JP3256814B2 - Control device for polyphase power converter - Google Patents

Control device for polyphase power converter

Info

Publication number
JP3256814B2
JP3256814B2 JP22659192A JP22659192A JP3256814B2 JP 3256814 B2 JP3256814 B2 JP 3256814B2 JP 22659192 A JP22659192 A JP 22659192A JP 22659192 A JP22659192 A JP 22659192A JP 3256814 B2 JP3256814 B2 JP 3256814B2
Authority
JP
Japan
Prior art keywords
current
phase
power converter
exciting current
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22659192A
Other languages
Japanese (ja)
Other versions
JPH0678564A (en
Inventor
康之 杉浦
茂太 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22659192A priority Critical patent/JP3256814B2/en
Publication of JPH0678564A publication Critical patent/JPH0678564A/en
Application granted granted Critical
Publication of JP3256814B2 publication Critical patent/JP3256814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、変圧器を介して負荷に
交流電力を供給する多相電力変換器の制御装置に係り、
特に大容量化が要求される電力変換器を使用する分野に
おいて好適な電力変換器の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a polyphase power converter for supplying AC power to a load via a transformer.
In particular, the present invention relates to a power converter control device that is suitable in the field of using a power converter that requires a large capacity.

【0002】[0002]

【従来の技術】インバータ等の多相電力変換器において
使用される変圧器の偏磁抑制制御法として、励磁電流一
周期の平均値に応じて電圧指令値の直流分を補正する方
法がある。通常は励磁電流一周期の積分結果は零となる
が、偏磁発生時には偏磁電流分が重畳され零とならな
い。積分結果の極性に応じて偏磁電流を減らす方向に電
圧指令値直流分を調節する。この例としては特開昭64
−5365号公報に示すような装置がある。
2. Description of the Related Art As a method of controlling demagnetization of a transformer used in a multiphase power converter such as an inverter, there is a method of correcting a DC component of a voltage command value according to an average value of one cycle of an exciting current. Normally, the integration result of one cycle of the excitation current is zero, but when a magnetic bias occurs, the amount of the magnetic bias current is superimposed and does not become zero. The DC component of the voltage command value is adjusted in a direction to reduce the bias current according to the polarity of the integration result. An example of this is disclosed in
There is an apparatus as disclosed in Japanese Patent Publication No. 5365.

【0003】さらに変圧器磁束密度が最大となる付近の
正負の電流最大値をサンプルホールドして両者の差から
偏磁量を検出する方法がある。この例としては特開平3
−93475号公報に示すような装置がある。
Further, there is a method in which the positive / negative current maximum value near the maximum of the transformer magnetic flux density is sampled and held, and the amount of magnetization is detected from the difference between the two. An example of this is disclosed in
There is an apparatus as shown in JP-A-93475.

【0004】[0004]

【発明が解決しようとする課題】特開昭64−5365
号公報に記載された従来装置では、偏磁量検出を電流一
周期の積分により検出するため、検出器のオフセット分
も含めて一周期にわたって積分される。電流検出器では
負荷電流と励磁電流を含んだ電流を検出する。通常、負
荷電流に対する励磁電流の割合は非常に小さく数%から
10%前後である。従って、検出しようとしている励磁
電流分に対してオフセット分が無視できなくなるため偏
磁検出の精度が低下するという問題があった。
SUMMARY OF THE INVENTION Japanese Patent Application Laid-Open No. Sho 64-5365
In the conventional device described in Japanese Patent Application Laid-Open Publication No. H11-107, the detection of the amount of demagnetization is detected by integration of one cycle of the current, so that the integration is performed over one cycle including the offset of the detector. The current detector detects a current including a load current and an exciting current. Normally, the ratio of the exciting current to the load current is very small, about several percent to about 10%. Therefore, there is a problem in that the offset component cannot be ignored with respect to the exciting current component to be detected, so that the accuracy of the demagnetization detection decreases.

【0005】また特開平3−93475号公報に記載さ
れた従来装置では励磁電流の正負の各々の最大値をサン
プルホールドするため、ノイズ等で電流瞬時値を誤検出
してしまうと非常に大きな偏磁が発生したとみなされ
る。この場合、誤った検出信号が偏磁抑制制御回路へ入
力されて、正常な偏磁抑制動作がなされない。
In the conventional device described in Japanese Patent Application Laid-Open No. 3-93475, since the maximum value of each of the positive and negative values of the exciting current is sampled and held, if the instantaneous current value is erroneously detected due to noise, etc. It is assumed that magnetism has occurred. In this case, an erroneous detection signal is input to the demagnetization suppression control circuit, and the normal demagnetization suppression operation is not performed.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、変圧器の励磁電流を検出する電流検出器の
オフセットの影響を少なくでき、かつノイズによる誤検
出を防止して、変圧器の偏磁制御の精度を向上できる多
相電力変換器の制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and can reduce the influence of an offset of a current detector for detecting an exciting current of a transformer and prevent erroneous detection due to noise . It is an object of the present invention to provide a control device for a multi-phase power converter that can improve the accuracy of the magnetic bias control .

【0007】[0007]

【課題を解決するための手段】本発明の多相電力変換器
の制御装置は、直流を交流に変換する電力変換器をPW
M制御し、該電力変換器の出力交流を変圧器を介して負
荷に供給する多相電力変換器の制御装置において、前記
変圧器の各相の1次電流と2次電流の差から該変圧器の
各相の励磁電流を検出する励磁電流検出手段と、該励磁
電流検出手段により検出された各相の励磁電流の平均値
を求め、該平均値を各相の励磁電流から差し引いて各相
の励磁電流を求める励磁電流補償手段と、該励磁電流補
償手段に より求められた各相の励磁電流を1周期ごとに
積分し、該積分値に基づいて前記PWM制御のパルス幅
を補正する偏磁補償手段とを有することを特徴とする。
A control device for a polyphase power converter according to the present invention comprises a PW converter for converting a direct current to an alternating current.
M, and the output AC of the power converter is
In a control device for a polyphase power converter for supplying a load, an exciting current detection for detecting an exciting current of each phase of the transformer from a difference between a primary current and a secondary current of each phase of the transformer. Means and said excitation
Average value of exciting current of each phase detected by current detecting means
The average value is subtracted from the excitation current of each phase to calculate
An excitation current compensating means for obtaining an exciting current of the exciting current complement
More phases of excitation currents determined in amortization means for each cycle
A polarization compensating means for integrating and correcting the pulse width of the PWM control based on the integrated value .

【0008】[0008]

【作用】上記構成の多相電力変換器の制御装置において
は、励磁電流検出手段により前記変圧器の各相の1次電
流と2次電流の差から該変圧器の各相の励磁電流が検出
され、これに基づいて励磁電流補償手段は、検出された
各相の励磁電流の平均値を各相の励磁電流から差し引い
て、検出された励磁電流に含まれるオフセット成分及び
各相の電源の不平衡に起因する成分が除去する。そし
て、偏磁補償手段は、補償された各相の励磁電流を1周
期ごとに積分して、偏磁量に相当する積分値を求め、こ
の偏磁量を低減するようにPWM制御のパルス幅を補正
する。その結果、変圧器の偏磁を低減できる。
In the control device for a multi-phase power converter having the above configuration, the primary current of each phase of the transformer is detected by the exciting current detecting means.
The exciting current of each phase of the transformer is detected from the difference between the current and the secondary current , and based on this, the exciting current compensating means detects the exciting current.
Subtract the average value of the exciting current of each phase from the exciting current of each phase.
Thus, the offset component included in the detected exciting current and the component due to the unbalance of the power supply of each phase are removed . Soshi
The demagnetization compensator means that the compensated excitation current of each phase
Integrate every period to obtain the integral value corresponding to the amount of magnetic declination.
The pulse width of PWM control to reduce the amount of magnetism
I do. As a result, the magnetic bias of the transformer can be reduced.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1には本発明に係る多相電力変換器の制御装置
の一実施例の構成が示されている。同図において、交流
電源1から出力された交流電力は、コンバータ2により
直流電力に変換され、電力変換器21で交流電力に戻し
た後、変圧器4を介して負荷5に供給されている。本発
明に係る制御装置は、偏磁抑制制御回路10と、制御回
路31と、基準パルス発生回路32と、ゲートパルス発
生回路33とを有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of an embodiment of a control device for a polyphase power converter according to the present invention. In FIG. 1, AC power output from an AC power supply 1 is converted into DC power by a converter 2, returned to AC power by a power converter 21, and then supplied to a load 5 via a transformer 4. The control device according to the present invention includes a demagnetization suppression control circuit 10, a control circuit 31, a reference pulse generation circuit 32, and a gate pulse generation circuit 33.

【0010】ところでコンデンサ3は負荷5との間で、
電力変換器21および変圧器4を介して充放電すること
によりコンデンサ3の両端電圧である直流電圧が変動す
るので、コンバータ2によりその出力電圧を調整した
り、制御回路31により直流電圧を調整する必要があ
る。そのため、制御回路31はコンデンサ3の端子間電
圧を直接、かつ負荷5の入力電圧を計器用変圧器8から
取り込み、負荷に供給される電流を計器用変流器7から
取り込んでそれぞれの電圧の値を制御する。
By the way, the capacitor 3 is connected between the load 5 and
Since the DC voltage, which is the voltage across the capacitor 3, fluctuates by charging and discharging through the power converter 21 and the transformer 4, the output voltage is adjusted by the converter 2 and the DC voltage is adjusted by the control circuit 31. There is a need. Therefore, the control circuit 31 takes in the voltage between the terminals of the capacitor 3 directly, takes in the input voltage of the load 5 from the instrumentation transformer 8, takes in the current supplied to the load from the instrumentation current transformer 7, and Control the value.

【0011】また、制御回路31はこれらの検出値か
ら、負荷に与える電圧V*と位相差指令φ*の指令を出
力する。基準パルス発生回路32ではV*とφ*から所
望の出力電圧を得るためのオン・オフパルスを電力変換
器へ供給する。
The control circuit 31 outputs a voltage V * applied to the load and a phase difference command φ * based on the detected values. The reference pulse generation circuit 32 supplies an on / off pulse for obtaining a desired output voltage from V * and φ * to the power converter.

【0012】本発明に係る多相電力変換器の制御装置で
は電力変換器(インバータ)21の出力側に設けられた
変圧器の偏磁を抑制するために偏磁抑制制御回路10を
有している。i1 、i2 はそれぞれ負荷側電流と変換器
側電流である。ここでは負荷側を一次、変換器側を二次
と定義する。変換器側の電流は計器用変流器6で検出さ
れる。偏磁抑制制御回路10では電流i1 、i2 の他に
ゲートパルスのスイッチング角度情報θP,θNを入力と
し、各相の基準信号Syを入力としている
The control device for a polyphase power converter according to the present invention has a demagnetization suppression control circuit 10 for suppressing the demagnetization of a transformer provided on the output side of a power converter (inverter) 21. I have. i1 and i2 are a load side current and a converter side current, respectively. Here, the load side is defined as primary, and the converter side is defined as secondary. The current on the converter side is detected by the current transformer 6 for the instrument. Switching angle information θP in addition to the gate pulse of polarized磁抑system control circuit 10 in the current i1, i2, as input .theta.N, and an input of each phase of the reference signal Sy.

【0013】偏磁発生時にはパルス幅補正したスイッチ
ング角度情報θP’,θN’を出力する。ゲートパルス発
生回路33では偏磁抑制制御回路10からパルス幅補正
されたスイッチング角度情報θP’,θN’を基に電力変
換器21に供給するゲートパルスを発生させる。
At the time of occurrence of magnetic declination, pulse width corrected switching angle information θP ′ and θN ′ are output. The gate pulse generation circuit 33 generates a gate pulse to be supplied to the power converter 21 based on the pulse width corrected switching angle information θP ′ and θN ′ from the demagnetization suppression control circuit 10.

【0014】次に偏磁抑制制御回路10の具体的構成を
第3図に示す。同図において励磁電流検出回路101は
3相分の回路構成1011、1012、1013からな
り、各相の励磁電流を検出する。励磁電流検出器101
1では1ブリッジ分の変圧器のU相の一次電流i1U と
二次電流i2U のアンペアターン差から励磁電流i0Uを
出力する。i1U の二次換算電流をi1U’とすればi2U
からi1U’を引くことにより励磁電流i0U を求めるこ
とができる。同様にV相、W相に関してもi0v,i0wを
求める。検出器不平衡補償回路201は三相間のアンバ
ランスや電流検出時のオペアンプ等のオフセットを補償
する。各相の励磁電流i0U,i0v,i0wを加算器201
1で加え、平均回路2012で三相分を平均化した結果
を減算器2013、2014、2015に与え、回路上
のノイズを除去した励磁電流i0U’、i0v’、i0w’を
得る。
Next, FIG. 3 shows a specific configuration of the demagnetization suppression control circuit 10. As shown in FIG. Referring to FIG. 1, an excitation current detection circuit 101 includes circuit configurations 1011, 1012, and 1013 for three phases, and detects the excitation current of each phase. Excitation current detector 101
In step 1, the exciting current i0U is output from the ampere-turn difference between the U-phase primary current i1U and the secondary current i2U of the transformer for one bridge. If the secondary conversion current of i1U is i1U ', then i2U
The excitation current i0U can be obtained by subtracting i1U 'from. Similarly, i0v and i0w are obtained for the V phase and the W phase. The detector unbalance compensation circuit 201 compensates for imbalance between three phases and offset of an operational amplifier or the like at the time of current detection. The exciting currents i0U, i0v, i0w of each phase are added to an adder 201.
The result obtained by averaging three phases by the averaging circuit 2012 is given to the subtractors 2013, 2014, and 2015 to obtain excitation currents i0U ', i0v', and i0w 'from which noise on the circuit has been removed.

【0015】次に偏磁補償回路301では各相それぞれ
に励磁電流の一周期分毎に各相の偏磁補償回路301
1、3012、3013で偏磁補償を行い、パルス幅補
正を行う。
Next, in the demagnetization compensation circuit 301, the demagnetization compensation circuit 301 of each phase is provided for each phase for one cycle of the exciting current.
At 1, 3012, and 3013, demagnetization compensation is performed and pulse width correction is performed.

【0016】次に偏磁抑制制御の動作説明を行う。図4
には図3における偏磁補償回路の具体的構成が示されて
おり、図2には図1、図3、図4の各回路の動作波形が
示されている。これらの図面を参照して特にU相を中心
に動作説明を行う。例えば図2(a)のような電圧波形
vが基準パルス発生回路32から出力され変圧器の巻線
に印加されているとすると磁束密度Bはvが積分され図
2(b)のような波形となる。鉄心に偏磁が発生してい
ない場合には励磁電流波形i0 は図2(b)とほぼ相似
な波形となる。偏磁が発生すると磁束密度Bがピーク値
をとる最初の部分において励磁電流は過大となり、図2
(c)のような電流波形となる。この図の○印で示した
部分では正側に偏磁した場合を示している。電圧波形に
おいては継続する正側電圧パルスの最後の部分θP付近
と継続する負側電圧パルスの最後の部分θN付近におい
て偏磁電流が発生しやすい。
Next, the operation of the demagnetization suppression control will be described. FIG.
3 shows a specific configuration of the demagnetization compensation circuit in FIG. 3, and FIG. 2 shows operation waveforms of the respective circuits in FIGS. 1, 3, and 4. With reference to these drawings, the operation will be described focusing on the U phase. For example, assuming that a voltage waveform v as shown in FIG. 2A is output from the reference pulse generating circuit 32 and applied to the winding of the transformer, the magnetic flux density B is integrated and the waveform as shown in FIG. Becomes When the magnetism is not generated in the iron core, the exciting current waveform i0 has a waveform substantially similar to that of FIG. When the magnetic bias occurs, the exciting current becomes excessive in the first part where the magnetic flux density B takes a peak value,
The current waveform is as shown in FIG. The portion indicated by a circle in this figure shows a case where the magnetic field is deflected to the positive side. In the voltage waveform, a magnetizing current is likely to occur near the last portion θP of the continuing positive voltage pulse and near the last portion θN of the continuing negative voltage pulse.

【0017】そこで、変圧器の磁束偏磁の検出は磁束が
励磁電流にほぼ比例する事から、各相の励磁電流i0の
一周期分に関して正負のアンバランスを測定することで
達成できる。すなわち、各相の励磁電流i0の一周期分
を積分する。その積分結果の値の極性を打ち消す方向に
パルス幅調整することで偏磁抑制が可能になる。その動
作を具体的に説明する。
Therefore, the detection of magnetic flux demagnetization of the transformer can be achieved by measuring the positive / negative imbalance for one period of the exciting current i0 of each phase since the magnetic flux is almost proportional to the exciting current. That is, one cycle of the exciting current i0 of each phase is integrated. By controlling the pulse width in a direction that cancels the polarity of the value of the integration result, it is possible to suppress the magnetization. The operation will be specifically described.

【0018】図2(d)はU相の基準信号Syuであ
る。U相偏磁補償回路3011の位相検出器3021は
U相の基準信号Syuを基に位相を検出し、リセット信
号発生器3022からU相積分リセット信号(図2
(e))を得る。このU相積分リセット信号の発生位相
は図2(a)の電圧波形の基準パルスの2個ある正側パ
ルスの中点毎に発生させる。
FIG. 2D shows a U-phase reference signal Syu. The phase detector 3021 of the U-phase demagnetization compensation circuit 3011 detects the phase based on the U-phase reference signal Syu, and the reset signal generator 3022 outputs a U-phase integration reset signal (FIG. 2).
(E)) is obtained. The generation phase of the U-phase integration reset signal is generated at each midpoint of two positive pulses of the reference pulse having the voltage waveform of FIG.

【0019】またサンプルホールド信号発生器3023
はU相サンプル信号(図2(g))を得る。このU相サ
ンプル信号の発生位相は図2(a)の電圧波形の基準パ
ルスの2個ある正側パルスの前のパルスの立ち下がり時
点に発生させる。
A sample and hold signal generator 3023
Obtains a U-phase sample signal (FIG. 2 (g)). The generation phase of the U-phase sample signal is generated at the falling point of the pulse before the two positive-side pulses of the reference pulse having the voltage waveform of FIG.

【0020】P乗算基準発生器3024はP乗算信号
(図2(k))を得る。このP乗算信号は電圧波形(図
2(a))の基準パルスの2個ある正側パルスの後のパ
ルスの立ち下がり時点を中心に限定された時間幅twを
持ち、値が”1”のパルスである。
A P multiplication reference generator 3024 obtains a P multiplication signal (FIG. 2 (k)). This P-multiplied signal has a limited time width tw centered on the falling point of the pulse after the two positive pulses of the reference pulse of the voltage waveform (FIG. 2A) and has a value of "1". It is a pulse.

【0021】N乗算基準発生器3025はN乗算信号
(図2(l))を得る。このN乗算信号は電圧波形(図
2(a))の基準パルスの2個ある負側パルスの後のパ
ルスの立ち下がり時点を中心に限定された時間幅twを
持ち、値が”1”のパルスである。
The N multiplication reference generator 3025 obtains an N multiplication signal (FIG. 2 (l)). The N-multiplied signal has a limited time width tw centered on the falling point of the pulse after the two negative pulses of the reference pulse of the voltage waveform (FIG. 2A) and has a value of "1". It is a pulse.

【0022】さて、積分器3026は励磁電流i0U’の
信号をU相リセット信号から次のU相リセット信号まで
積分する。図2(f)は積分結果を示している。図2
(c)の様に偏磁がある時は一周期積分した結果は零に
ならず、hだけ積分値が残る。この残った積分値hをサ
ンプルホールド信号発生器3023により生成されるサ
ンプル信号でサンプルホールド器3027に記憶させ
る。
The integrator 3026 integrates the exciting current i0U 'signal from the U-phase reset signal to the next U-phase reset signal. FIG. 2F shows the result of integration. FIG.
When the magnetic field is polarized as in (c), the result of one-period integration is not zero, and the integrated value remains for h. The remaining integral value h is stored in the sample and hold unit 3027 as a sample signal generated by the sample and hold signal generator 3023.

【0023】サンプルホールド器3027の出力信号で
ある積分補正量SH(図2(h))は次のタイミングで
出力されるサンプル信号まで保持される。
The integral correction SH (FIG. 2 (h)) which is the output signal of the sample hold unit 3027 is held until the sample signal output at the next timing.

【0024】次にゲイン要素3028、3029におい
て積分補正量SHからパルスの補正幅ΔθPu、ΔθNuを
得る。ゲイン特性が3028と3029で左右反転して
いるのは、偏磁電流を抑制するためのパルス幅補正方向
が正側パルスと負側パルスでは逆の関係となるからであ
る。SH>0なのでゲイン要素3028、3029によ
り位相補償量ΔθPUはΔθPU<0となり(図2
(i))、位相補償量ΔθNUはΔθNU>0となる(図2
(j))。
Next, in the gain elements 3028 and 3029, pulse correction widths Δθ Pu and Δθ Nu are obtained from the integral correction amount SH. The gain characteristics are reversed left and right at 3028 and 3029 because the pulse width correction direction for suppressing the demagnetizing current has the opposite relationship between the positive side pulse and the negative side pulse. Since SH> 0, the phase compensation amount Δθ PU becomes Δθ PU <0 due to the gain elements 3028 and 3029 (FIG. 2).
(I)), the phase compensation amount ΔθNU becomes ΔθNU> 0 (FIG. 2)
(J)).

【0025】乗算器3030は位相補償量ΔθPUとP乗
算信号を乗算して偏磁が発生した周期の直後の周期に
おける基準パルス発生回路32から出力される基準パル
ス電圧のスイッチング角度θPU、P乗算信号と同期し
たタイミングでΔθPUだけ補正し、スイッチング角度θ
P小さくする
The multiplier 3030 multiplies the phase compensation amount ΔθPU by the P multiplication signal , and calculates the switching angle θPU of the reference pulse voltage output from the reference pulse generating circuit 32 in the cycle immediately after the cycle in which the magnetic field is demagnetized. At the timing synchronized with the P multiplication signal, correction is made by Δθ PU and the switching angle θ
To reduce the P.

【0026】また乗算器3031は位相補償量ΔθNUと
N乗算信号を乗算して偏磁が発生した周期の直後の周
期における基準パルス発生回路32から出力される基準
パルス電圧のスイッチング角度θNU、N乗算信号と同
期したタイミングでΔθNUだけ補正し、スイッチング角
度θNU大きくする。すなわち、加算器3032はθPU
とΔθPUを加算してθPU’を得る。また、加算器303
3はθNUとΔθNUを加算してθNU’を得る。
The multiplier 3031 multiplies the phase compensation amount ΔθNU by the N multiplication signal , and calculates the switching angle θNU of the reference pulse voltage output from the reference pulse generating circuit 32 in the cycle immediately after the cycle in which the magnetization has occurred. , corrected by ΔθNU at a timing synchronized with the N multiplied signal, to increase the switching angle ShitaNU. That is, the adder 3032
And ΔθPU to obtain θPU ′. The adder 303
3 adds θNU and ΔθNU to obtain θNU ′.

【0027】図2(m)の例では○印で示した偏磁電流
は正方向であるから偏磁を検出後、正側パルス幅が狭
く、負側パルスの幅は広くなるように次の周期のθP、
θNにおいて反映され、偏磁電流を抑制することができ
る。
In the example shown in FIG. 2 (m), the demagnetization current indicated by a circle is in the positive direction, so that after detecting the demagnetization, the width of the positive side pulse is narrowed and the width of the negative side pulse is widened. Period θP,
Reflected in θN, the bias current can be suppressed.

【0028】同様にV相の偏磁制御のタイミングは、V
相リセット信号(図2(n))、V相サンプル信号(図
2(p))により実施され、W相の偏磁制御のタイミン
グは、W相リセット信号(図2(o))、W相サンプル
信号(図2(q))により実施される。
Similarly, the timing of the V-phase demagnetization control is
The phase reset signal (FIG. 2 (n)) and the V-phase sample signal (FIG. 2 (p)) are used. The timing of the W-phase demagnetization control is based on the W-phase reset signal (FIG. 2 (o)) and the W-phase This is performed by the sample signal (FIG. 2 (q)).

【0029】本発明では偏磁量の検出精度を高くできる
ので、直流電圧が高い状態で使用されるような用途にも
十分適用可能である。
In the present invention, since the detection accuracy of the amount of magnetization can be increased, the present invention is sufficiently applicable to applications where the DC voltage is high.

【0030】以上の実施例は、マイクロコンピュータを
使用してソフトウェア処理により実現することができ
る。この場合には偏磁抑制制御のためのハードウェアは
不要となり、回路構成上は通常の電力変換装置の制御装
置のソフトウェアを一部追加するだけで実施することが
できる。
The above embodiment can be realized by software processing using a microcomputer. In this case, hardware for demagnetization suppression control is not required, and the circuit configuration can be implemented only by adding a part of software of a control device of a normal power converter.

【0031】[0031]

【発明の効果】以上に説明したように本発明によれば、
変圧器の励磁電流を検出する電流検出 器の各相のアンバ
ランス、ドリフト、オフセット、ノイズ等による誤検出
を防止できるから、変圧器の偏磁抑制制御の精度の向上
が図れ、電力変換器を安定した状態で運転することがで
きる。
According to the present invention as described above,
Inverter of each phase of the current detector that detects the exciting current of the transformer
False detection due to lance, drift, offset, noise, etc.
Can be prevented, the accuracy of the control for suppressing the magnetizing of the transformer can be improved, and the power converter can be operated in a stable state.

【0032】また変圧器の偏磁を高精度に抑制できるの
で鉄心の磁束密度をより高く設計して小型軽量化するこ
とができる。
Further, since the magnetic bias of the transformer can be suppressed with high accuracy, the magnetic flux density of the iron core can be designed to be higher and the size and weight can be reduced.

【0033】さらに偏磁による過電流を抑制できるので
電力変換回路に使用している半導体スイッチの偏磁に起
因する過電流破壊を防ぐこともできる。また自励式変換
器を変圧器多重によって大容量化することも容易とな
る。
Further, since the overcurrent due to the magnetic polarization can be suppressed, the overcurrent can be prevented from being destroyed due to the magnetic polarization of the semiconductor switch used in the power conversion circuit. Further, it becomes easy to increase the capacity of the self-excited converter by transformer multiplexing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多相電力変換器の制御装置の一実
施例の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a control device for a polyphase power converter according to the present invention.

【図2】図1に示した多相電力変換器の制御装置の各部
の動作状態を示す波形図である。
FIG. 2 is a waveform diagram showing an operation state of each unit of the control device of the multiphase power converter shown in FIG.

【図3】図1における偏磁抑制制御回路の具体的構成を
示すブロック図である。
FIG. 3 is a block diagram showing a specific configuration of a demagnetization suppression control circuit in FIG. 1;

【図4】図3における偏磁補償回路の具体的構成を示す
ブロック図である。
FIG. 4 is a block diagram showing a specific configuration of a magnetic bias compensation circuit in FIG. 3;

【符号の説明】[Explanation of symbols]

1 交流電源 2 コンバータ 3 コンデンサ 4 変圧器 5 負荷 6 電流検出器 7 電流検出器 8 計器用変圧器 10 偏磁抑制制御回路 21 電力変換器 31 制御回路 32 基準パルス発生回路 33 ゲートパルス発生回路 101 励磁電流検出回路 201 検出器不平衡補償回路 301 偏磁補償回路 DESCRIPTION OF SYMBOLS 1 AC power supply 2 Converter 3 Capacitor 4 Transformer 5 Load 6 Current detector 7 Current detector 8 Instrument transformer 10 Depolarization suppression control circuit 21 Power converter 31 Control circuit 32 Reference pulse generation circuit 33 Gate pulse generation circuit 101 Excitation Current detection circuit 201 Detector unbalance compensation circuit 301 Demagnetization compensation circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−93475(JP,A) 特開 平4−193063(JP,A) 特開 平4−207972(JP,A) 特開 平4−207974(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/537 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-93475 (JP, A) JP-A-4-1933063 (JP, A) JP-A-4-207797 (JP, A) JP-A-4-199 207974 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H02M 7/537

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流を交流に変換する電力変換器をPW
M制御し、該電力変換器の出力交流を変圧器を介して負
荷に供給する多相電力変換器の制御装置において、 前記変圧器の各相の1次電流と2次電流の差から該変圧
器の各相の励磁電流を検出する励磁電流検出手段と、該励磁電流検出手段により検出された各相の励磁電流の
平均値を求め、該平均値を各相の励磁電流から差し引い
て各相の励磁電流を求める 励磁電流補償手段と、該励磁電流補償手段により求められた各相の励磁電流を
1周期ごとに積分し、該積分値に基づいて前記PWM制
御の パルス幅を補正する偏磁補償手段とを有することを
特徴とする多相電力変換器の制御装置。
1. A power converter for converting DC to AC is a PW converter.
M, and the output AC of the power converter is
A control device for a polyphase power converter for supplying a load , wherein the transformer is determined based on a difference between a primary current and a secondary current of each phase of the transformer.
Exciting current detecting means for detecting the exciting current of each phase of the device, and the exciting current of each phase detected by the exciting current detecting means .
Obtain the average value and subtract the average value from the excitation current of each phase.
An excitation current compensating means for determining respective phases of the exciting current Te, the exciting current of each phase determined by the excitation current compensating means
Integrates every cycle, and based on the integrated value, the PWM system
A control device for a polyphase power converter, comprising: a polarization compensating means for correcting a control pulse width.
JP22659192A 1992-08-26 1992-08-26 Control device for polyphase power converter Expired - Fee Related JP3256814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22659192A JP3256814B2 (en) 1992-08-26 1992-08-26 Control device for polyphase power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22659192A JP3256814B2 (en) 1992-08-26 1992-08-26 Control device for polyphase power converter

Publications (2)

Publication Number Publication Date
JPH0678564A JPH0678564A (en) 1994-03-18
JP3256814B2 true JP3256814B2 (en) 2002-02-18

Family

ID=16847586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22659192A Expired - Fee Related JP3256814B2 (en) 1992-08-26 1992-08-26 Control device for polyphase power converter

Country Status (1)

Country Link
JP (1) JP3256814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869799B2 (en) * 2003-01-15 2007-01-17 株式会社国際電気通信基礎技術研究所 Array antenna control method and control apparatus

Also Published As

Publication number Publication date
JPH0678564A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
JP2774685B2 (en) Inverter control device with DC bias suppression control for three-phase transformer
JP2607648B2 (en) Power converter
US5450310A (en) Control system for power converter with prevention of DC magnetization in the transformer
JP3167936B2 (en) Power converter
JPH0777516B2 (en) Output DC component prevention device for multi-phase inverter
JP3256814B2 (en) Control device for polyphase power converter
US5621633A (en) Apparatus for controlling converter having self-arc-extinction elements
JP2829237B2 (en) Inverter device
JP3530748B2 (en) Power converter
JP4607617B2 (en) Control device for power converter
JP3265397B2 (en) Power converter control method and power converter using the method
JP3395641B2 (en) Power converter
JP2752182B2 (en) Demagnetization prevention circuit for CVCF transformer
JPH02307374A (en) Power converter
JP3223304B2 (en) Power converter control device, self-excited reactive power compensator, and DC power transmission system
JP3501548B2 (en) Demagnetization prevention circuit of high frequency transformer
JP3463164B2 (en) Power conversion device equipped with demagnetization suppression control device
JP3274274B2 (en) Demagnetization suppression control circuit
JP2509890B2 (en) Pulse width modulation control method for AC / DC converter
JPH10229682A (en) Control method for power converter equipment
JP3427656B2 (en) Control method of inverter for photovoltaic power generation
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
JP2534035Y2 (en) Inverter demagnetization prevention circuit for inverter
JPH09247958A (en) Anhysteresis suppressing control circuit of power converter
JPH04359680A (en) Shifted magnetization controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees