JP3315423B2 - Apparatus and method for receiving carrier signal applied to electric circuit - Google Patents

Apparatus and method for receiving carrier signal applied to electric circuit

Info

Publication number
JP3315423B2
JP3315423B2 JP04189092A JP4189092A JP3315423B2 JP 3315423 B2 JP3315423 B2 JP 3315423B2 JP 04189092 A JP04189092 A JP 04189092A JP 4189092 A JP4189092 A JP 4189092A JP 3315423 B2 JP3315423 B2 JP 3315423B2
Authority
JP
Japan
Prior art keywords
phase
circuit
wire
voltage
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04189092A
Other languages
Japanese (ja)
Other versions
JPH05218912A (en
Inventor
辰治 松野
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP04189092A priority Critical patent/JP3315423B2/en
Publication of JPH05218912A publication Critical patent/JPH05218912A/en
Application granted granted Critical
Publication of JP3315423B2 publication Critical patent/JP3315423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電路を利用して所望信号
を送信し又は受信する際の前記電路へ搬送波を印加する
方法及び印加された搬送波を受信する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of applying a carrier wave to a circuit when transmitting or receiving a desired signal using the circuit and a method of receiving the applied carrier.

【0002】[0002]

【従来技術】受電室内に設置された絶縁監視装置等から
出力される監視データを人の常駐する管理室等に伝送す
る手段として電力線等の電路を用いることが行われてい
る。この時用いる電路が単相三線式の場合は伝送すべき
データにて搬送波を変調して得た電圧を単相三線式電路
の接地側電路に接続した第二種接地線を介して電路に印
加し、受信点では接地側電路と第三種接地間に存在する
前記変調された搬送波信号(以下「搬送波信号」と呼
ぶ)を検出し、これを復調してデータを受信するもの
で、一般に大地帰路方式と称される搬送方式が採用され
ている。従来の手段の1例としては同一出願者による特
公平2−18009号公報に開示された発明がある。
2. Description of the Related Art As means for transmitting monitoring data output from an insulation monitoring device or the like installed in a power receiving room to a control room or the like where a person is resident, an electric line such as a power line is used. When the electric circuit used at this time is a single-phase three-wire system, a voltage obtained by modulating a carrier wave with data to be transmitted is applied to the electric circuit via a second-class ground wire connected to a ground-side electric circuit of the single-phase three-wire circuit. At the receiving point, the modulated carrier signal (hereinafter referred to as "carrier signal") present between the ground-side electric circuit and the third-class ground is detected and demodulated to receive data. A transport system called a return route system is employed. As an example of the conventional means, there is an invention disclosed in Japanese Patent Publication No. 2-18009 by the same applicant.

【0003】しかしながら、上記従来の方法では、受信
点で搬送波信号を検出するに当り、一般に負荷機器の筐
体等に施される第三種接地線を利用する場合が多いが、
このとき漏洩電流の大きい負荷機器の筐体の接地端子や
雑音除去フィルタの接地端子等が接続されている場合、
あるいは大地電位が何らかの原因で変動している場合、
第三種接地点の電位が変動することとなる。このため従
来のように搬送波信号を受信点で接地側電路と第三種接
地間で検出する場合には、上記電位の変動が雑音電圧と
して加算されるため、検出された搬送波信号電圧のS/
Nは著しく劣化し、正しく受信データを復調することが
困難となる場合が多かった。近年、各種OA機器の導入
に伴う雑音除去フィルタによる漏洩電流の増加あるい
は、インバータ装置の普及に伴う各種雑音電流の大地流
入量の増大のため、上記の傾向は一段と顕著となり大き
な問題となっている。
However, in the above-mentioned conventional method, when detecting a carrier signal at a receiving point, a third-class ground wire generally provided on a housing of a load device is often used.
At this time, if the ground terminal of the housing of the load device with large leakage current or the ground terminal of the noise elimination filter is connected,
Or if the ground potential fluctuates for some reason,
The potential of the third-type ground point fluctuates. For this reason, when a carrier signal is detected between the ground-side electric circuit and the third-class ground at the receiving point as in the related art, the fluctuation of the potential is added as a noise voltage.
N has significantly deteriorated, and it has often been difficult to correctly demodulate received data. In recent years, due to an increase in leakage current due to a noise removal filter accompanying the introduction of various OA devices or an increase in the amount of various noise currents flowing into the ground accompanying the spread of inverter devices, the above tendency has become even more remarkable and has become a major problem. .

【0004】[0004]

【発明の目的】本発明は上述したような、従来の電路等
を利用したデータ伝送方法における問題点を解決するた
めになされたもので、特に受信点に於ける接地抵抗が大
きいことによる受信S/N低下を防止した受信方法及び
送信方法を提供することを目的としたものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional data transmission method using an electric circuit or the like. It is an object of the present invention to provide a receiving method and a transmitting method in which / N reduction is prevented.

【0005】[0005]

【問題を解決する方法】本発明はこのような問題点を解
決するために、受信点で搬送信号電圧を検出するに当
り、接地抵抗の大きい第三種接地を用いず単相三線電路
から直接搬送信号を検出するものである。即ち、単相三
線電路の2つの非接地側電路の商用周波数電圧は位相が
互いに180°異なっており、一方電路に印加した搬送
信号電圧は、2つの非接地側電路と接地側電路には同相
で印加されている。
In order to solve such a problem, the present invention directly detects a carrier signal voltage at a receiving point from a single-phase three-wire circuit without using a third-class ground having a large ground resistance. This is to detect a carrier signal. That is, the commercial frequency voltages of the two non-grounded circuits of the single-phase three-wire circuit are 180 ° out of phase with each other, while the carrier signal voltage applied to the circuit is in phase with the two non-grounded circuits and the grounded circuit. Is applied.

【0006】この関係を図4に示す。受電トランスTの
低圧側電路は単相三線式であり接地側電路3は接地線1
を介して第二種接地(E2 )されており、接地線1には
搬送信号電圧e0 が印加されている。単相三線式電路で
あるから非接地側電路2と接地側電路3間の商用電圧を
0 とすると、非接地側電路4と接地側電路3間の商用
電圧はV0 となり電路2、4間の電圧は2V0 である。
一方非接地側電路2、接地側電路3、非接地側電路4と
大地間の電圧は夫々、図示してあるようにV0+e0
0 、−V0 +e0 となる。
FIG. 4 shows this relationship. The low-voltage circuit of the power receiving transformer T is a single-phase three-wire system, and the ground circuit 3 is a ground line 1.
The are Class II ground (E 2) through, the carrier signal voltage e 0 is applied to the ground line 1. When because it is a single-phase three-wire path ungrounded side path 2 commercial voltage between the ground-side electrical path 3 and V 0, the commercial voltage between the ground-side electrical path 3 and the non-grounded path 4 is V 0 becomes paths 2,4 The voltage between them is 2V 0 .
On the other hand, the voltage between the ungrounded side electric circuit 2, the grounded side electric circuit 3, the non-grounded side electric circuit 4, and the ground is V 0 + e 0 , as shown in FIG.
e 0 and −V 0 + e 0 .

【0007】したがって、非接地側電路2、4間の和の
電圧を検出すればV0 +e0 +(−V0 +e0 )=2e
0 となり、搬送信号電圧が検出される。
Therefore, if the sum voltage between the non-ground side electric circuits 2 and 4 is detected, V 0 + e 0 + (− V 0 + e 0 ) = 2e
It becomes 0 , and the carrier signal voltage is detected.

【0008】このように本発明では非接地側電路に重畳
されている搬送波信号電圧を積極的に利用して搬送信号
電圧を検出することにより従来の方法で問題となった第
三種接地点の電位変動による雑音の影響を皆無とする受
信方法を提供するものである
As described above, according to the present invention, the carrier signal voltage superimposed on the non-ground-side electric circuit is positively used to detect the carrier signal voltage. It is intended to provide a receiving method that eliminates the influence of noise due to potential fluctuation.

【0009】[0009]

【実施例】本発明の実施例を図を用いて詳細に説明す
る。図1は本発明の実施例を示す図である。単相三線用
受電トランスTの低圧側電路3は接地線1にて第二種接
地(E2 )されており、接地線1に結合した注入トラン
スOTにより電路2、3、4に変調器MOD出力に得ら
れる搬送信号電圧が印加され、該搬送信号は監視装置S
Vの出力により変調されたものとなる。一方、受信点で
は非接地側電路2、4から高抵抗R1 、R2 を介してオ
ペアンプ(差動アンプ)OPの(−)入力端に印加さ
れ、接地側電路3は高抵抗R3 を介してオペアンプOP
の(+)入力端に印加される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention. The low-voltage-side electric circuit 3 of the single-phase three-wire power receiving transformer T is grounded to the second kind (E 2 ) by the ground line 1, and the modulators MOD are connected to the electric lines 2, 3, and 4 by the injection transformer OT coupled to the ground line 1. The resulting carrier signal voltage is applied to the output and the carrier signal is
It is modulated by the output of V. On the other hand, at the receiving point, the non-ground side electric lines 2 and 4 are applied to the (−) input terminal of the operational amplifier (differential amplifier) OP via the high resistances R 1 and R 2 , and the ground side electric line 3 is connected to the high resistance R 3 . OP via OP
(+) Input terminal.

【0010】オペアンプOPの(−)入力端は出力端へ
帰還抵抗Rが接続され、更に、オペアンプOPの出力は
商用周波除去フィルタFを経て復調器DEMに印加され
ており、復調器DEM出力には、受信データが得られ
る。
A feedback resistor R is connected to the output terminal of the (-) input terminal of the operational amplifier OP, and the output of the operational amplifier OP is applied to the demodulator DEM via the commercial frequency rejection filter F. Obtains received data.

【0011】監視装置SVの出力データで変調された変
調器MODの出力により注入トランスOTが接地線1に
誘起する電圧を とし、電路2−3間ならびに電路3
−4間の商用電圧をVとすれば、電路2,3,4の大
地に対する電圧は夫々、V+e0、0、−V+e
となる。
[0011] The voltage injection transformer OT is induced in the ground line 1 by the output of a modulated modulator MOD in the output data of the monitoring device SV and e 0, between paths 2-3 and path 3
Assuming that the commercial voltage between −4 and V 0 is V 0 , the voltages of the electric circuits 2, 3, and 4 with respect to the ground are respectively V 0 + e 0, e 0, and −V 0 + e
It becomes 0 .

【0012】オペアンプOPの(+)、(−)入力端の
インピーダンスが高く、且つ利得が十分に大きければ、
オペアンプOPの出力電圧は次式で表される。 e=−(R/R)(V+e)−(R/R)(−V+e) +[1+{(1/R)+(1/R)}R]e ・・・・・(1) 今、この式において例えばR=Rとすれば(1)式
から e=e ・・・・・(2) となり、搬送信号が検出される。また一方、R≠R
とすれば、オペアンプOPの出力には商用周波成分が残
留することになる。また非接地側電路2、4の電圧を電
路3に対して共にVとしたが、一般には多少の差異が
存在する。この場合抵抗R又はRを調整すればオペ
アンプOPの出力中の商用周波成分を打消すことができ
る。
If the impedance at the (+) and (-) input terminals of the operational amplifier OP is high and the gain is sufficiently large,
The output voltage e of the operational amplifier OP is expressed by the following equation. e = − (R / R 1 ) (V 0 + e 0 ) − (R / R 2 ) (− V 0 + e 0 ) + [1 + {(1 / R 1 ) + (1 / R 2 )} R] e 0 (1) If, for example, R 1 = R 2 in this equation, then from equation (1), e = e 0 ... (2), and a carrier signal is detected. On the other hand, R 1 ≠ R 2
Then, the commercial frequency component remains in the output of the operational amplifier OP. Also has been set to V 0 both voltage ungrounded path 2,4 relative path 3, in general there are some differences. Power-frequency components in the output of this resistor R 1 or by adjusting the R 2 operational amplifier OP can cancel.

【0013】しかし、実用上は、オペアンプOPの後段
に残留する商用周波成分を抑圧するフィルタFを付加
し、その出力を復調器DEMで復調すれば足りる。上記
実施例ではオペアンプOPを用いたが、このアンプへの
電源供給に関して十分注意を要することは明かでありフ
ローティング電源とする等の対策が必要である。
However, in practice, it is sufficient to add a filter F for suppressing the commercial frequency component remaining after the operational amplifier OP and demodulate its output with the demodulator DEM. Although the operational amplifier OP is used in the above embodiment, it is clear that sufficient attention must be paid to power supply to this amplifier, and it is necessary to take measures such as using a floating power supply.

【0014】図2は本発明の変形実施例を示すブロック
図である。同図に於いて、T0 は検出用トランスであっ
て、その入力端5、6の一方5は前記電路のうち非接地
電路2と4の両者に高抵抗値R1 、R2 を介して接続
し、他方の入力端6は同じく高抵抗値R3 を介して接地
側電路3に接続する。
FIG. 2 is a block diagram showing a modified embodiment of the present invention. In the figure, T 0 is a detecting transformer, while 5 of the input terminals 5 and 6 via the high-resistance value R 1, R 2 in both ungrounded path 2 and 4 of the path connected, the other input terminal 6 is connected also to the ground path 3 via a high resistance value R 3.

【0015】この構成によれば、検出用トランスT0
一次側入力端5には電路2、4間の電圧が加算され、ま
た、同時に他方入力端6には電路3の電圧が印加され、
結果的に該検出トランスT0 の一次側には端子5、6間
の差の電圧に応じた電流が流れることになる。
According to this configuration, the voltage between the electric circuits 2 and 4 is added to the primary input terminal 5 of the detection transformer T 0 , and at the same time, the voltage of the electric circuit 3 is applied to the other input terminal 6.
The primary side of the results in the detectable transformer T 0 will flow a current corresponding to the voltage difference between the terminals 5 and 6.

【0016】このとき、電路2、4の商用周波成分は、
互いに逆相であるから互いに相殺され、検出用トランス
0 の二次側には搬送信号成分のみが流れる。故に、図
示を省略したがトランスT0 の二次側端子7、8の出力
を第1図で示したように商用波残留成分を抑圧するフィ
ルタFを介し、復調器DEMに入力し、該部で復調する
ことにより、受信データを得る。
At this time, the commercial frequency components of the electric circuits 2 and 4 are
Cancel each other because it is opposite phases, only the carrier signal component flows through the secondary side of the detecting transformer T 0. Thus, although omitted from the drawing through a filter F to suppress the commercial wave residual component as shown in Figure 1 the output of the secondary-side terminals 7 and 8 of the transformer T 0, input to the demodulator DEM, the moiety The received data is obtained by demodulating with.

【0017】上記実施例で示す如く、本発明は単相三線
電路に同相で重畳した搬送信号電圧を単相三線電路の性
質を用い、2つの非接地電路の電圧を加算することによ
り商用電源成分を除去し搬送信号の検出を行うものであ
り、上記実施例に限定されるものではなく、本発明の原
理に基いて各種変形が可能である。
As shown in the above embodiment, the present invention provides a commercial power supply component by adding a carrier signal voltage superimposed in phase on a single-phase three-wire circuit by using the properties of a single-phase three-wire circuit and adding the voltages of two ungrounded circuits. The present invention is not limited to the above embodiment, and various modifications are possible based on the principle of the present invention.

【0018】なお、上記実施例では電路に直接オペアン
プや検出用トランスを接続しているが、電路2−3間、
3−4間に降圧トランスを挿入した後、これにこれらの
検出用回路を付加する構成とすれば安全性確保に有利な
ことは明かである。
In the above embodiment, the operational amplifier and the detecting transformer are directly connected to the electric circuit.
It is clear that if a step-down transformer is inserted between 3-4 and these detection circuits are added thereto, it is advantageous for ensuring safety.

【0019】また、搬送信号を電路に印加するに当って
は接地線1に注入トランスOTを結合したが、これに限
定されるものではなく、電路2、3、4を共にリング型
注入トランスOTに貫通させてもよいことは明かであ
る。また一般に単相3線電路は接地側電路と2つの非接
地電路の一方の非接地側電路とから単相2線式電路とし
て一般の負荷機器に供されることが多いが、この場合、
前記実施例で示した電路2、3、4を同時に利用するこ
とができない場合がある。この場合は次のようにすれば
本発明の実施が可能となる。
In applying the carrier signal to the electric circuit, the injection transformer OT is connected to the ground line 1. However, the present invention is not limited to this. Obviously, it may be made to penetrate through. In general, a single-phase three-wire circuit is generally provided as a single-phase two-wire circuit from a ground-side circuit and one of the two non-ground circuits to a general load device. In this case,
In some cases, the electric circuits 2, 3, and 4 shown in the above embodiment cannot be used simultaneously. In this case, the present invention can be implemented as follows.

【0020】即ち、第3図は、本発明の他の実施例を示
すブロック図である。この例では、接地側電路3と、2
つの非接地側電路2、4のうち、一方の4のみが、電路
22、23として使用され、単相2線式電路を構成し、
電路22、23に負荷機器が接続されている場合を例示
したものである。この場合は電路22、23を新たに単
相3線式トランスT2 の一次側端子13、14に接続す
ると共に、トランスT2 の二次側中性点端子16と接地
側電路22とを接続線18で接続する。かくしてトラン
スT2 の二次側出力端子15、17には新たに非接地側
電路19、21ならびに接地側電路20(トランスT2
の端子16に接続)からなる新しい単相3線式電路を構
成する。例えばトランスT2 を1:1の巻線比とすれ
ば、電路19、20、21の大地に対する電圧は夫々、
(V0 /2)+e0、e0 、−(V0 /2)+e0 とな
る。
FIG. 3 is a block diagram showing another embodiment of the present invention. In this example, the ground-side electric circuits 3 and 2
Of the two non-ground side electric circuits 2 and 4, only one 4 is used as electric circuits 22 and 23 to constitute a single-phase two-wire electric circuit,
This is an example in which a load device is connected to the electric circuits 22 and 23. With this case connects a new electric paths 22 and 23 to the primary side terminals 13 and 14 of the single-phase three-wire transformer T 2, connected to a secondary-side neutral terminal 16 of the transformer T 2 and ground side electric path 22 Connect with line 18. Thus transformer T 2 of the secondary new ungrounded side toward the output terminals 15, 17 path 19, 21 and the ground-side electrical path 20 (trans T 2
New single-phase three-wire electric circuit comprising the above-mentioned terminal 16 is connected. For example the transformer T 2 1: if 1 turns ratio, the voltage against the ground of the path 19, 20, 21, respectively,
(V 0/2) + e 0, e 0, - a (V 0/2) + e 0.

【0021】したがって第1図、第2図で示した実施例
の電路2、3、4を新しく設けた電路19、20、21
に置換して検出回路を設ければ、同様に搬送信号を受信
できることになる。
Therefore, the electric lines 19, 20, 21 in which the electric lines 2, 3, 4 of the embodiment shown in FIGS.
If a detection circuit is provided in place of the above, a carrier signal can be similarly received.

【0022】したがって、本発明は単相3線式電路から
分岐して構成される単相2線式の場合でも、これを単相
3線式に変換すれば適応できることになる。
Therefore, the present invention can be applied to a single-phase two-wire system which is branched from a single-phase three-wire circuit by converting it to a single-phase three-wire system.

【0023】[0023]

【発明の効果】従来の大地帰路搬送において、単相三線
電路の性質を利用し、受信点で第三種接地線を用いずに
搬送信号の受信を可能とするものであり、従来の方法の
欠点を解決し、より品質の高いデータ伝送が可能とな
る。
According to the conventional ground return transport, the characteristics of a single-phase three-wire circuit are used to enable the reception of a transport signal without using a third-type ground wire at the receiving point. The disadvantages can be solved and higher quality data transmission can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】第2図は本発明の他の実施例を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】第3図は本発明の変形実施を説明する図であ
る。
FIG. 3 is a view for explaining a modified embodiment of the present invention.

【図4】第4図は本発明の原理を説明するための図であ
る。
FIG. 4 is a diagram for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

T、T2 ・・・・・単相三線トランス T0 、T1 ・・・・検出用トランス OT・・・・・・・注入トランス SV・・・・・・・監視装置 MOD・・・・・・変調器 DEM・・・・・・復調器 F・・・・・・・・フィルタT, T 2 ····· Single-phase three-wire transformer T 0 , T 1 ··· Detector OT ····· Injection transformer SV ····· Monitoring device MOD ··· ..Modulator DEM ... Demodulator F ... Filter

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一端が接地された単相三線電路
の接地線を介して前記電路に印加された搬送波信号を、
前記単相三線電路の延長上にて受信する搬送波信号受信
装置において、 前記搬送波信号を受信する受信側 では、前記単相三線電
路の2つの非接地側電路電圧を加算する非接地側電圧加
算手段と、該非接地側電圧加算手段からの加算電圧と前
記単相三線電路の接地側電路電圧との差電圧を検出する
差電圧検出手段と、を備えたことを特徴とする搬送信号
の受信装置
1. A carrier signal applied to a single-phase three-wire circuit having at least one end grounded via a ground wire of the circuit.
Carrier signal reception received on extension of the single-phase three-wire circuit
In the apparatus, the receiving side for receiving the carrier signal, the non-grounded side voltage pressurized adding two non-grounded path voltage of the single-phase three-wire path
Calculating means, and the added voltage from the non-ground side voltage adding means.
Detects the difference voltage between the single-phase three-wire circuit and the ground-side circuit voltage
Carrier signal comprising: a difference voltage detecting means.
Receiving device .
【請求項2】前記非接地側電圧加算手段は、同じ若しく
は異なる抵抗値を持つ複数の抵抗器にて構成されると共
に、前記差電圧検出手段は、オペアンプにて構成される
ことを特徴とする請求項1記載の搬送信号の受信装置
2. The non-ground side voltage adding means, wherein :
Is composed of multiple resistors with different resistance values.
The difference voltage detecting means is constituted by an operational amplifier.
The carrier signal receiving apparatus according to claim 1, wherein:
【請求項3】少なくとも一端が接地された単相三線電路
の接地線を介して前記電路に印加された搬送波信号を、
前記単相三線電路の延長上にて受信する搬送波信号受信
装置において前記搬送波信号を受信する受信側では、前記単相三線電
路の2つの非接地側電路電圧を加算する非接地側電圧加
算手段と、該非接地側電圧加算手段からの加算電圧と前
記単相三線電路の接地側電路電圧とを変圧器の1次側の
両端に印加し、該変圧器の2次側より前記1次側の差電
圧に応じた電圧を検出する差電圧検出手段と、を備えた
ことを特徴とする搬送信号の受信装置。
3. A carrier signal applied to a single-phase three-wire circuit via a ground wire of a single-phase three-wire circuit having at least one end grounded .
Carrier signal reception received on extension of the single-phase three-wire circuit
In the apparatus, the receiving side for receiving the carrier signal includes the single-phase three-wire power supply.
Non-ground side voltage summing the two non-ground side circuit voltages of the circuit
Calculating means, and the added voltage from the non-ground side voltage adding means.
The ground-side circuit voltage of the single-phase three-wire circuit is connected to the primary side of the transformer.
Applied to both ends, the difference between the secondary side of the transformer and the primary side
Voltage difference detecting means for detecting a voltage corresponding to the pressure,
An apparatus for receiving a carrier signal, comprising:
【請求項4】前記非接地側電圧加算手段は、同じ若しく
は異なる抵抗値を持つ複数の抵抗器にて構成されること
を特徴とする請求項3記載の搬送信号の受信装置
4. The non-ground side voltage adding means includes:
Is composed of multiple resistors with different resistance values
The carrier signal receiving device according to claim 3, wherein:
【請求項5】少なくとも一端が接地された単相三線電路
の接地線を介して前記電路に印加された搬送波信号を、
前記単相三線電路の接地側電路と2つの非接地側電路の
一方の非接地側電路とに接線された単相2線式電路の延
長上にて受信する搬送波信号 受信装置において、 前記搬送波信号を受信する受信側では 、前記単相二線式
電路電圧を単相三線変圧器の1次側に印加し、該単相三
線変圧器の2次側の中点を1次側の接地側電路と接続し
て該単相三線変圧器2次側の単相三線電路の2つの非接
地側電路電圧を加算する非接地側電圧加算手段と、該非
接地側電圧加算手段からの加算電圧と前記単相三線電路
の接地側電路電圧との差電圧を検出する差電圧検出手段
と、を備えたことを特徴とする搬送信号の受信装置。
5. A carrier signal applied to a single-phase three-wire circuit, which is grounded at least at one end thereof , via a ground wire of the circuit.
A ground-side circuit and two non-ground-side circuits of the single-phase three-wire circuit;
Extension of a single-phase two-wire circuit tangent to one ungrounded circuit
In a carrier signal receiving apparatus for receiving a carrier signal, a receiving side for receiving the carrier signal applies the single-phase two-wire circuit voltage to a primary side of a single-phase three-wire transformer, and The middle point of the secondary side of the three-phase three-wire transformer is connected to the ground side of the primary side, and two non-connected parts of the single-phase three-wire section of the secondary side of the single-phase three-wire transformer are connected.
A non-ground side voltage adding means for adding a ground side circuit voltage;
Addition voltage from ground side voltage addition means and the single-phase three-wire circuit
And a difference voltage detecting means for detecting a difference voltage from the ground-side circuit voltage .
【請求項6】少なくとも一端が接地された単相三線電路
の接地線を介して前記電路に印加された搬送波信号を、
前記単相三線電路の延長上にて受信する搬送波信号受信
方法において前記搬送波信号を受信する受信側では、前記単相三線電
路の2つの非接地側電路電圧を加算し、該加算電圧と前
記単相三線電路の接地側電路電圧との差電圧を検出する
ことを特徴とする搬送信号の受信方法
6. A carrier signal applied to a single-phase three-wire circuit via a ground wire of a single-phase three-wire circuit having at least one end grounded .
Carrier signal reception received on extension of the single-phase three-wire circuit
The method for receiving a single-phase three-wire signal on a receiving side receiving the carrier signal.
The two non-grounded circuit voltages of the circuit, and
Detects the difference voltage between the single-phase three-wire circuit and the ground-side circuit voltage
A method for receiving a carrier signal, comprising:
【請求項7】少なくとも一端が接地された単相三線電路
の接地線を介して前記電路に印加された搬送波信号を、
前記単相三線電路の延長上にて受信する搬送波信号受信
方法において、 前記搬送波信号を受信する受信側では、前記単相三線電
路の2つの非接地側電路電圧を加算し、該加算電圧と前
記単相三線電路の接地側電路電圧とを変圧器の1次側の
両端に印加し、該変圧器の2次側より前記1次側の差電
圧に応じた電圧を検出することを特徴とする搬送信号の
受信方法
7. A carrier signal applied to a single-phase three-wire circuit via a ground wire of a single-phase three-wire circuit having at least one end grounded .
Carrier signal reception received on extension of the single-phase three-wire circuit
The method for receiving a single-phase three-wire signal on a receiving side receiving the carrier signal.
The two non-grounded circuit voltages of the circuit, and
The ground-side circuit voltage of the single-phase three-wire circuit is connected to the primary side of the transformer.
Applied to both ends, the difference between the secondary side of the transformer and the primary side
A carrier signal characterized by detecting a voltage corresponding to the pressure.
Receiving method .
【請求項8】少なくとも一端が接地された単相三線電路
の接地線を介して前記電路に印加された搬送波信号を、
前記単相三線電路の接地側電路と2つの非接地側電路の
一方の非接地側電路とに接線された単相2線式電路の延
長上にて受信する搬送波信号受信方法において前記搬送波信号を受信する受信側では、前記単相二線式
電路電圧を単相三線変圧器の1次側に印加し、該単相三
線変圧器の2次側の中点を1次側の接地側電路 と接続し
て該単相三線変圧器2次側の単相三線電路の2つの非接
地側電路電圧を加算し、該加算電圧と前記単相三線電路
の接地側電路電圧との差電圧を検出することを特徴とす
る搬送信号の受信方法
8. A carrier signal applied to a single-phase three-wire circuit via a ground wire of a single-phase three-wire circuit having at least one end grounded ,
A ground-side circuit and two non-ground-side circuits of the single-phase three-wire circuit;
Extension of a single-phase two-wire circuit tangent to one ungrounded circuit
In the carrier signal receiving method for receiving on the length, on the receiving side receiving the carrier signal, the single-phase two-wire system
Circuit voltage is applied to the primary side of the single-phase three-wire transformer,
Connect the middle point of the secondary side of the line transformer to the primary side ground line.
Two single-phase three-wire circuits on the secondary side of the single-phase three-wire transformer
The earth side circuit voltage is added, and the added voltage and the single-phase three-wire circuit are added.
Detecting the difference voltage from the ground-side circuit voltage
The method of receiving the carrier signal .
JP04189092A 1992-01-31 1992-01-31 Apparatus and method for receiving carrier signal applied to electric circuit Expired - Lifetime JP3315423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04189092A JP3315423B2 (en) 1992-01-31 1992-01-31 Apparatus and method for receiving carrier signal applied to electric circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04189092A JP3315423B2 (en) 1992-01-31 1992-01-31 Apparatus and method for receiving carrier signal applied to electric circuit

Publications (2)

Publication Number Publication Date
JPH05218912A JPH05218912A (en) 1993-08-27
JP3315423B2 true JP3315423B2 (en) 2002-08-19

Family

ID=12620882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04189092A Expired - Lifetime JP3315423B2 (en) 1992-01-31 1992-01-31 Apparatus and method for receiving carrier signal applied to electric circuit

Country Status (1)

Country Link
JP (1) JP3315423B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5395394B2 (en) * 2008-10-09 2014-01-22 本田技研工業株式会社 Generator series connection device
JP5778016B2 (en) * 2011-12-05 2015-09-16 Necマグナスコミュニケーションズ株式会社 Power line communication system
JP5795015B2 (en) * 2013-02-15 2015-10-14 東京電力株式会社 Energy management system
JP5956016B2 (en) * 2015-05-01 2016-07-20 Necマグナスコミュニケーションズ株式会社 Power line communication system

Also Published As

Publication number Publication date
JPH05218912A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US4504705A (en) Receiving arrangements for audio frequency signals
US4745391A (en) Method of, and apparatus for, information communication via a power line conductor
CA1246709A (en) Receiver apparatus for three-phase power line carrier communications
US5825259A (en) Electromagnetic interference isolator with common mode choke
CA1178386A (en) Active impedance transformer assisted line feed circuit
US4918422A (en) Method and apparatus for extracting inbound information generated line-to-line in a multi-phase electric distribution system
US4408246A (en) Protective relay apparatus
US4320498A (en) Auto balancing duplexer for communication lines
JP3315423B2 (en) Apparatus and method for receiving carrier signal applied to electric circuit
US5038375A (en) Circuit arrangement for preventing gain from responding to frequency variation despite the presence of an isolation transformer
US7190217B2 (en) System, method and apparatus for providing ground separation between different environments
JP3228772B2 (en) Method and apparatus for receiving ground return signal
JPH07297035A (en) Noise removal unit and transmission system using that unit
JPH05308306A (en) Method and device for receiving carrier signal applied to cable way
US20070152653A1 (en) System and method for reducing common-mode interference in differential or single-ended signals
JP2003037533A (en) Power-line carrier communication apparatus
JPS6010275B2 (en) Cable laying position search method
JP3494468B2 (en) Hybrid circuit and device using the same
JPS6260857B2 (en)
JP3194635B2 (en) Circuit insulation or ground resistance monitoring device and signal application method
JP2896572B2 (en) Simple insulation resistance measurement method
JPH0363303B2 (en)
JPS6247220A (en) Distribution line carrier system
JP3417694B2 (en) Low voltage distribution line transport system
JP2764584B2 (en) Measurement method of insulation resistance of branch circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10