける剪断速
度を2.5×104 sec−1 (オリフィス……0.5
mmφ×5.0mmL、孔個数:10)に設定し、実施
例1と同様サイズのパイプ状多孔質体を押出成形した。 【0019】 【実施例7】粘度平均分子量600×104 、平均粒径
187μm、嵩比重0.377であって、200℃にお
ける弾性率が4.15×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様のラム押出機及び押出
条件で、ブレーカプレートのオリフィスにおける剪断速
度を2.5×104 sec−1 (オリフィス……0.5
mmφ×5.0mmL、孔個数:10)に設定し、実施
例1と同様サイズのパイプ状多孔質体を押出成形した。 【0020】 【実施例8】粘度平均分子量330×104 、平均粒径
335μm、嵩比重0.458であって、200℃にお
ける弾性率が3.50×107 dyne/cm2 のUH
MWPEを、ラム押出機上記実施例1と同様のラム押出
機及び押出条件で、ブレーカプレートのオリフィスにお
ける剪断速度を2.5×104 sec−1 (オリフィス
……0.5mmφ×5.0mmL、孔個数:10)に設
定し、実施例1と同様サイズのパイプ状多孔質体を押出
成形した。 【0021】 【実施例9】粘度平均分子量440×104 、平均粒径
208μm、嵩比重0.353であって、200℃にお
ける弾性率が6.49×107 dyne/cm2 のUH
MWPEを、上記実施例1と同様のラム押出機及び押出
条件で、ブレーカプレートのオリフィスにおける剪断速
度を2.5×104 sec−1 (オリフィス……0.5
mmφ×5.0mmL、孔個数:10)に設定し、実施
例1と同様サイズのパイプ状多孔質体を押出成形した。 【0022】 【実施例10】粘度平均分子量550×104 、平均粒
径163μm、嵩比重0.466であって、200℃に
おける弾性率が4.23×107 dyne/cm2 のU
HMWPEを、上記実施例1と同様のラム押出機及び押
出条件で、ブレーカプレートのオリフィスにおける剪断
速度を2.5×104 sec−1 (オリフィス……0.
5mmφ×5.0mmL、孔個数:10)に設定し、実
施例1と同様サイズのパイプ状多孔質体を押出成形し
た。 【0023】 【比較例1】実施例1と同様のUHMWPE及びラム押
出機を用い、同様の押出条件でブレーカプレートのオリ
フィスにおける剪断速度を4.0×102 sec
−1 (オリフィス……1.0mmφ×5.0mmL、孔
個数:72)に設定し、上記実施例と同様サイズのパイ
プ状多孔質体を押出成形した。 【0024】 【比較例2】実施例2と同様のUHMWPE及びラム押
出機を用い、同様の押出条件でブレーカプレートのオリ
フィスにおける剪断速度を比較例1と同様に設定し、上
記実施例と同様サイズのパイプ状多孔質体を押出成形し
た。 【0025】 【比較例3】実施例3と同様のUHMWPE及びラム押
出機を用い、同様の押出条件でブレーカプレートのオリ
フィスにおける剪断速度を比較例1と同様に設定し、上
記実施例と同様サイズのパイプ状多孔質体を押出成形し
た。 【0026】 【比較例4】実施例4と同様のUHMWPE及びラム押
出機を用い、同様の押出条件でブレーカプレートのオリ
フィスにおける剪断速度を比較例1と同様に設定し、上
記実施例と同様サイズのパイプ状多孔質体を押出成形し
た。 【0027】 【比較例5】実施例5と同様のUHMWPE及びラム押
出機を用い、同様の押出条件でブレーカプレートのオリ
フィスにおける剪断速度を比較例1と同様に設定し、上
記実施例と同様サイズのパイプ状多孔質体を押出成形し
た。上記実施例1〜10及び比較例1〜5で得られた多
孔質体を下記表1に比較表示する。 【0028】 【表1】 【0029】実施例1〜10により得られた多孔質体
は、何れも低い嵩比重であって所期の目的を達成してお
り、また外表面にはストランド模様等が見られず外観良
好であった。 これに対し、比較例で得られた多孔質体
は、高い嵩比重であり且つ外表面にストランド模様が見
られ外観品質は不良であった。 【0030】 【発明の効果】本発明は上記構成よりなるので下記効果
を奏する。即ち本発明により、特定範囲の剪断速度で成
形することにより、より嵩比重の低い連続気孔を具えた
多孔質体を得ることができると共に、気孔空隙率が大き
く均質で、多孔質体表面にストランド模様の無い所望の
UHMWPE製多孔質体を連続且つ短時間に容易に成形
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous body made of ultra-high molecular weight polyethylene, and more particularly to a method for producing a porous body having a large number of continuous pores and having permeability and chemical resistance. The present invention relates to a method for producing a long ultra-high molecular weight polyethylene porous body, which is used as a filter for filtering a fine substance or a carrier of a specific substance in a reaction process or a treatment process. 2. Description of the Related Art Conventionally, ultra-high molecular weight polyethylene (hereinafter referred to as "UHMWPE") is continuously formed into a porous body by using a ram extruder provided with a breaker plate. It has been proposed to. That is, UHMW
When PE is charged into the ram extruder and the cylinder temperature of the ram extruder is heat-treated at a temperature of not less than the melting point of UHMWPE and not more than 300 ° C., UHMWPE becomes a rubbery viscous melt and is disposed in the ram extruder Through the orifice of the breaker plate at a pressure of 4 to 17 kg / cm 2 ,
As strand-dispersed particles such as those that have caused melt fracture (a phenomenon that irregular irregularities are formed on the surface of a molded product) due to the heat and pressure, or those in which the particles are connected in a string form with a high or low bulk density. It was extruded, and subsequently, the strand-like dispersed particles were passed through a molding die to fuse the strand-like dispersed particles to each other to form a porous body. [0003] However, in the porous body made of UHMWPE obtained by using the above-mentioned ram extruder, a strand pattern generated in the extrusion direction in the form of a stripe appears on the outer surface of the formed porous body, or A porous body having a relatively low porosity may be formed. That is, in consideration of the difficulty of flowing UHMWPE, the hole diameter of the orifice of the breaker plate to be used is relatively large. Since the passage cross section on the outlet side is set to be substantially the same inner passage, the UHMWPE of the molten strand-like dispersed particles fuse with each other in a state where the back pressure received even when flowing through the molding die is low. As a result, if a back pressure is slightly increased to generate a strand pattern or conversely cancel the strand pattern, a porous body having a relatively low porosity results. In addition to the above-mentioned ram extrusion method, UHMWPE is injected into the cavity of the injection mold at a shear rate of 3.0 × 10 4 sec −1 or 5.0 ×.
After injection at 10 4 sec −1 or more, it has been proposed to compress the cavity volume by a specific amount to form a porous body. [0005] That is, in the case of injecting UHMWPE in the form of fine particles at a specific shearing rate, molten plasticized UHMWPE is used.
PE is sprayed into the cavity of the injection mold in the form of a mist,
It is injected as a fine powder or flocculent dispersion in the state of melt plasticization, and this powdery or flocculent dispersion is fused together in the cavity and assembled to form a continuous vent. In order to adjust the degree of coarseness / density (bulk density) of the continuous air holes, the injection amount of the dispersion injected into the cavity is adjusted, or the cavity is compressed after the injection. And so on. [0006] However, although the porous body made of UHMWPE obtained by the above-mentioned injection molding can be formed into a relatively complicated shape, the aggregate of UHMWPE is relatively sparse. In addition, molded articles after cooling are still brittle. In addition, since it is injection molding, there is a problem that it is extremely difficult to form an endless and continuous long object inevitably. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the gist of the present invention is that an elastic modulus at 200 ° C. is not less than 1.0 × 10 7 dyne / cm 2 , A method for producing a porous body made of UHMWPE, wherein a UHMWPE having a viscosity-average molecular weight of 300 × 10 4 or more is extruded by a ram extruder, comprising a breaker plate having a plurality of orifices disposed at a tip end in the ram extruder. UHMWPE at least partially melted from orifice
Is passed under a condition of a heating temperature of 150 to 250 ° C. and a shear rate of 1.0 × 10 3 to 3.0 × 10 4 sec −1 , and is formed continuously with a breaker plate. A method for producing a porous body made of UHMWPE, characterized in that partial melting points are mutually fused in a mold to form a continuous porous body. [0008] The present invention relates to a method for preparing a particulate U having specific characteristic values.
Using HMWPE, a ram extruder is used to reduce the orifice of the ram extruder to a specific shear rate range of 1.0 × 10 3 to 3.0.
After passing under the conditions of × 10 4 sec −1 , the particulate UHMWPE is converted into a particulate dispersion or a bulk dispersion in which the particulate UHMWPE is aggregated, and then the porous UHMWPE is transformed into a porous body having a large number of continuous pores. This is a method for producing a UHMWPE porous body to be formed. The UHMWPE used in the present invention cannot be flowed under a low shear stress, such as when measuring the MI value (melt index), or becomes a rubber-like elastic body in a temperature range above the melting point. And its flow behavior is different from that of general-purpose polyethylene and the like. UHMWPE which becomes a rubber-like elastic body in the temperature range above the melting point,
It shows an elastic modulus of 1.0 × 10 7 dyne / cm 2 or more at 200 ° C. (ISO / CD6721-7, elastic modulus by a torsion measurement method), and has an average molecular weight of 300 by a viscosity method.
It is in the form of fine powder having a particle size of at least 10 4 and an average particle size of 50 to 400 μm. The UHMWPE may contain 5 to 20 parts by weight of a medium-molecular-weight polyethylene as a melting aid, or 5 to 20 parts by weight of a medium having a high, medium or low content as a regulator of porosity and elongation of a porous body. High-density polyethylene or other medium-density polyethylene can be added. Further, 0.5 to 10 parts by weight, preferably 1.5 to 2.5 parts by weight of a conductivity-imparting agent,
10 parts by weight, preferably 5 parts by weight or less of lubricant, 0.00
3 to 0.3 parts by weight, preferably 0.01 to 0.15 parts by weight, of an organic peroxide or the like can be added. Examples of the conductivity-imparting agent include conductive carbon black and metal powder such as kecken black, channel black, furnace black, thermal black, and acetylene black;
Examples of the lubricant include montanic acid ester waxes and fatty acid derivative waxes, and examples of the organic peroxide include 2,5-dimethyl-2,5- (t-butyl). Peroxy) hexane, dicumyl peroxide and the like. When the rubber-like elastic body is extruded from an orifice of a ram extruder, the orifice is moved to a specific shear rate range of 1.0 × 10 3 to 3.0 × 10 4 sec.
-1 range, the UHM melted in the orifice
The rubber-like elastic body of WPE is extruded in the form of particles or a massive dispersion in which the particles are extremely loosely assembled, and these are fused together in a molding die connected to a breaker plate. Thus, a porous body having a favorable outer surface and a desired shape can be easily formed without generating a strand pattern. When the rubber-like elastic body is below the above-mentioned shear rate range, for example, 2.0 × 10 2 sec −1 or more and 1.0 × 10 2
When passed through the orifice in less than 3 sec- 1 , the form of UHMWPE emerging from the orifice becomes strand-shaped dispersed particles such as those that cause melt fracture or that have high or low bulk density and are string-like. Extruded,
When these are fused together in a molding die, a strand pattern is generated on the outer surface of the molded porous body, and the rubber-like elastic body exceeds the above-mentioned shear rate range. At shear rates above 3.0 × 10 4 sec −1 ,
It is extremely difficult to continuously obtain a good porous body under the current conditions. EXAMPLE 1 UH having a viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 160 μm, a bulk specific gravity of 0.449 and an elastic modulus at 200 ° C. of 3.75 × 10 7 dyne / cm 2 .
The shear rate at the orifice of the breaker plate was set to 3.0 × 10 3 sec −1 (orifice... 0.5 mmφ × 5. MWPE) using a ram extruder equipped with a cylindrical molding die under the following extrusion conditions. 0 mmL, number of holes: 72)
, 60mm outside diameter, 53mm inside diameter, 3.5m wall thickness
m was extruded. * Extrusion conditions • Maximum extrusion capacity: 15 kg / hr • Extrusion amount: 10 kg / hr • Temperature: Chamber: 170 ° C, Cylinder: 20
0 ° C. and 230 ° C. Mold: 200 ° C. and 230 ° C. Example 2 Viscosity average molecular weight: 600 × 10 4 , average particle size: 187 μm, bulk specific gravity: 0.377, and elastic modulus at 200 ° C. 4.15 × 10 7 dyne / cm 2 UH
The shear rate at the orifice of the breaker plate was set to 3.0 × 10 3 sec −1 (orifice... 0.5) using the same ram extruder and the same extrusion conditions as in Example 1 above.
mmφ × 5.0 mmL, number of holes: 72), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Example 3 UH having a viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 335 μm, a bulk specific gravity of 0.458, and an elastic modulus at 200 ° C. of 3.50 × 10 7 dyne / cm 2 .
The shear rate at the orifice of the breaker plate was set to 3.0 × 10 3 sec −1 (orifice... 0.5 mm) by using the same extruder and the same extrusion conditions as in Example 1 above.
φ × 5.0 mmL, number of holes: 72)
A pipe-shaped porous body having the same size as in Example 1 was extruded. Example 4 UH having a viscosity average molecular weight of 440 × 10 4 , an average particle size of 208 μm, a bulk specific gravity of 0.353, and an elastic modulus at 200 ° C. of 6.49 × 10 7 dyne / cm 2 .
The shear rate at the orifice of the breaker plate was set to 3.0 × 10 3 sec −1 (orifice... 0.5) using the same ram extruder and the same extrusion conditions as in Example 1 above.
mmφ × 5.0 mmL, number of holes: 72), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Example 5 UH having a viscosity average molecular weight of 500 × 10 4 , an average particle diameter of 163 μm, a bulk specific gravity of 0.466, and an elastic modulus at 200 ° C. of 4.23 × 10 7 dyne / cm 2 .
The shear rate at the orifice of the breaker plate was set to 3.0 × 10 3 sec −1 (orifice... 0.5) using the same ram extruder and the same extrusion conditions as in Example 1 above.
mmφ × 5.0 mmL, number of holes: 72), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Example 6 UH having a viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 160 μm, a bulk specific gravity of 0.449, and an elastic modulus at 200 ° C. of 3.75 × 10 7 dyne / cm 2 .
The shearing rate at the orifice of the breaker plate was set to 2.5 × 10 4 sec −1 (orifice... 0.5) using the MWPE and the same ram extruder and extrusion conditions as in Example 1 above.
mmφ × 5.0 mmL, number of holes: 10), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Example 7 UH having a viscosity average molecular weight of 600 × 10 4 , an average particle size of 187 μm, a bulk specific gravity of 0.377, and an elastic modulus at 200 ° C. of 4.15 × 10 7 dyne / cm 2 .
The shearing rate at the orifice of the breaker plate was set to 2.5 × 10 4 sec −1 (orifice... 0.5) using the MWPE and the same ram extruder and extrusion conditions as in Example 1 above.
mmφ × 5.0 mmL, number of holes: 10), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Example 8 UH having a viscosity average molecular weight of 330 × 10 4 , an average particle diameter of 335 μm, a bulk specific gravity of 0.458, and an elastic modulus at 200 ° C. of 3.50 × 10 7 dyne / cm 2 .
The MWPE was subjected to a ram extruder and a ram extruder under the same ram extruder and extrusion conditions as in Example 1 described above, and the shear rate at the orifice of the breaker plate was set to 2.5 × 10 4 sec −1 (orifice... 0.5 mmφ × 5.0 mmL, The number of holes was set to 10), and a pipe-shaped porous body having the same size as in Example 1 was extruded. EXAMPLE 9 UH having a viscosity average molecular weight of 440 × 10 4 , an average particle size of 208 μm, a bulk specific gravity of 0.353, and an elastic modulus at 200 ° C. of 6.49 × 10 7 dyne / cm 2 .
The shearing rate at the orifice of the breaker plate was set to 2.5 × 10 4 sec −1 (orifice... 0.5) using the MWPE and the same ram extruder and extrusion conditions as in Example 1 above.
mmφ × 5.0 mmL, number of holes: 10), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Example 10 U having a viscosity average molecular weight of 550 × 10 4 , an average particle size of 163 μm, a bulk specific gravity of 0.466, and an elastic modulus at 200 ° C. of 4.23 × 10 7 dyne / cm 2 .
The shearing rate at the orifice of the breaker plate was set to 2.5 × 10 4 sec −1 (orifice... 0.) using the HMWPE with the same ram extruder and extrusion conditions as in Example 1 above.
5 mmφ × 5.0 mmL, the number of holes: 10), and a pipe-shaped porous body having the same size as in Example 1 was extruded. Comparative Example 1 Using the same UHMWPE and ram extruder as in Example 1, under the same extrusion conditions, the shear rate at the orifice of the breaker plate was 4.0 × 10 2 sec.
−1 (orifice... 1.0 mmφ × 5.0 mmL, number of holes: 72), and a pipe-shaped porous body having the same size as in the above example was extruded. Comparative Example 2 Using the same UHMWPE and ram extruder as in Example 2, under the same extrusion conditions, the shear rate at the orifice of the breaker plate was set in the same manner as in Comparative Example 1, and the size was the same as in the above Example. Was extruded. Comparative Example 3 Using the same UHMWPE and ram extruder as in Example 3, under the same extrusion conditions, the shear rate at the orifice of the breaker plate was set in the same manner as in Comparative Example 1, and the size was the same as in the above Example. Was extruded. Comparative Example 4 Using the same UHMWPE and ram extruder as in Example 4, under the same extrusion conditions, the shear rate at the orifice of the breaker plate was set in the same manner as in Comparative Example 1, and the same size as in the above Example was used. Was extruded. Comparative Example 5 Using the same UHMWPE and ram extruder as in Example 5, under the same extrusion conditions, the shear rate at the orifice of the breaker plate was set in the same manner as in Comparative Example 1, and the same size as in the above Example was used. Was extruded. The porous bodies obtained in Examples 1 to 10 and Comparative Examples 1 to 5 are comparatively shown in Table 1 below. [Table 1] Each of the porous bodies obtained in Examples 1 to 10 has a low bulk specific gravity and achieves the intended purpose, and has a good external appearance without any strand pattern or the like on the outer surface. there were. On the other hand, the porous body obtained in the comparative example had a high bulk specific gravity, a strand pattern was observed on the outer surface, and the appearance quality was poor. The present invention has the above-described structure and has the following effects. That is, according to the present invention, by forming at a shear rate in a specific range, a porous body having continuous pores having a lower bulk specific gravity can be obtained, and the pore porosity is large and uniform, and a strand is formed on the surface of the porous body. A desired UHMWPE porous body having no pattern can be easily formed continuously and in a short time.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−240043(JP,A) 特開 昭60−101021(JP,A) 特開 平5−21050(JP,A) 特開 昭57−133039(JP,A) 特開 昭59−19132(JP,A) 特開 平6−212006(JP,A) 特開 平5−9332(JP,A) 特開 平3−178418(JP,A) 実開 昭60−145019(JP,U) (58)調査した分野(Int.Cl.7,DB名) B29C 47/00 - 47/96 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-240043 (JP, A) JP-A-60-10021 (JP, A) JP-A-5-21050 (JP, A) JP-A 57- 133039 (JP, A) JP-A-59-19132 (JP, A) JP-A-6-212006 (JP, A) JP-A-5-9332 (JP, A) JP-A-3-178418 (JP, A) 60-15019 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 47/00-47/96

Claims (1)

(57)【特許請求の範囲】 【請求項1】 弾性率が200℃において1.0×10
7 dyne/cm2以上であって、粘度平均分子量が3
00×104 以上の超高分子量ポリエチレンを、ラム押
出機で押出成形する超高分子量ポリエチレン製多孔質体
の製造方法であって、ラム押出機内の先端部に配設して
ある複数のオリフィスを有するブレーカプレートのオリ
フィスから、少なくとも一部が溶融状態となった超高分
子量ポリエチレンを主体とした組成物を、加熱温度15
0〜250℃で剪断速度が1.0×103 〜3.0×1
4 sec−1 の条件のもとに通過させ、ブレーカプレ
ートに連設する成形金型内で部分溶融箇所を相互に融着
して連続多孔質体とすることを特徴とする超高分子量ポ
リエチレン製多孔質体の製造方法。
(57) [Claims 1] An elastic modulus of 1.0 × 10 at 200 ° C.
7 dyne / cm 2 or more and viscosity average molecular weight of 3
A method for producing an ultra-high molecular weight polyethylene porous body by extruding an ultra-high molecular weight polyethylene of 00 × 10 4 or more with a ram extruder, wherein a plurality of orifices disposed at a tip end in the ram extruder are formed. From the orifice of the breaker plate having at least a portion of a composition mainly composed of ultra-high molecular weight polyethylene in a molten state, a heating temperature of 15%
A shear rate of 1.0 × 10 3 to 3.0 × 1 at 0 to 250 ° C.
An ultra-high molecular weight polyethylene, which is passed under a condition of 0 4 sec −1 and is partially fused to each other in a molding die connected to the breaker plate to form a continuous porous body. A method for producing a porous body.
JP02404395A 1995-02-13 1995-02-13 Method for producing porous body made of ultra-high molecular weight polyethylene Expired - Lifetime JP3483331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02404395A JP3483331B2 (en) 1995-02-13 1995-02-13 Method for producing porous body made of ultra-high molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02404395A JP3483331B2 (en) 1995-02-13 1995-02-13 Method for producing porous body made of ultra-high molecular weight polyethylene

Publications (2)

Publication Number Publication Date
JPH08216264A JPH08216264A (en) 1996-08-27
JP3483331B2 true JP3483331B2 (en) 2004-01-06

Family

ID=12127464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02404395A Expired - Lifetime JP3483331B2 (en) 1995-02-13 1995-02-13 Method for producing porous body made of ultra-high molecular weight polyethylene

Country Status (1)

Country Link
JP (1) JP3483331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215196A (en) * 2010-10-15 2013-10-24 Celanese Acetate Llc Apparatus, system, and associated method for forming porous mass for smoke filter
KR101535360B1 (en) * 2011-10-14 2015-07-08 셀라네세 아세테이트 앨앨씨 Apparatuses, systems, and associated methods for forming porous masses for smoke filter
US9149071B2 (en) 2013-03-13 2015-10-06 Celanese Acetate Llc Smoke filters for reducing components in a smoke stream

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6993944B2 (en) * 2017-08-29 2022-02-04 三ツ星ベルト株式会社 Manufacturing equipment and manufacturing method for filter molded products

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215196A (en) * 2010-10-15 2013-10-24 Celanese Acetate Llc Apparatus, system, and associated method for forming porous mass for smoke filter
JP2014509834A (en) * 2010-10-15 2014-04-24 セラニーズ アセテート,エルエルシー Apparatus, system, and related method for forming a porous body for a smoke filter
US9027566B2 (en) 2010-10-15 2015-05-12 Celanese Acetate Llc Apparatuses, systems, and associated methods for forming porous masses for smoke filter
US9149069B2 (en) 2010-10-15 2015-10-06 Celanese Acetate Llc Apparatuses, systems, and associated methods for forming porous masses for smoke filter
US9179708B2 (en) 2010-10-15 2015-11-10 Celanese Acetate Llc Apparatuses, systems, and associated methods for forming porous masses for smoke filter
KR101535360B1 (en) * 2011-10-14 2015-07-08 셀라네세 아세테이트 앨앨씨 Apparatuses, systems, and associated methods for forming porous masses for smoke filter
US9149071B2 (en) 2013-03-13 2015-10-06 Celanese Acetate Llc Smoke filters for reducing components in a smoke stream

Also Published As

Publication number Publication date
JPH08216264A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US3054761A (en) Extrudable composition comprising tetrafluoroethylene, methyl methacrylate, and a volatile organic lubricant
US4302413A (en) Process for preparing extrudable polyimide granules
CN1134332C (en) Foamed fluoropolymer
EP1499484B1 (en) Method for producing filled granulates consisting of high or ultra-high molecular weight polyethylenes
CN112341662B (en) Gray antistatic polypropylene composite foaming bead with skin-core structure and molded product thereof
EP0068333B1 (en) Method and apparatus for extruding a cellular product
US4394460A (en) Ethylene-chlorotrifluoroethylene copolymer foam
US4331619A (en) Ethylene-chlorotrifluoroethylene copolymer foam
KR102346168B1 (en) Thermoplastic polyurethane particles and method for preparing the same
EP0169635B1 (en) Method for producing a tube of thermoplastic resin having poor melt flowability and apparatus therefor
JP3483331B2 (en) Method for producing porous body made of ultra-high molecular weight polyethylene
US3538203A (en) Production of expandable and cellular resin products
US3152201A (en) Manufacture of polytetrafluoroethylene powders
US2985918A (en) Method for forming shaped lengths of tetrafluoroethylene polymers having a cellular structure
US2791806A (en) Extrusion of polytetrafluoroethylene at temperatures above the normal melting point
JP3282209B2 (en) Manufacturing method of porous polytetrafluoroethylene molded body
JP3481346B2 (en) Method for producing ultra high molecular weight polyethylene porous body
DE3319093C2 (en)
Issitt et al. Rheology of mixed powder plastisols
EP1144491B1 (en) Expanded polypropylene particles
US4970118A (en) Method for making free-flowing coated rubber pellets
JPS6333465A (en) Production of polyacetal resin composition
EP0272606B1 (en) Process for the extrusion for ultra-high molecular-weight polyethylene
KR20210031209A (en) Thermoplasticity polymer particles and method for preparing the same
CA1176810A (en) Enlarged powder particles of crystalline polyolefin and method of producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

EXPY Cancellation because of completion of term