JP3435731B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3435731B2
JP3435731B2 JP12370893A JP12370893A JP3435731B2 JP 3435731 B2 JP3435731 B2 JP 3435731B2 JP 12370893 A JP12370893 A JP 12370893A JP 12370893 A JP12370893 A JP 12370893A JP 3435731 B2 JP3435731 B2 JP 3435731B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
powder
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12370893A
Other languages
Japanese (ja)
Other versions
JPH06333558A (en
Inventor
潤一 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12370893A priority Critical patent/JP3435731B2/en
Publication of JPH06333558A publication Critical patent/JPH06333558A/en
Application granted granted Critical
Publication of JP3435731B2 publication Critical patent/JP3435731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム遷移金属複合
酸化物を正極活物質とする非水電解液二次電池に関し、
特に負荷特性の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium transition metal composite oxide as a positive electrode active material,
Particularly, it relates to improvement of load characteristics.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても益々小型・軽
量且つ高エネルギー密度であることが求められるように
なっている。
2. Description of the Related Art Recent remarkable advances in electronic technology have made electronic devices smaller and lighter one after another. Along with this, batteries, which are used as mobile power sources, are required to be smaller and lighter and have high energy density.

【0003】従来、一般用途の二次電池としては鉛電
池、ニッケル・カドミウム電池等の水溶液系二次電池が
主流である。しかし、これらの水溶液系二次電池はサイ
クル特性には優れるものの、電池重量やエネルギー密度
の点で十分に満足できるものとは言えない。
Conventionally, an aqueous solution type secondary battery such as a lead battery or a nickel-cadmium battery has been mainly used as a secondary battery for general use. However, although these aqueous secondary batteries have excellent cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】そこで、最近、リチウムやリチウム合金さ
らには炭素材料のようなリチウムイオンをドープ且つ脱
ドープ可能な物質を負極として使用し、また、正極にリ
チウムコバルト複合酸化物等のリチウム複合酸化物を使
用する非水電解液二次電池の研究・開発が盛んに行われ
ている。この電池は、電池電圧が高く、高エネルギー密
度を有し、サイクル特性に優れた電池である。
Therefore, recently, substances capable of doping and dedoping lithium ions such as lithium and lithium alloys and carbon materials have been used as the negative electrode, and lithium composite oxides such as lithium cobalt composite oxides have been used for the positive electrode. Research and development of non-aqueous electrolyte secondary batteries to be used are actively conducted. This battery has a high battery voltage, a high energy density, and excellent cycle characteristics.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記非水電
解液二次電池においては、このようにエネルギー密度,
充放電サイクル特性に優れることから、比較的消費電力
の大きい携帯用機器の供給電源としての用途が期待さ
れ、負荷特性の向上が1つの重要な課題とされている。
By the way, in the above non-aqueous electrolyte secondary battery, the energy density,
Due to its excellent charge / discharge cycle characteristics, it is expected to be used as a power supply for portable equipment with relatively large power consumption, and improvement of load characteristics is one of the important issues.

【0006】一般に、電池の負荷特性を向上させるに
は、電極内の電子電導性を改善することで電子の移動を
容易にする、さらに電極内の空孔率を大きくすることで
電極内への電解液の浸み込みとイオン移動を容易にする
方法が有効である。
Generally, in order to improve the load characteristics of a battery, the electron conductivity in the electrode is improved to facilitate the movement of electrons, and the porosity in the electrode is increased to increase the porosity in the electrode. A method that facilitates the permeation of the electrolytic solution and the movement of ions is effective.

【0007】ここで、上記非水電解液二次電池におい
て、正極活物質として用いられるリチウム遷移金属複合
酸化物は、それ自体、比較的電気抵抗が大きい物質であ
る。したがって、このリチウム遷移金属複合酸化物のみ
で正極を構成した場合には電子電導性が不十分である。
このため、リチウム遷移金属複合酸化物を正極活物質と
する正極には、導電性の高いグラファイト粉末等の導電
剤が添加されることで電子電導性が高められるようにな
されている。
Here, in the above non-aqueous electrolyte secondary battery, the lithium-transition metal composite oxide used as the positive electrode active material is itself a material having a relatively large electric resistance. Therefore, the electron conductivity is insufficient when the positive electrode is composed of only this lithium-transition metal composite oxide.
Therefore, electron conductivity is improved by adding a conductive agent such as highly conductive graphite powder to a positive electrode using a lithium-transition metal composite oxide as a positive electrode active material.

【0008】すなわち、正極活物質となるリチウム複合
酸化物粉末,導電剤となるグラファイト粉末及び結着剤
を混合してなる正極合剤が正極集電体に塗布され、さら
にこのままでは電極の充填密度が低く、また、リチウム
遷移金属複合酸化物粉末,グラファイト粉末同士の密着
性が不十分で導電剤の作用が有効に得られないので圧縮
によって正極合剤層の厚さが薄くなされたものが正極と
して用いられている。
That is, a positive electrode mixture prepared by mixing a lithium composite oxide powder serving as a positive electrode active material, a graphite powder serving as a conductive agent, and a binder is applied to a positive electrode current collector. Is low, and the adhesion between the lithium-transition metal composite oxide powder and the graphite powder is insufficient, so that the action of the conductive agent cannot be effectively obtained. Therefore, the positive electrode mixture layer is thinned by compression. Is used as.

【0009】ところが、このような正極合剤層が圧縮さ
れた正極では、電極充填性,正極合材層中の粉末同士の
密着性は改善されているものの、圧縮によって空孔がつ
ぶれ、空孔率が低くなっている。このため、イオンの移
動が円滑に行われず、特に、正極合剤層の厚さが厚い場
合には、空孔率の低いことが電解液との接触面積を著し
く小さくし、イオンの拡散を困難なものとすることから
十分な負荷特性が得られない。
However, in such a positive electrode in which the positive electrode mixture layer is compressed, although the electrode filling property and the adhesion between the powders in the positive electrode mixture layer are improved, the voids are crushed by the compression and the voids are crushed. The rate is low. Therefore, ions do not move smoothly, and especially when the thickness of the positive electrode mixture layer is large, the low porosity significantly reduces the contact area with the electrolytic solution, making it difficult to diffuse the ions. As a result, sufficient load characteristics cannot be obtained.

【0010】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであり、電子電導性,イオン移
動性,電極充填性に優れた正極を有し、良好な負荷特性
を有する非水電解液二次電池を提供することを目的とす
る。
Therefore, the present invention has been proposed in view of such conventional circumstances, and has a positive electrode excellent in electron conductivity, ion mobility, and electrode filling property, and has good load characteristics. An object is to provide a non-aqueous electrolyte secondary battery.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明者らが鋭意検討を重ねた結果、導電剤とし
て導電性の高いグラファイト粉末とともに嵩密度の低い
無定形炭素粉末を正極合剤に添加することにより電子電
導性,イオン移動性のいずれにおいても優れた正極が得
られことを見い出すに至った。
In order to achieve the above-mentioned object, the inventors of the present invention have conducted extensive studies, and as a result, as a conductive agent, graphite powder having high conductivity and amorphous carbon powder having low bulk density were used as positive electrodes. We have found that a positive electrode excellent in both electron conductivity and ion mobility can be obtained by adding it to the mixture.

【0012】本発明は、このような知見に基づいて完成
されたものであって、リチウムを主体とする金属材料又
はリチウムのドープ・脱ドープが可能な炭素質材料を負
極活物質とする負極と、リチウム遷移金属複合酸化物を
正極活物質とする正極と、非水電解液を具備してなる非
水電解液二次電池において、上記正極は、正極活物質と
なるリチウム遷移金属複合酸化物粉末、導電剤となる炭
素粉末及び結着剤を混合してなる正極合剤を正極集電体
に塗布し、圧縮成型された帯状電極であり、上記導電剤
となる炭素粉末は、グラファイト粉末と無定形炭素粉末
との混合炭素粉末であり、且つ上記混合粉末中に無定形
炭素粉末が10〜30重量%混合されてなり、上記正極
合剤の空孔率は、26%以上39%以下であり、上記グ
ラファイトが鱗片状黒鉛であり、且つ無定形炭素がアセ
チレンブラックであることを特徴とするものである。
The present invention has been completed based on such findings, and a negative electrode using a negative electrode active material of a metal material mainly containing lithium or a carbonaceous material capable of doping / dedoping lithium. In a non-aqueous electrolyte secondary battery comprising a positive electrode using a lithium transition metal composite oxide as a positive electrode active material and a non-aqueous electrolyte solution, the positive electrode is a lithium transition metal composite oxide powder serving as a positive electrode active material. A positive electrode mixture obtained by mixing a carbon powder serving as a conductive agent and a binder is applied to a positive electrode current collector, and is a compression-molded strip-shaped electrode. The carbon powder serving as the conductive agent does not include graphite powder. It is a mixed carbon powder with a regular carbon powder, and 10 to 30% by weight of amorphous carbon powder is mixed in the mixed powder, and the porosity of the positive electrode mixture is 26% or more and 39% or less . , The above graphite is scale Graphite, and the amorphous carbon is acetylene black.

【0013】本発明において、グラファイトは、固定炭
素として98%以上の純度であることが望ましい。
In the present invention, graphite preferably has a purity of 98% or more as fixed carbon.

【0014】本発明の非水電解液二次電池において非水
電解液及び負極を構成する負極活物質,正極を構成する
正極活物質としては、この種の非水電解液二次電池にお
いて通常使用されているものがいずれも使用可能であ
る。
In the non-aqueous electrolyte secondary battery of the present invention, the non-aqueous electrolyte, the negative electrode active material constituting the negative electrode, and the positive electrode active material constituting the positive electrode are usually used in this type of non-aqueous electrolyte secondary battery. Any of the above can be used.

【0015】電解液としては、例えばリチウム塩を電解
質とし、これを有機溶媒に溶解してなる電解液が用いら
れる。ここで有機溶媒としては、特に限定されるもので
はないが、例えばプロピレンカーボネート、エチレンカ
ーボネート、1,2−ジメトキシエタン、1,2−ジエ
トキシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、1,3−ジオキソラン、4−メチル−1,3−ジオ
キソラン、ジエチルエーテル、スルホラン、メチルスル
ホラン、アセトニトリル、プロピオニトリル等の単独も
しくは2種類以上の混合溶媒が使用できる。電解質も従
来より公知のものがいずれも使用でき、LiClO4
LiAsF6 、LiPF6 、LiBF4、LiB(C6
5 4 、LiCl、LiBr、CH3 SO3 Li、C
3 SO 3 Li等が用いられる。
As the electrolytic solution, for example, a lithium salt is electrolyzed.
Quality, and use an electrolyte that is a solution of this in an organic solvent.
Be done. Here, the organic solvent is not particularly limited.
However, for example, propylene carbonate, ethylene
Carbonate, 1,2-dimethoxyethane, 1,2-die
Toxyethane, γ-butyrolactone, tetrahydrofura
1,3-dioxolane, 4-methyl-1,3-dio
Xoxolane, diethyl ether, sulfolane, methyl sulphate
Horan, acetonitrile, propionitrile etc. can be used alone
Or two or more kinds of mixed solvents can be used. Electrolyte also
Any known one can be used, LiClOFour,
LiAsF6, LiPF6, LiBFFour, LiB (C6
HFive)Four, LiCl, LiBr, CH3SO3Li, C
F3SO 3Li or the like is used.

【0016】負極にはリチウムをドープし且つ脱ドープ
し得る材料を用いることができる。このような材料とし
ては、リチウム金属,リチウム合金,ポリアセチレンな
どのような導電性ポリマー、あるいはコークスなどのよ
うな炭素質材料を挙げることができる。
A material that can be doped with lithium and dedoped can be used for the negative electrode. Examples of such a material include a conductive polymer such as lithium metal, a lithium alloy, polyacetylene, and the like, or a carbonaceous material such as coke and the like.

【0017】この中でも優れたサイクル寿命が得られる
ことから炭素質材料が好ましい。このような炭素質材料
は有機材料を焼成等の手法により炭素化して得られるも
ので、炭素化の出発原料としてはフルフリルアルコール
あるいはフルフラールのホモポリマー,コポリマーより
なるフラン樹脂が好適である。具体的には、フルフラー
ル+フェノール,フルフリルアルコール+ジメチロール
尿素,フルフリルアルコール,フルフリルアルコール+
ホルムアルデヒド,フルフリルアルコール+フルフラー
ル,フルフラール+ケトン類等よりなる重合体が挙げら
れる。
Of these, carbonaceous materials are preferable because they provide excellent cycle life. Such a carbonaceous material is obtained by carbonizing an organic material by a method such as firing, and a furan resin composed of furfuryl alcohol or furfural homopolymer or copolymer is suitable as a starting material for carbonization. Specifically, furfural + phenol, furfuryl alcohol + dimethylol urea, furfuryl alcohol, furfuryl alcohol +
Examples of the polymer include formaldehyde, furfuryl alcohol + furfural, and furfural + ketones.

【0018】あるいは出発原料として水素/炭素原子比
0.6〜0.8の石油ピッチを用い、これに酸素を含む
官能基を導入し、いわゆる酸素架橋を施して酸素含有量
10〜20重量%の前駆体とした後、この前駆体を焼成
して得られる炭素質材料も好適である。また、前記フラ
ン樹脂や石油ピッチ等を炭素化する際にリン化合物,あ
るいはホウ素化合物を添加することにより、リチウムに
対するドープ量を大きなものとした炭素質材料も使用可
能である。
Alternatively, a petroleum pitch having a hydrogen / carbon atomic ratio of 0.6 to 0.8 is used as a starting material, a functional group containing oxygen is introduced into the petroleum pitch, and so-called oxygen cross-linking is performed to obtain an oxygen content of 10 to 20% by weight. A carbonaceous material obtained by firing the precursor after being used as the precursor is also suitable. Further, it is also possible to use a carbonaceous material having a large doping amount with respect to lithium by adding a phosphorus compound or a boron compound when carbonizing the furan resin or petroleum pitch.

【0019】上記正極活物質としては、リチウムをドー
プし且つ脱ドープし得る材料が用いられ、十分な量のリ
チウムを含んだ材料を使用するのが好ましい。例えば、
一般式LiMO2 (MはCo及びNiの少なくとも一
種)で表されるようなリチウム・コバルト複合酸化物、
リチウム・ニッケル複合酸化物、リチウム・コバルト・
ニッケル複合酸化物が好ましく、リチウム・マンガン複
合酸化物、リチウム・バナジウム複合酸化物などでもよ
い。
As the positive electrode active material, a material capable of doping and dedoping lithium is used, and it is preferable to use a material containing a sufficient amount of lithium. For example,
A lithium-cobalt composite oxide represented by the general formula LiMO 2 (M is at least one of Co and Ni),
Lithium nickel composite oxide, lithium cobalt
A nickel composite oxide is preferable, and a lithium / manganese composite oxide or a lithium / vanadium composite oxide may be used.

【0020】ここで、上記したリチウム遷移金属複合酸
化物を用いる正極は、具体的には、正極活物質となる遷
移金属複合酸化物粉末、導電剤となる炭素質材料粉末及
び結着剤とを混合してなる正極合剤が正極集電体に塗布
され、さらにこの正極合剤層が圧縮されて厚さが薄くな
されて構成される。このとき導電剤の添加,正極合剤層
の圧縮は、いずれも正極の導電性を高め、電池の負荷特
性の向上を図るために行われるものである。
Here, the positive electrode using the above-mentioned lithium-transition metal composite oxide specifically comprises a transition metal composite oxide powder serving as a positive electrode active material, a carbonaceous material powder serving as a conductive agent, and a binder. The mixed positive electrode mixture is applied to the positive electrode current collector, and the positive electrode mixture layer is further compressed to reduce the thickness. At this time, the addition of the conductive agent and the compression of the positive electrode mixture layer are both performed to enhance the conductivity of the positive electrode and improve the load characteristics of the battery.

【0021】すなわち、リチウム複合酸化物粉末は、電
気抵抗が大きな物質であり、これのみで正極を構成した
場合には、電子電導性が不足する。このリチウム複合酸
化物粉末とともに正極合剤中に混練される導電剤は、こ
のようなリチウム遷移金属複合酸化物の導電性を補足す
るために用いられるものである。
That is, the lithium composite oxide powder is a substance having a large electric resistance, and when the positive electrode is composed of this alone, the electron conductivity is insufficient. The conductive agent kneaded in the positive electrode mixture together with the lithium composite oxide powder is used to supplement the conductivity of such a lithium transition metal composite oxide.

【0022】また正極合剤層の圧縮は、正極合剤層の厚
さを薄くして電極充填性を向上させるとともにリチウム
遷移金属複合酸化物粉末と導電剤の密着性を高め導電剤
の作用をより有効に獲得するために行われる工程であ
る。図1に、正極合剤層を圧縮して各種体積密度に調整
した円筒型正極が収納されたコイン型の非水電解液二次
電池(サンプル電池1:正極の体積密度2.27g/c
3 ,サンプル電池2:正極の体積密度2.83g/c
3 ,サンプル電池3:正極の体積密度3.09g/c
3 ,サンプル電池4:正極の体積密度3.35g/c
3 )について、充電電流1mAで充電し、各種放電電
流で放電したときの放電電流と放電容量の関係を示す。
なお用いた正極の直径は15.5mmである。このよう
に、圧縮量が小さく体積密度が小さい正極が収納された
非水電解液二次電池は、放電容量が不足しており、圧縮
量が大きく体積密度が大きい正極が収納された非水電解
液二次電池程、大きな放電容量が得られる。
Further, the compression of the positive electrode material mixture layer reduces the thickness of the positive electrode material mixture layer to improve the electrode filling property and enhances the adhesion between the lithium-transition metal composite oxide powder and the electrically conductive agent to function as the electrically conductive agent. This is a process that is performed in order to acquire it more effectively. FIG. 1 shows a coin-type non-aqueous electrolyte secondary battery (sample battery 1: positive electrode volume density 2.27 g / c) in which a cylindrical positive electrode having a positive electrode mixture layer compressed and adjusted to various volume densities is housed.
m 3 , sample battery 2: positive electrode volume density of 2.83 g / c
m 3 , sample battery 3: positive electrode volume density 3.09 g / c
m 3 , sample battery 4: positive electrode volume density 3.35 g / c
m 3 ), the relationship between the discharge current and the discharge capacity when charging with a charging current of 1 mA and discharging with various discharge currents is shown.
The diameter of the positive electrode used was 15.5 mm. As described above, the non-aqueous electrolyte secondary battery in which the positive electrode having a small compression amount and a small volume density is housed has a short discharge capacity, and the non-aqueous electrolyte secondary battery containing a positive electrode having a large compression amount and a large volume density is housed. The larger the liquid secondary battery, the larger the discharge capacity can be obtained.

【0023】しかし、この正極合剤層の圧縮は、電子導
電性,電極充填性を高めるのに必須であるものの正極合
剤層の空孔をつぶし、イオン移動性を低下させ、非水電
解液との接触面積を縮小することにもなる。このため、
図1に示されるように、圧縮が十分に行われた場合(サ
ンプル電池3,サンプル電池4)にも、大放電電流範囲
においては放電容量が小さくなり、負荷特性が不足して
いる。
However, the compression of the positive electrode mixture layer is essential for enhancing the electronic conductivity and the electrode filling property, but it crushes the pores of the positive electrode mixture layer to reduce the ion mobility, resulting in a non-aqueous electrolyte solution. It also reduces the contact area with. For this reason,
As shown in FIG. 1, even when the compression is sufficiently performed (sample battery 3 and sample battery 4), the discharge capacity becomes small in the large discharge current range and the load characteristics are insufficient.

【0024】そこで、本発明では、圧縮が行われても、
正極合剤層の空孔が保持され、電子電導性,イオン移動
性のいずれにおいても優れる正極を得るために、導電剤
となる炭素質材料としてグラファイト粉末と無定形炭素
粉末の混合炭素粉末を用いることとする。
Therefore, in the present invention, even if compression is performed,
In order to obtain a positive electrode that retains the pores of the positive electrode mixture layer and is excellent in both electron conductivity and ion mobility, a mixed carbon powder of graphite powder and amorphous carbon powder is used as the carbonaceous material as the conductive agent. I will.

【0025】すなわち、上記グラファイト粉末は極めて
導電率の高い炭素質材料である。正極合剤層には、この
導電率の高いグラファイト粉末によって、十分な電子電
導性が付与される。一方、無定形炭素粉末はグラファイ
ト粉末に比べて導電率は劣るものの嵩密度が非常に小さ
な炭素質材料である。このような無定形炭素粉末を正極
合剤層に添加すると、圧縮が行われた際には、この嵩密
度の低い無定形炭素粉末が粉末間に空孔を保持するよう
に作用し、十分な空孔率が維持される。したがって、電
子電導性,イオン移動性のいずれにおいても優れ、また
正極合剤層の厚さを厚く設計した場合でも非水電解液に
対する接触面積が十分に確保される負荷特性に優れた正
極が実現することになる。
That is, the above graphite powder is a carbonaceous material having an extremely high electric conductivity. The graphite powder having high electric conductivity imparts sufficient electron conductivity to the positive electrode mixture layer. On the other hand, the amorphous carbon powder is a carbonaceous material having a very small bulk density, though it has a lower conductivity than graphite powder. When such an amorphous carbon powder is added to the positive electrode mixture layer, when compressed, the amorphous carbon powder having a low bulk density acts so as to maintain pores between the powders, and the sufficient amount is sufficient. Porosity is maintained. Therefore, it is possible to realize a positive electrode that is excellent in both electron conductivity and ion mobility, and that has a good contact property with the non-aqueous electrolyte even if the thickness of the positive electrode material mixture layer is designed to be excellent. Will be done.

【0026】ここで、上記無定形炭素粉末の導電剤全体
に占める割合は10〜30重量%とすることが望まし
い。無定形炭素粉末の導電剤全体に占める割合が10重
量%未満である場合には、無定形炭素粉末による空孔保
持効果が十分に得られない。逆に無定形炭素粉末の導電
剤全体に占める割合が30重量%を超える場合には、今
度は圧縮を行っても正極合剤層を十分に薄くすることが
できなくなり、電極充填密度が小さくなって電池容量が
不足する。
Here, it is desirable that the ratio of the amorphous carbon powder to the whole conductive agent is 10 to 30% by weight. When the proportion of the amorphous carbon powder in the whole conductive agent is less than 10% by weight, the effect of maintaining pores by the amorphous carbon powder cannot be sufficiently obtained. On the other hand, when the proportion of the amorphous carbon powder in the whole conductive agent exceeds 30% by weight, the positive electrode material mixture layer cannot be sufficiently thinned even if compressed this time, and the electrode packing density becomes small. Battery capacity is insufficient.

【0027】なお、グラファイト(黒鉛)とは炭素の同
素体の一つであって、天然に産するとともに無定形炭素
(焼成炭素)を2400〜3000℃程度で熱処理する
ことによって人工的にも製造される。本発明において用
いるグラファイト粉末としては、天然グラファイト粉
末,人造グラファイト粉末のいずれでも良い。例えば、
天然グラファイトとしては、鱗片状グラファイトが天然
グラファイトの中でも黒鉛結晶構造がよく発達して高純
度のものであるが、人造黒鉛の中でも例えば3000℃
よりも高い温度で熱処理して鱗片状となったものでもよ
い。実用的には天然黒鉛が好ましい。
Note that graphite is one of the allotropes of carbon, and is produced naturally as well as artificially produced by heat treating amorphous carbon (calcined carbon) at about 2400 to 3000 ° C. It The graphite powder used in the present invention may be either natural graphite powder or artificial graphite powder. For example,
As natural graphite, flake graphite is a highly pure graphite crystal structure that is well developed among natural graphite, but among artificial graphite, for example, 3000 ° C.
It may be scaled by heat treatment at a higher temperature. Naturally, natural graphite is preferable.

【0028】なお、天然黒鉛の中でも土状黒鉛は結晶性
が悪く不純物が多いことから好ましくない。また、通常
の人造黒鉛は結晶構造が不完全であるから酸化され易く
好ましくないと考えられる。また、上記鱗片状グラファ
イトの純度は、固定炭素として98%以上が望ましい。
Among natural graphites, earthy graphite is not preferable because it has poor crystallinity and contains many impurities. Further, it is considered that ordinary artificial graphite is not preferable because it has an incomplete crystal structure and is easily oxidized. Moreover, the purity of the flake graphite is preferably 98% or more as fixed carbon.

【0029】一方、無定形炭素粉末としては、アセチレ
ンブラック等,嵩密度の低い材料を選択して用いる。
On the other hand, as the amorphous carbon powder, a material having a low bulk density such as acetylene black is selected and used.

【0030】以上に説明した負極,正極は所望の電極形
状にした後、電池缶内に非水電解液とともに収納される
ことで非水電解液二次電池の負極,正極として機能する
ようになる。ここで、電極及び電池缶の構成,形状は、
通常の非水電解液二次電池に準じて差し支えなく、電極
としては渦巻き型電極,積層型電極、電池缶としてはボ
タン型,円筒型等いずれでも良い。
The negative electrode and the positive electrode described above are made into desired electrode shapes and then housed together with the non-aqueous electrolytic solution in the battery can to function as the negative electrode and positive electrode of the non-aqueous electrolytic solution secondary battery. . Here, the configuration and shape of the electrode and the battery can are
The electrodes may be spiral electrodes, laminated electrodes, or battery cans of button type, cylindrical type, etc., in accordance with ordinary non-aqueous electrolyte secondary batteries.

【0031】[0031]

【作用】正極活物質となるリチウム遷移金属複合酸化物
粉末、導電剤となる炭素質材料粉末及び結着剤とが混練
されてなる正極合剤が正極集電体に塗布され、さらにこ
の正極合剤層が圧縮成型されることで構成される帯状の
正極において、導電剤としてグラファイト粉末と無定形
炭素粉末の混合炭素粉末を用い、導電剤となる混合炭素
粉末中の無定形炭素粉末の割合が10〜30重量%であ
り、正極合剤層の空孔率が26%以上39%以下である
と、電子電導性、イオン移動性のいずれにおいても優れ
たものとなり、電池の負荷特性が向上する。これは、以
下の理由による。
The positive electrode mixture obtained by kneading the lithium-transition metal composite oxide powder serving as the positive electrode active material, the carbonaceous material powder serving as the conductive agent, and the binder is applied to the positive electrode current collector, and the positive electrode mixture is further mixed. In the strip-shaped positive electrode formed by compression-molding the agent layer, a mixed carbon powder of graphite powder and amorphous carbon powder is used as the conductive agent, and the ratio of the amorphous carbon powder in the mixed carbon powder to be the conductive agent is When it is 10 to 30% by weight and the porosity of the positive electrode material mixture layer is 26% or more and 39% or less , both the electron conductivity and the ion mobility are excellent, and the load characteristics of the battery are improved. . This is for the following reason.

【0032】すなわち、グラファイト粉末は導電率の高
い炭素粉末である。正極合剤層は、この導電率の高いグ
ラファイト粉末が添加されることによって十分な電子電
導性が付与される。一方、無定形炭素粉末は、グラファ
イト粉末に比べて導電率は劣るものの嵩密度の非常に低
い炭素材料粉末である。この嵩密度の低い無定形炭素粉
末を正極合剤層に添加すると、正極合剤層が圧縮される
に際して、無定形炭素粉末が粉末間に空孔を保持するよ
うに作用して十分な空孔率が維持される。
That is, the graphite powder is a carbon powder having a high electric conductivity. The positive electrode mixture layer is provided with sufficient electron conductivity by adding the graphite powder having high conductivity. On the other hand, the amorphous carbon powder is a carbon material powder having a very low bulk density, though it has a lower conductivity than graphite powder. When this amorphous carbon powder having a low bulk density is added to the positive electrode mixture layer, when the positive electrode mixture layer is compressed, the amorphous carbon powder acts so as to hold pores between the powders and has sufficient pores. The rate is maintained.

【0033】したがって、電子電導性,イオン移動性の
いずれにおいても優れ、また正極合剤層の厚さを厚く設
計した場合でも非水電解液に対する接触面積が十分に確
保される負荷特性に優れた正極が実現することになる。
Therefore, both the electron conductivity and the ion mobility are excellent, and even when the thickness of the positive electrode mixture layer is designed to be large, the load characteristics that the contact area with the non-aqueous electrolyte is sufficiently secured are excellent. The positive electrode will be realized.

【0034】[0034]

【実施例】以下、本発明の好適な実施例について実験結
果に基づいて説明する。
EXAMPLES Preferred examples of the present invention will be described below based on experimental results.

【0035】実施例1 図1に本実施例で作成したコイン型の非水電解液二次電
池を示す。この非水電解液二次電池は以下のようにして
作製した。
Example 1 FIG. 1 shows a coin type non-aqueous electrolyte secondary battery prepared in this example. This non-aqueous electrolyte secondary battery was manufactured as follows.

【0036】まず、アノードカップ1に負極活物質とな
る金属リチウム2を圧着することで負極缶を作製した。
First, a negative electrode can was produced by pressure-bonding metallic lithium 2 as a negative electrode active material to the anode cup 1.

【0037】次に、正極3を以下のようにして作製し
た。正極活物質となるLiCoO2 91重量部、電導材
となるグラファイト粉末と無定形炭素粉末の混合炭素粉
末6重量部、結着剤となるポリフッ化ビニリデン(PV
DF)3重量部を混練して正極合剤を調製した。なお、
ここではグラファイト粉末として純度99.9%の人造
黒鉛を、無定形炭素粉末としてアセチレンブラックを使
用した。また、正極合剤中の導電剤の割合を6重量%、
導電剤中のアセチレンブラックの割合を10重量%に設
定した。
Next, the positive electrode 3 was produced as follows. 91 parts by weight of LiCoO 2 as a positive electrode active material, 6 parts by weight of mixed carbon powder of graphite powder and amorphous carbon powder as a conductive material, polyvinylidene fluoride (PV) as a binder.
3 parts by weight of DF) was kneaded to prepare a positive electrode mixture. In addition,
Here, artificial graphite having a purity of 99.9% was used as the graphite powder, and acetylene black was used as the amorphous carbon powder. Further, the proportion of the conductive agent in the positive electrode mixture is 6% by weight,
The ratio of acetylene black in the conductive agent was set to 10% by weight.

【0038】このようにして調製された正極合剤を溶剤
となるN−メチルピロリドンの分散させてスラリー状と
し、この正極合剤スラリーを、正極集電体となる厚さ2
0μmの帯状Al箔に塗布、乾燥させることで正極合剤
層を形成した。次いで、この正極合剤層をローラプレス
機により圧縮成型して帯状にし、さらに円筒型のカッタ
ーを用いて切断加工することで直径15.5mmの円筒
型正極を作製した。
The thus prepared positive electrode mixture was made into a slurry by dispersing N-methylpyrrolidone as a solvent, and this positive electrode mixture slurry was formed into a positive electrode current collector having a thickness of 2
A positive electrode material mixture layer was formed by applying it on a 0 μm band-shaped Al foil and drying it. Next, this positive electrode mixture layer was compression-molded by a roller press machine into a band shape, and further cut by using a cylindrical cutter to manufacture a cylindrical positive electrode having a diameter of 15.5 mm.

【0039】この作製された円筒型正極3をカソード缶
4に嵌入して、その上にセパレータ5を載せて非水電解
液を注入した。そして、さらに先の工程で金属リチウム
が圧着されたアノードカップを金属リチウムの露出する
側がセパレータ側となるようにセパレータ上に載置し、
アノードカップ1とカソード缶4とを絶縁封口ガスケッ
ト6を介してかしめることによって直径20mm、高さ
1.6mmのコイン型非水電解液二次電池を作製した。
The cylindrical positive electrode 3 thus prepared was fitted into a cathode can 4, a separator 5 was placed thereon, and a nonaqueous electrolytic solution was injected. Then, in a further step, the anode cup on which the metallic lithium was pressure-bonded was placed on the separator so that the exposed side of the metallic lithium was the separator side,
A coin type non-aqueous electrolyte secondary battery having a diameter of 20 mm and a height of 1.6 mm was produced by caulking the anode cup 1 and the cathode can 4 with an insulating sealing gasket 6 interposed therebetween.

【0040】実施例2 導電剤中のアセチレンブラックの割合を30重量%とし
たこと以外は実施例1と同様にしてコイン型の非水電解
液二次電池を作製した。
Example 2 A coin type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the proportion of acetylene black in the conductive agent was 30% by weight.

【0041】比較例1 正極合剤にアセチレンブラックを添加しないこと以外は
実施例1と同様にしてコイン型の非水電解液二次電池を
作製した。
Comparative Example 1 A coin type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that acetylene black was not added to the positive electrode mixture.

【0042】このようにして作製される非水電解液二次
電池について、まず、正極の乾燥時体積密度,電解液含
浸後の体積密度,空孔率,直流抵抗を調べた。なお、空
孔率は正極に電解液を含浸させたときの電解液の含浸量
を測定し、この電解液の含浸量を空孔体積として求め
た。また、直流抵抗は満充電状態で測定した。
Regarding the non-aqueous electrolyte secondary battery thus produced, first, the dry volume density of the positive electrode, the volume density after impregnation with the electrolyte, the porosity, and the DC resistance were examined. The porosity was determined by measuring the impregnated amount of the electrolytic solution when the positive electrode was impregnated with the electrolytic solution and determining the impregnated amount of the electrolytic solution as the pore volume. The DC resistance was measured in a fully charged state.

【0043】[0043]

【表1】 [Table 1]

【0044】表1からわかるように、導電剤として黒鉛
粉末とアセチレンブラック粉末の混合炭素粉末を用いた
実施例1,実施例2の正極は、導電剤として黒鉛粉末の
みを用いた比較例1の正極に比べて空孔率が大きく、電
気抵抗が低くなっている。この傾向は、実施例1,実施
例2の正極を比較してわかるように、導電剤中のアセチ
レンブラックの割合が大きくなる程顕著になる。
As can be seen from Table 1, the positive electrodes of Examples 1 and 2 using the mixed carbon powder of graphite powder and acetylene black powder as the conductive agent were the same as those of Comparative Example 1 using only the graphite powder as the conductive agent. It has a higher porosity and lower electrical resistance than the positive electrode. This tendency becomes more remarkable as the proportion of acetylene black in the conductive agent increases, as can be seen by comparing the positive electrodes of Examples 1 and 2.

【0045】次に、アセチレンブラックを用いた電池の
うち実施例2の電池と、比較例1の電池について各種電
流で充放電を行ったときの放電容量を測定した。その結
果を図3に示す。なお、充放電条件は以下の通りであ
る。 充電条件 充電電流:2mA 充電時間:9時間 上限電圧:4.2V 放電条件 放電方式:定電流放電 終止電圧:3.3V 面積密度:55.1mg/cm2
Next, among the batteries using acetylene black, the batteries of Example 2 and the battery of Comparative Example 1 were measured for discharge capacities when charged and discharged at various currents. The result is shown in FIG. The charging / discharging conditions are as follows. Charging conditions Charging current: 2 mA Charging time: 9 hours Upper limit voltage: 4.2 V Discharging conditions Discharging method: Constant current Discharge end voltage: 3.3 V Area density: 55.1 mg / cm 2

【0046】図3において、実施例2の電池、比較例1
の電池を比較すると、放電電流が小さいときには両電池
の放電容量に差は認められない。しかし、放電電流を大
きくしていくと比較例1の電池は放電電流の増大に伴っ
て放電容量が大きく低下するのに対して実施例2の電池
は、放電電流を9mAにまで増大させても放電電流1m
Aのときと同程度の放電容量を維持しており、負荷特性
に優れている。
In FIG. 3, the battery of Example 2 and Comparative Example 1
Comparing the batteries No. 1 and No. 2, no difference was observed in the discharge capacities of both batteries when the discharge current was small. However, when the discharge current was increased, the battery of Comparative Example 1 had a large decrease in discharge capacity with an increase in discharge current, whereas the battery of Example 2 had a discharge current increased to 9 mA. Discharge current 1m
The discharge capacity is maintained at the same level as in A, and the load characteristics are excellent.

【0047】以上の結果から、正極の導電剤として黒鉛
粉末とアセチレンブラック粉末の混合炭素粉末を用い、
導電剤となる混合炭素粉末中の無定形炭素粉末の割合が
10〜30重量%であり、空孔率が26%以上39%以
であることは、負荷特性に優れた非水電解液二次電池
を得る上で有効であることがわかった。
From the above results, a mixed carbon powder of graphite powder and acetylene black powder was used as the conductive agent for the positive electrode,
The ratio of the amorphous carbon powder in the mixed carbon powder as the conductive agent is 10 to 30% by weight, and the porosity is 26% or more and 39% or less.
It is lower, it was found to be effective in obtaining an excellent non-aqueous electrolyte secondary battery to the load characteristics.

【0048】[0048]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池においては、正極がリチウム遷
移金属複合酸化物粒子、導電剤となるグラファイト粉末
と無定形炭素粉末との混合炭素粉末及び結着剤が混合さ
れてなる正極合剤を正極集電体に塗布し、圧縮成型して
なるものであり、導電剤となる混合炭素粉末中の無定形
炭素粉末の割合が10〜30重量%であり、正極合剤層
の空孔率が26%以上39%以下であるので、正極が電
子電導性、イオン移動性、電極充填性に優れており、良
好な負荷特性を得ることができる。
As is apparent from the above description, in the non-aqueous electrolyte secondary battery of the present invention, the positive electrode contains lithium transition metal composite oxide particles, graphite powder as a conductive agent, and amorphous carbon powder. The mixture of the mixed carbon powder and the binder is applied to the positive electrode current collector, the mixture is formed by compression molding, and the ratio of the amorphous carbon powder in the mixed carbon powder to be the conductive agent is Since it is 10 to 30% by weight and the porosity of the positive electrode mixture layer is 26% or more and 39% or less , the positive electrode is excellent in electron conductivity, ion mobility, and electrode filling property, and good load characteristics can be obtained. Obtainable.

【0049】したがって、本発明によれば、消費電力の
大きい携帯用機器の供給電源として好適な非水電解液二
次電池を得ることが可能である。
Therefore, according to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery which is suitable as a power supply for portable equipment with large power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種圧縮量で圧縮された正極が収納された非水
電解液二次電池の放電電流と放電容量の関係を示す特性
図である。
FIG. 1 is a characteristic diagram showing a relationship between a discharge current and a discharge capacity of a non-aqueous electrolyte secondary battery in which a positive electrode compressed by various compression amounts is housed.

【図2】本発明を適用した非水電解液二次電池の一構成
例を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing one structural example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【図3】正極合剤にアセチレンブラックが添加された非
水電解液二次電池と正極合剤にアセチレンブラックが添
加されていない非水電解液二次電池の放電電流と放電容
量の関係を示す特性図である。
FIG. 3 shows the relationship between discharge current and discharge capacity of a non-aqueous electrolyte secondary battery in which acetylene black is added to the positive electrode mixture and a non-aqueous electrolyte secondary battery in which acetylene black is not added to the positive electrode mixture. It is a characteristic diagram.

【符号の説明】[Explanation of symbols]

1・・・アノードカップ 2・・・負極 3・・・正極 4・・・カソード缶 5・・・セパレータ 6・・・封口ガスケット 1 ... Anode cup 2 ... Negative electrode 3 ... Positive electrode 4 ... Cathode can 5 ... Separator 6 ... Sealing gasket

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムを主体とする金属材料又はリチ
ウムのドープ・脱ドープが可能な炭素質材料を負極活物
質とする負極と、リチウム遷移金属複合酸化物を正極活
物質とする正極と、非水電解液を具備してなる非水電解
液二次電池において、 上記正極は、正極活物質となるリチウム遷移金属複合酸
化物粉末、導電剤となる炭素粉末及び結着剤を混合して
なる正極合剤を正極集電体に塗布し、圧縮成型された帯
状電極であり、 上記導電剤となる炭素粉末は、グラファイト粉末と無定
形炭素粉末との混合炭素粉末であり、且つ上記混合粉末
中に無定形炭素粉末が10〜30重量%混合されてな
り、 上記正極合剤の空孔率は、26%以上39%以下であ
り、 上記グラファイトが鱗片状黒鉛であり、且つ無定形炭素
がアセチレンブラックであることを特徴とする非水電解
液二次電池。
1. A negative electrode having a negative electrode active material of a metal material mainly containing lithium or a carbonaceous material capable of doping / dedoping lithium, a positive electrode having a lithium transition metal composite oxide as a positive electrode active material, and In a non-aqueous electrolyte secondary battery comprising an aqueous electrolyte, the positive electrode is a positive electrode obtained by mixing a lithium transition metal composite oxide powder serving as a positive electrode active material, a carbon powder serving as a conductive agent, and a binder. The mixture is applied to a positive electrode current collector, which is a compression-molded strip-shaped electrode, the carbon powder serving as the conductive agent is a mixed carbon powder of graphite powder and amorphous carbon powder, and in the mixed powder. Amorphous carbon powder is mixed in an amount of 10 to 30% by weight, the porosity of the positive electrode mixture is 26% or more and 39% or less , the graphite is flake graphite, and the amorphous carbon is acetylene black. Is Non-aqueous electrolyte secondary battery, characterized and.
【請求項2】 上記グラファイトは、固定炭素として9
8%以上の純度であることを特徴とする請求項1記載の
非水電解液二次電池。
2. The graphite is 9 as fixed carbon.
The non-aqueous electrolyte secondary battery according to claim 1, which has a purity of 8% or more.
JP12370893A 1993-05-26 1993-05-26 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3435731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12370893A JP3435731B2 (en) 1993-05-26 1993-05-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12370893A JP3435731B2 (en) 1993-05-26 1993-05-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06333558A JPH06333558A (en) 1994-12-02
JP3435731B2 true JP3435731B2 (en) 2003-08-11

Family

ID=14867389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12370893A Expired - Fee Related JP3435731B2 (en) 1993-05-26 1993-05-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3435731B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423168B2 (en) * 1996-11-20 2003-07-07 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3884550B2 (en) * 1997-12-01 2007-02-21 Tdk株式会社 Method for producing electrode for non-aqueous electrolyte battery
JP4213263B2 (en) * 1998-09-09 2009-01-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery discharge capacity measurement method
KR100373728B1 (en) * 2000-09-02 2003-02-25 삼성에스디아이 주식회사 Electrode active material composition of lithium secondary battery and lithium secondary battery prepared using the same
JP4892137B2 (en) * 2001-02-01 2012-03-07 パナソニック株式会社 Method for producing lithium ion secondary battery
JP4839517B2 (en) * 2001-02-28 2011-12-21 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
KR100560538B1 (en) * 2003-06-27 2006-03-15 삼성에스디아이 주식회사 Negative active material for rechargeable ion lithium battery
JP5364500B2 (en) * 2009-08-20 2013-12-11 古河電池株式会社 Method for producing positive electrode plate for non-aqueous electrolyte secondary battery
JP6066306B2 (en) 2012-07-04 2017-01-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
WO2015132962A1 (en) * 2014-03-07 2015-09-11 国立大学法人九州大学 Electricity storage element
CN109994738A (en) * 2017-12-29 2019-07-09 程艳青 A kind of cobalt acid lithium battery anode and cathode slurry is made and formation charging method

Also Published As

Publication number Publication date
JPH06333558A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP3077218B2 (en) Non-aqueous electrolyte secondary battery
JP3028582B2 (en) Non-aqueous electrolyte secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP2001167763A (en) Lithium secondary battery
CN1287390A (en) Non-hydro-electrolyte battery anode active material and non-hydroelectrlyte battery
JP3435731B2 (en) Non-aqueous electrolyte secondary battery
JP2002117836A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery using it
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JPH08213014A (en) Nonaqueous electrolyte secondary battery
JPH06302315A (en) Electrode for nonaqueous electrolytic secondary battery and its manufacture
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JPH11214001A (en) Nonaqueous electrolytic solution secondary battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP2002175807A (en) Nonaqueous electrolyte secondary battery
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP2002367585A (en) Separator, its manufacturing method, as well as battery, and its manufacturing method
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP3104264B2 (en) Coin type non-aqueous electrolyte secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP3624516B2 (en) Non-aqueous electrolyte secondary battery
JP3979428B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees