JP3245716B2 - Current interrupter - Google Patents

Current interrupter

Info

Publication number
JP3245716B2
JP3245716B2 JP01887091A JP1887091A JP3245716B2 JP 3245716 B2 JP3245716 B2 JP 3245716B2 JP 01887091 A JP01887091 A JP 01887091A JP 1887091 A JP1887091 A JP 1887091A JP 3245716 B2 JP3245716 B2 JP 3245716B2
Authority
JP
Japan
Prior art keywords
series
parallel
vacuum valve
capacitor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01887091A
Other languages
Japanese (ja)
Other versions
JPH04259719A (en
Inventor
弘之 秋山
孝 坪井
三▼吉▲ 長谷川
太郎 内井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01887091A priority Critical patent/JP3245716B2/en
Publication of JPH04259719A publication Critical patent/JPH04259719A/en
Application granted granted Critical
Publication of JP3245716B2 publication Critical patent/JP3245716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気車の電源回路の保護
に使用する真空バルブを用いた電流遮断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current interrupting device using a vacuum valve for protecting a power circuit of an electric vehicle.

【0002】[0002]

【従来の技術】一般的な電気車の電源回路の一例を図5
に示す。従来から電気車においては、架線1、パンタグ
ラフ2さらに、平常時の回路投入遮断用の主回路スイッ
チ (LS)3と事故時に急速に増大する電流を短時間
で遮断するため高速度遮断器(HB)と称する電流遮断
装置4が制御装置5の電源側に直列に挿入されている。
高速度遮断器4には通常、主回路電流Iとして電源から
流れる電流を検出する。電流検出器が設けられており、
主回路電流Iが過大になると自動的に主接点を開き電流
を遮断する機能を有している。その機能の詳細は、主回
路電流Iをコイルに流しこの電流により生じる電磁力に
よって、プランジャーを動作させ、機械的に主接点を開
き(トリップさせる)、その後は気中にアークを拡散し
電流を遮断する機構になっている。
2. Description of the Related Art An example of a power supply circuit of a general electric car is shown in FIG.
Shown in 2. Description of the Related Art Conventionally, in an electric car, an overhead line 1, a pantograph 2, a main circuit switch (LS) 3 for normally turning on and off a circuit and a high-speed circuit breaker (HB ) Are inserted in series on the power supply side of the control device 5.
The high-speed circuit breaker 4 normally detects a current flowing from a power supply as a main circuit current I. A current detector is provided,
When the main circuit current I becomes excessive, it has a function of automatically opening a main contact and interrupting the current. The details of the function are as follows. The main circuit current I is passed through the coil, the plunger is operated by the electromagnetic force generated by this current, and the main contact is opened (tripped) mechanically. It is a mechanism to shut off.

【0003】最近、上記の気中式の高速度遮断器に替え
てアークレス、超高速度化等を追及して、電流遮断回路
に真空バルブを用いた遮断装置が開発されている。
Recently, in pursuit of arcless, ultra-high speed, etc. in place of the above-mentioned aerial type high-speed circuit breaker, a breaking device using a vacuum valve in a current breaking circuit has been developed.

【0004】図6により上記装置の遮断動作を説明す
る。
The shut-off operation of the above device will be described with reference to FIG.

【0005】真空バルブ11と、この真空バルブと並列
に、転流スイッチ12と転流リアクトル15と転流コン
デンサ13を直列にした回路と、非線形抵抗14とが接
続されている。なお、転流コンデンサ13は図示せざる
充電装置により図6に示す極性に充電されている。
[0005] A vacuum valve 11, a circuit in which a commutation switch 12, a commutation reactor 15, and a commutation capacitor 13 are connected in series, and a nonlinear resistor 14 are connected in parallel with the vacuum valve. The commutation capacitor 13 is charged to a polarity shown in FIG. 6 by a charging device (not shown).

【0006】この時外部から遮断指令が与えられると真
空バルブ11が開極し、その後、転流スイッチ12が投
入される。すると真空バルブ11と、転流スイッチ12
と転流リアクトル15と転流コンデンサ13とにより構
成される直列共振回路に、転流コンデンサ13に蓄えら
れた電荷により共振電流が流れる。この電流の最大値は
主回路電流Iの最大値より大きくなるように共振回路の
定数を選んでいる。
At this time, when a shutoff command is given from the outside, the vacuum valve 11 opens, and then the commutation switch 12 is turned on. Then, the vacuum valve 11 and the commutation switch 12
A resonance current flows through the series resonance circuit composed of the commutation reactor 15 and the commutation capacitor 13 due to the charge stored in the commutation capacitor 13. The constant of the resonance circuit is selected so that the maximum value of this current is larger than the maximum value of the main circuit current I.

【0007】真空バルブ11の開極後、主回路電流Iは
真空バルブ11内の真空ギャップ中をアークとなって流
れ続けるが、このとき、前記共振電流は電流の流れる方
向が交互に変化する交流であり、主回路電流Iは電流の
流れる方向が一方向の直流であり、両電流の方向が互い
に逆向きとなり、真空バルブ中の電流がゼロになる瞬間
が存在する。この瞬間真空バルブ11は耐圧を回復しバ
ルブ両端に電圧が発生する。この電圧はその時点の転流
コンデンサ13に蓄えられている電圧とほぼ等しくな
る。そして、主回路電流Iは転流コンデンサ13を通っ
て流れ続ける。転流コンデンサ13に主回路電流Iが流
れ続けることによって、転流コンデンサ13は反対向き
に充電され、転流コンデンサ13の電圧が逆転し更に押
し上げられる。
After the opening of the vacuum valve 11, the main circuit current I continues to flow as an arc in the vacuum gap in the vacuum valve 11. At this time, the resonance current is an alternating current in which the current flowing direction changes alternately. The main circuit current I is a direct current in which the current flows in one direction, the directions of both currents are opposite to each other, and there is a moment when the current in the vacuum valve becomes zero. The instantaneous vacuum valve 11 recovers the pressure resistance, and a voltage is generated at both ends of the valve. This voltage is substantially equal to the voltage stored in the commutation capacitor 13 at that time. Then, the main circuit current I continues to flow through the commutation capacitor 13. As the main circuit current I continues to flow through the commutation capacitor 13, the commutation capacitor 13 is charged in the opposite direction, and the voltage of the commutation capacitor 13 reverses and is further pushed up.

【0008】この電圧がある程度以上高くなると、非線
形抵抗14に電流が流れ始める。この電圧は電源電圧よ
り高く設定されているので、主回路電流Iは減衰し、や
がてゼロになる。
When this voltage becomes higher than a certain level, a current starts to flow through the nonlinear resistor 14. Since this voltage is set higher than the power supply voltage, the main circuit current I attenuates and eventually becomes zero.

【0009】図7は、上記の作用を時間的な経過に沿っ
て示したものである。図7中、t1は転流スイッチ12
が投入されたタイミングを、t2は真空バルブ11の電
圧がゼロになったタイミングを、t3は非線形抵抗14
に電流が流れ始めるタイミングを、t4は主回路電流I
が完全に減衰したタイミングを示す。なお真空バルブ1
1はt1以前に既に開極している。図7中Viは真空バ
ルブ11が耐圧を回復した直後に真空バルブ11両端に
加わる電圧であり、この時点での転流コンデンサ13電
圧とほぼ等しい。Vnは非線形抵抗14に電流が流れ始
める電圧、Veは電源電圧である。
FIG. 7 shows the above-mentioned operation over time. In FIG. 7, t1 is the commutation switch 12
Is inputted, t2 is the timing when the voltage of the vacuum valve 11 becomes zero, and t3 is the nonlinear resistance 14.
The timing at which the current starts to flow through the main circuit current I4
Indicates the timing at which the signal has completely attenuated. In addition, vacuum valve 1
1 has already been opened before t1. In FIG. 7, Vi is a voltage applied to both ends of the vacuum valve 11 immediately after the vacuum valve 11 recovers the breakdown voltage, and is substantially equal to the voltage of the commutation capacitor 13 at this time. Vn is a voltage at which a current starts flowing through the nonlinear resistor 14, and Ve is a power supply voltage.

【0010】[0010]

【発明が解決しようとする課題】真空バルブは、非常に
アークの拡散が早く、電流がゼロになった瞬間に耐圧が
回復し、電流は遮断されるが、電流の変化率があまりに
大きいと、一旦電流がゼロになっても再発弧し、再度電
流が今度は逆向きに流れ出すことがある。遮断失敗時の
波形を図8に示す。本来、真空バルブ中の電流がゼロに
なった瞬間からバルブの耐圧が回復し、以降真空バルブ
中の電流がゼロを維持するべきものが、バルブの極間電
圧がゼロのまま、電流として直流の主回路電流Iに共振
電流Ipが重畳した波形で流れる。装置を小型化するた
めには、転流コンデンサや転流リアクトルの値は小さい
方が適しているが、共振電流Ipのピーク値を一定に保
ち、各定数を小さくする様に選ぶと、共振電流Ipの周
波数が高くなる。この結果、真空バルブの電流がゼロに
なる時点での電流変化率が大きくなってしまい、再発弧
による遮断不能の恐れがある。
In a vacuum valve, the arc spreads very quickly, the withstand voltage is restored at the moment when the current becomes zero, and the current is cut off. However, if the rate of change of the current is too large, Even if the current becomes zero, re-arcing may occur, and the current may flow again in the opposite direction. FIG. 8 shows a waveform at the time of failure of the cutoff. Originally, the withstand voltage of the valve was recovered from the moment the current in the vacuum valve became zero, and the one in which the current in the vacuum valve should be kept zero after that was changed to DC It flows with a waveform in which the resonance current Ip is superimposed on the main circuit current I. In order to reduce the size of the device, smaller values of the commutation capacitors and commutation reactors are suitable, but if the peak value of the resonance current Ip is kept constant and each constant is selected to be small, the resonance current The frequency of Ip increases. As a result, the current change rate at the time when the current of the vacuum valve becomes zero becomes large, and there is a possibility that the cutoff cannot be performed due to re-arcing.

【0011】本発明の目的は、上記の不具合を回避し電
流遮断装置の小型化を図ることにある。
An object of the present invention is to avoid the above-mentioned disadvantages and reduce the size of the current interrupting device.

【0012】[0012]

【課題を解決するための手段】上記目的は、コンデン
サ、開閉手段及びリアクトルまたは配線の浮遊インダク
タンスが直列に接続された第1の直列体と、該コンデン
サを充電する充電手段と、直流を遮断する真空バルブ
と、該真空バルブに並列に接続され前記配線の浮遊イン
ダクタンスに蓄えられているエネルギーを消費する素子
と、該素子と前記真空バルブを並列に接続した並列体に
可飽和リアクトルを直列に接続した第2の直列体と、該
第2の直列体と前記第1の直列体が並列に接続されたこ
とにより達成される。
An object of the present invention is to provide a first series body in which a capacitor, an opening / closing means, and a floating inductance of a reactor or a wiring are connected in series, and a charging means for charging the capacitor. A vacuum valve that cuts off direct current, an element that is connected in parallel to the vacuum valve and consumes energy stored in the stray inductance of the wiring, and a saturable parallel element that connects the element and the vacuum valve in parallel. This is achieved by a second series body in which the reactors are connected in series, and the second series body and the first series body are connected in parallel.

【0013】上記目的は、コンデンサ、開閉手段及びリ
アクトルまたは配線の浮遊インダクタンスが直列に接続
された第1の直列体と、該コンデンサを充電する充電手
段と、直流を遮断する真空バルブと、該真空バルブに並
列に接続され、前記配線の浮遊インダクタンスに蓄えら
れているエネルギーを消費する素子と、該素子と前記真
空バルブを並列に接続した並列体に可飽和リアクトルを
直列に接続した第2の直列体と、該第2の直列体と前記
第1の直列体が並列に接続され、前記真空バルブ、可飽
和リアクトル、開閉手段及びコンデンサを含む閉回路の
共振周波数を2KHz以上とし、転流電流を5000A
以上かつ前記閉回路に含まれる転流インダクタンスを1
μH以上としたことにより達成される。
The object is to provide a first series body in which a capacitor, switching means, and a stray inductance of a reactor or wiring are connected in series, charging means for charging the capacitor, a vacuum valve for shutting off direct current, An element that is connected in parallel to the valve and consumes energy stored in the stray inductance of the wiring, and a second series in which a saturable reactor is connected in series to a parallel body in which the element and the vacuum valve are connected in parallel. The body, the second series body and the first series body are connected in parallel, the resonance frequency of a closed circuit including the vacuum valve, the saturable reactor, the switching means and the capacitor is set to 2 KHz or more, and the commutation current is reduced. 5000A
And the commutation inductance included in the closed circuit is 1
Achieved by setting it to not less than μH.

【0014】上記目的は、コンデンサ、開閉手段及びリ
アクトルまたは配線の浮遊インダクタンスが直列に接続
された第1の直列体と、該コンデンサを充電する充電手
段と、直流を遮断する真空バルブと、該真空バルブに並
列に接続された容量性素子及び前記配線の浮遊インダク
タンスに蓄えられているエネルギーを消費する素子と、
該素子及び容量性素子と前記真空バルブを並列に接続し
た並列体に可飽和リアクトルを直列に接続した第2の直
列体と、該第2の直列体と前記第1の直列体が並列に接
続されたことにより達成される。
The object of the present invention is to provide a first series body in which a stray inductance of a capacitor, switching means and a reactor or wiring is connected in series, charging means for charging the capacitor, a vacuum valve for shutting off direct current, An element that consumes energy stored in the stray inductance of the capacitive element and the wiring connected in parallel to the valve;
A second series body in which a saturable reactor is connected in series to a parallel body in which the element and the capacitive element and the vacuum valve are connected in parallel; and the second series body and the first series body are connected in parallel. It is achieved by doing.

【0015】上記目的は、コンデンサ、開閉手段及びリ
アクトルまたは配線の浮遊インダクタンスが直列に接続
された第1の直列体と、該コンデンサを充電する充電手
段と、直流を遮断する真空バルブと、該真空バルブに並
列に接続された容量性素子及び前記配線の浮遊インダク
タンスに蓄えられているエネルギーを消費する素子と、
該素子及び容量性素子と前記真空バルブを並列に接続し
た並列体に可飽和リアクトルを直列に接続した第2の直
列体と、該第2の直列体と前記第1の直列体が並列に接
続され、前記真空バルブ、可飽和リアクトル、開閉手段
及びコンデンサを含む閉回路のループ長より、前記真空
バルブ及び前記配線の浮遊インダクタンスに蓄えられて
いるエネルギーを消費する素子若しくは真空バルブ及び
前記容量性素子を含む閉回路のループ長を短くしたこと
により達成される。
The object is to provide a first series body in which a capacitor, switching means and a stray inductance of a reactor or wiring are connected in series, a charging means for charging the capacitor, a vacuum valve for shutting off direct current, An element that consumes energy stored in the stray inductance of the capacitive element and the wiring connected in parallel to the valve;
A second series body in which a saturable reactor is connected in series to a parallel body in which the element and the capacitive element and the vacuum valve are connected in parallel; and the second series body and the first series body are connected in parallel. An element that consumes energy stored in the floating inductance of the vacuum valve and the wiring, or a vacuum valve and the capacitive element, based on a loop length of a closed circuit including the vacuum valve, the saturable reactor, the opening / closing means, and the capacitor. This is achieved by shortening the loop length of the closed circuit including

【0016】上記目的は、コンデンサ、開閉手段が直列
に接続された第1の直列体と、該コンデンサを充電する
充電手段と、直流を遮断する真空バルブと、該真空バル
ブに並列に接続された容量性素子と、該容量性素子と前
記真空バルブを並列に接続した並列体に可飽和リアクト
ルを直列に接続した第2の直列体と、該第2の直列体と
前記第1の直列体が並列に接続されたことにより達成さ
れる。
[0016] The above object is achieved by connecting a first series body in which a capacitor and switching means are connected in series, a charging means for charging the capacitor, a vacuum valve for cutting off direct current, and a parallel connection to the vacuum valve. and a capacitive element, a second series body and the series of second first series body of connecting the saturable reactor in parallel body connected to the vacuum valve and said capacitive element in parallel to the series Are connected in parallel.

【0017】上記目的は、架線から主電動機に供給され
る直流電流を遮断する電気車の電流遮断装置において、
コンデンサ、開閉手段及びリアクトルまたは配線の浮遊
インダクタンスが直列に接続された第1の直列体と、該
コンデンサを充電する充電手段と、直流を遮断する真空
バルブと、該真空バルブに並列に接続され前記配線の浮
遊インダクタンスに蓄えられているエネルギーを消費す
る素子と、該素子と前記真空バルブを並列に接続した並
列体に可飽和リアクトルを直列に接続した第2の直列体
と、該第2の直列体と前記第1の直列体が並列に接続さ
れたことにより達成される。
An object of the present invention is to provide a current interrupting device for an electric vehicle, which interrupts a DC current supplied from an overhead line to a main motor,
A first series body in which a capacitor, an opening / closing means, and a stray inductance of a reactor or a wiring are connected in series, a charging means for charging the capacitor, a vacuum valve for shutting off direct current, and a parallel to the vacuum valve An element consuming the energy stored in the stray inductance of the wiring, and a second series body in which a saturable reactor is connected in series to a parallel body in which the element and the vacuum valve are connected in parallel; This is achieved by connecting the second series body and the first series body in parallel.

【0018】上記目的は、架線から主電動機に供給され
る直流電流を遮断する電気車の電流遮断装置において、
コンデンサ、開閉手段及びリアクトルまたは配線の浮遊
インダクタンスが直列に接続された第1の直列体と、該
コンデンサを充電する充電手段と、直流を遮断する真空
バルブと、該真空バルブに並列に接続された容量性素子
及び前記配線の浮遊インダクタンスに蓄えられているエ
ネルギーを消費する素子と、該素子及び容量性素子と前
記真空バルブを並列に接続した並列体に可飽和リアクト
ルを直列に接続した第2の直列体と、該第2の直列体と
前記第1の直列体が並列に接続され、前記真空バルブ、
可飽和リアクトル、開閉手段及びコンデンサを含む閉回
路のループ長より、前記真空バルブ及び前記配線の浮遊
インダクタンスに蓄えられているエネルギーを消費する
素子を含む閉回路のループ長を短くしたことにより達成
される。
An object of the present invention is to provide a current interrupting device for an electric vehicle for interrupting a DC current supplied from a wire to a main motor,
A first series body in which a capacitor, an opening / closing means and a stray inductance of a reactor or a wiring are connected in series, a charging means for charging the capacitor, a vacuum valve for cutting off direct current, and a parallel connection to the vacuum valve A capacitive element and an element that consumes energy stored in the stray inductance of the wiring, and a second element in which a saturable reactor is connected in series to a parallel body in which the element and the capacitive element and the vacuum valve are connected in parallel. A series body, the second series body and the first series body are connected in parallel, and the vacuum valve;
This is achieved by shortening the loop length of the closed circuit including the element that consumes the energy stored in the floating inductance of the vacuum valve and the wiring, from the loop length of the closed circuit including the saturable reactor, the opening / closing means, and the capacitor. You.

【0019】[0019]

【作用】本発明は、コンデンサを含む共振回路により主
回路電流とは逆向きに電流を流すことによって真空バル
ブ中に電流のゼロ点を作り、共振回路の各定数は小さく
して共振電流の周波数を高くし高い電流ピーク値が得ら
れるようにしたまま、真空バルブと直列に電流のゼロ点
付近のみ電流が小さくなるにつれてインダクタンスが高
くなる可飽和リアクトルを挿入し、この可飽和リアクト
ルの特性により電流のゼロ点付近の電流変化率を低くす
ることにより、真空バルブは電流がゼロになると耐圧が
回復し高速度で電流を遮断する。このようにして小さい
各定数で共振回路を構成することができるから電流遮断
装置が小型になる。
According to the present invention, a zero point of a current is created in a vacuum valve by flowing a current in a direction opposite to a main circuit current by a resonance circuit including a capacitor, and each constant of the resonance circuit is reduced to reduce the frequency of the resonance current. With a high current peak value, a saturable reactor, whose inductance increases as the current decreases only near the zero point of the current, is inserted in series with the vacuum valve in series with the vacuum valve. By reducing the current change rate near the zero point, when the current becomes zero, the pressure resistance of the vacuum valve recovers, and the current is cut off at a high speed. In this way, the resonance circuit can be configured with small constants, so that the current interrupting device is downsized.

【0020】[0020]

【実施例】本発明の実施例を図を用いて説明する。An embodiment of the present invention will be described with reference to the drawings.

【0021】図1は、本発明の一実施例の構成を示す回
路図である。
FIG. 1 is a circuit diagram showing a configuration of one embodiment of the present invention.

【0022】電気車においては、架線、パンタグラフ、
平常時の回路投入・遮断用の主回路スイッチ(LS)と
事故時に急速に増大する電流を短時間で遮断するため高
速度遮断器(HB)と称する電流遮断装置が制御装置の
電源側に直列に挿入されている。本実施例の電流遮断装
置においては、主回路スイッチ(LS)側に直流電流を
遮断する真空バルブ11と可飽和リアクトル16を直列
に接続した直列体の一方が接続し、この直列体の他方に
主電動機を制御する制御装置が接続している。真空バル
ブ11と可飽和リアクトル16からなる直列体には、転
流スイッチ12と転流リアクトル15または配線の浮遊
インダクタンス分と転流コンデンサ13を直列にした直
列体が並列に接続されている。配線の浮遊インダクタン
ス分は配線を最短で行っても1μH以上存在する。転流
コンデンサ13には図示していない充電用の充電装置が
接続されている。真空バルブ11と並列に、配線の浮遊
インダクタンスに蓄えられているエネルギーを消費する
非線形抵抗14が接続されている。真空バルブ11と非
線形抵抗14とで構成する閉回路の浮遊インダクタンス
は、真空バルブ11、可飽和リアクトル16、転流スイ
ッチ12、転流リアクトル15及び転流コンデンサ13
とで構成する閉回路の浮遊インダクタンスより小さい。
従ってインダクタンスの大きい転流回路側よりインダク
タンスの小さい非線形抵抗14側に電流は流れ易い。
In an electric car, an overhead line, a pantograph,
A main circuit switch (LS) for turning on and off the circuit during normal times and a current cutoff device called a high-speed circuit breaker (HB) are connected in series with the power supply side of the control device to cut off the current that increases rapidly in the event of an accident in a short time. Has been inserted. In the current interrupting device of the present embodiment, one of a series body in which a vacuum valve 11 for shutting off DC current and a saturable reactor 16 are connected in series is connected to the main circuit switch (LS) side, and the other of the series body is connected to the other. A control device for controlling the main motor is connected. A series body including the commutation switch 12 and the commutation reactor 15 or the stray inductance of the wiring and the commutation capacitor 13 is connected in parallel to the series body including the vacuum valve 11 and the saturable reactor 16. The stray inductance of the wiring is 1 μH or more even if the wiring is made as short as possible. A charging device (not shown) for charging is connected to the commutation capacitor 13. A non-linear resistor 14 that consumes energy stored in the floating inductance of the wiring is connected in parallel with the vacuum valve 11. The floating inductance of the closed circuit formed by the vacuum valve 11 and the non-linear resistor 14 includes a vacuum valve 11, a saturable reactor 16, a commutation switch 12, a commutation reactor 15, and a commutation capacitor 13.
And smaller than the stray inductance of the closed circuit composed of
Therefore, current flows more easily to the non-linear resistor 14 having a smaller inductance than the commutation circuit having a larger inductance.

【0023】図2は可飽和リアクトル16の特性を示す
図表で、電流値が小さいときは非常に大きなインダクタ
ンス値を持ち、ある程度以上電流が大きくなると急激に
インダクタンス値が小さくなる。
FIG. 2 is a chart showing the characteristics of the saturable reactor 16. When the current value is small, the saturable reactor 16 has a very large inductance value, and when the current value exceeds a certain level, the inductance value rapidly decreases.

【0024】次に本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0025】図3に電流が遮断されるときの各素子の波
形を示す。基本的には図6と同様であるが、タイミング
t2のとき、すなわち真空バルブの電流ゼロ点の直前に
おいて、電流変化率が著しく小さくなっている。転流コ
ンデンサ13は図示せざる充電装置により図1に示す極
性に充電されている。外部から遮断指令が与えられると
真空バルブ11が開極し、開極後に主回路電流Iは真空
バルブ11内の真空ギャップ中をアークとなって流れ続
ける。その後t1で転流スイッチ12が投入される。す
ると真空バルブ11と転流スイッチ12と転流リアクト
ル15と転流コンデンサ13とにより構成される直列共
振回路に、転流コンデンサ13に蓄えられた電荷により
共振電流が流れる。従来共振周波数は1KHzが上限と
されていたが、それは直列共振回路のインダクタンス分
として転流リアクトルを用いていた為である。本発明で
は転流リアクトルを配線の浮遊インダクタンスに代える
ことによりインダクタンス分が格段に小さくなり、共振
周波数を2KHz以上に高めることが可能となる。この
電流の最大値は、主回路電流Iの最大値の1.2倍以上が
良いとされ、主回路電流Iは負荷となる電気車の主電動
機出力及び電源電圧によって決定される。電気車の主電
動機出力500〜6000Kw及び電源電圧600〜3
000V程度を考慮すると共振電流即ち転流電流の値
は、5000A以上が望ましい。そしてそのような値が
得られるように共振回路の定数を選んでいる。共振電流
は電流の流れる方向が交互に変化する交流であり、主回
路電流Iは電流の流れる方向が一方向の直流であり、両
電流の方向が互いに逆向きとなり、真空バルブ中の電流
がゼロになる瞬間t2が存在する。このゼロ点の直前に
おいて、電流変化率が著しく小さくなっているので真空
バルブ11に流れる電流は遮断され、この瞬間真空バル
ブ11は耐圧を回復しバルブ両端に電圧Viが発生す
る。この電圧はその時点の転流コンデンサ13に蓄えら
れている電圧とほぼ等しくなる。そして、主回路電流I
は転流コンデンサ13を通って流れ続ける。転流コンデ
ンサ13に主回路電流Iが流れ続けることによって、転
流コンデンサ13は反対向きに充電され、転流コンデン
サ13の電圧が逆転し更に上昇する。この電圧Vnがあ
る程度以上高くなると、t3で非線形抵抗14に主回路
電流Iと反対方向の電流が流れ始める。この電圧Vnは
電源電圧Veより高く設定されているので、主回路電流
Iは減衰しやがてt4でゼロになる。このようにして主
回路電流Iは高速度で遮断される。
FIG. 3 shows the waveform of each element when the current is cut off. Basically, it is the same as FIG. 6, but at the timing t2, that is, immediately before the current zero point of the vacuum valve, the current change rate is extremely small. The commutation capacitor 13 is charged to the polarity shown in FIG. 1 by a charging device (not shown). When a shutoff command is given from the outside, the vacuum valve 11 opens, and after the opening, the main circuit current I continues to flow as an arc in the vacuum gap in the vacuum valve 11. Thereafter, at t1, the commutation switch 12 is turned on. Then, a resonance current flows through the series resonance circuit constituted by the vacuum valve 11, the commutation switch 12, the commutation reactor 15, and the commutation capacitor 13, due to the charge stored in the commutation capacitor 13. Conventionally, the upper limit of the resonance frequency was 1 KHz, because a commutation reactor was used as the inductance of the series resonance circuit. In the present invention, by replacing the commutation reactor with the stray inductance of the wiring, the inductance is significantly reduced, and the resonance frequency can be increased to 2 KHz or more. The maximum value of this current is preferably 1.2 times or more the maximum value of the main circuit current I, and the main circuit current I is determined by the output of the main motor and the power supply voltage of the electric vehicle serving as a load. Main motor output of electric vehicle 500-6000Kw and power supply voltage 600-3
Considering about 000 V, the value of the resonance current, that is, the commutation current, is desirably 5000 A or more. Then, the constant of the resonance circuit is selected so as to obtain such a value. The resonance current is an alternating current in which the direction in which the current flows alternately changes, the main circuit current I is a direct current in which the current flows in one direction, the directions of both currents are opposite to each other, and the current in the vacuum valve is zero. Moment t2 exists. Immediately before the zero point, the current flowing through the vacuum valve 11 is cut off because the current change rate is extremely small. At this moment, the vacuum valve 11 recovers its pressure resistance and generates a voltage Vi across the valve. This voltage is substantially equal to the voltage stored in the commutation capacitor 13 at that time. And the main circuit current I
Continue flowing through the commutation condenser 13. As the main circuit current I continues to flow through the commutation capacitor 13, the commutation capacitor 13 is charged in the opposite direction, and the voltage of the commutation capacitor 13 reverses and further rises. When the voltage Vn becomes higher than a certain level, a current in the direction opposite to the main circuit current I starts to flow through the nonlinear resistor 14 at t3. Since this voltage Vn is set higher than the power supply voltage Ve, the main circuit current I attenuates and eventually becomes zero at t4. In this way, the main circuit current I is cut off at a high speed.

【0026】本実施例によれば、共振回路の各定数値を
変えることなく、電流ゼロ点近傍での電流変化率を小さ
く出来、真空バルブの耐圧回復を確実にすることが出来
る。
According to the present embodiment, the current change rate near the current zero point can be reduced without changing the constant values of the resonance circuit, and the withstand pressure of the vacuum valve can be reliably recovered.

【0027】次に、他の実施例を説明する。Next, another embodiment will be described.

【0028】図4は他の実施例の構成を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a configuration of another embodiment.

【0029】上記実施例では真空バルブ11の電流ゼロ
点近傍での電流変化率を抑えるために可飽和リアクトル
16を挿入したが、真空バルブ11の耐圧回復を妨げる
要因として、電流変化率のほか、耐圧を回復する過程に
おける電圧変化率も問題となる。即ち、電圧変化率が大
きいと、耐圧回復の過程で絶縁破壊が発生し、再発弧し
再度電流が流れだす現象が発生する。この現象を防止す
るため、真空バルブ11の極間にコンデンサ17を並列
に接続すれば、コンデンサ17への充電により真空バル
ブ極間の電圧上昇が鈍化し、図3に示した真空バルブ極
間電圧の急俊な変化を緩慢にすることが出来る。このコ
ンデンサ17の容量は真空バルブ11の開極時の容量よ
り大きければ良いが、その限度は電気車に搭載可能な範
囲とする。真空バルブ11とコンデンサ17とで構成す
る閉回路の浮遊インダクタンスは、真空バルブ11、可
飽和リアクトル16、転流スイッチ12、転流リアクト
ル15及び転流コンデンサ13とで構成する閉回路の浮
遊インダクタンスより小さい。従ってインダクタンスの
大きい転流回路側よりインダクタンスの小さいコンデン
サ17側に電流は流れ易い。
In the above embodiment, the saturable reactor 16 is inserted in order to suppress the current change rate near the current zero point of the vacuum valve 11. However, in addition to the current change rate, factors that hinder the recovery of the pressure resistance of the vacuum valve 11 include: The voltage change rate in the process of recovering the breakdown voltage also becomes a problem. That is, if the voltage change rate is large, a dielectric breakdown occurs in the process of recovering the breakdown voltage, and a re-arcing occurs and a current flows again. If a capacitor 17 is connected in parallel between the electrodes of the vacuum valve 11 to prevent this phenomenon, the voltage rise between the electrodes of the vacuum valve slows down due to charging of the capacitor 17, and the voltage between the electrodes of the vacuum valve shown in FIG. You can slow down abrupt changes. The capacity of the capacitor 17 may be larger than the capacity of the vacuum valve 11 when the electrode is opened, but the limit is set in a range that can be mounted on the electric vehicle. The stray inductance of the closed circuit formed by the vacuum valve 11 and the capacitor 17 is larger than the stray inductance of the closed circuit formed by the vacuum valve 11, the saturable reactor 16, the commutation switch 12, the commutation reactor 15, and the commutation capacitor 13. small. Therefore, current flows more easily to the capacitor 17 having a smaller inductance than to the commutation circuit having a larger inductance.

【0030】本実施例によれば、真空バルブ極間にコン
デンサを並列に接続し真空バルブ極間電圧の急俊な変化
を緩慢にして真空バルブの再発弧の可能性を低減するこ
とが出来る。
According to the present embodiment, a capacitor can be connected in parallel between the vacuum valve electrodes to reduce the sudden change in the voltage between the vacuum valve electrodes, thereby reducing the possibility of re-ignition of the vacuum valve.

【0031】以上に述べたように、本実施例の電流遮断
装置は小さい定数値の共振回路で確実に電流を遮断する
から小型化が可能になり、電気車に搭載するに当たり省
スペース化が図れ配置設計の自由度が増す。
As described above, the current interrupting device according to the present embodiment reliably shuts off the current with the resonance circuit having a small constant value, so that it is possible to reduce the size of the current interrupting device. The degree of freedom in layout design increases.

【0032】[0032]

【発明の効果】本発明によれば、小さい定数値の共振回
路で真空バルブに直列に可飽和リアクトルを接続して電
流ゼロ点付近の電流変化率を小さくし、或いは真空バル
ブに並列にコンデンサを接続して電流ゼロ点付近の電圧
変化率を小さくし真空バルブの耐圧回復を確実にするこ
とが出来、電流遮断装置の小型化が可能になる。
According to the present invention, a saturable reactor is connected in series to a vacuum valve in a resonance circuit having a small constant value to reduce the current change rate near the current zero point, or a capacitor is connected in parallel to the vacuum valve. By connecting, the voltage change rate near the current zero point can be reduced to ensure the withstand pressure recovery of the vacuum valve, and the current interrupting device can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例の構成を示す回路図で
ある。
FIG. 1 is a circuit diagram showing a configuration of one embodiment of the present invention.

【図2】図2は可飽和リアクトルの特性を示す図表であ
る。
FIG. 2 is a chart showing characteristics of a saturable reactor.

【図3】図3は本発明の実施例の回路において電流が遮
断されるときの各素子の波形図である。
FIG. 3 is a waveform diagram of each element when current is cut off in the circuit according to the embodiment of the present invention.

【図4】図4は本発明の他の実施例の構成を示す回路図
である。
FIG. 4 is a circuit diagram showing a configuration of another embodiment of the present invention.

【図5】図5は従来の電流遮断回路を備えた電気車の電
源系統図である。
FIG. 5 is a power supply system diagram of an electric vehicle provided with a conventional current cutoff circuit.

【図6】第6図は従来の真空バルブを使用した電流遮断
装置の回路図である。
FIG. 6 is a circuit diagram of a current interrupting device using a conventional vacuum valve.

【図7】図7は従来の回路において電流が遮断されると
きの各素子の波形図である。
FIG. 7 is a waveform diagram of each element when current is cut off in a conventional circuit.

【図8】図8は従来の回路において電流遮断が失敗した
時の各素子の波形図である。
FIG. 8 is a waveform diagram of each element when current interruption has failed in a conventional circuit.

【符号の説明】[Explanation of symbols]

1 架線 2 パンタグラフ 3 主回路スイッチ 4 高速度遮断器 5 制御装置 11 真空バルブ 12 転流スイッチ 13 転流コンデンサ 14 非線形抵抗 15 転流リアクトル 11 真空バルブ 12 転流スイッチ 13 転流コンデンサ 14 非線形抵抗 15 転流リアクトル 16 可飽和リアクトル 17 コンデンサ DESCRIPTION OF SYMBOLS 1 Overhead wire 2 Pantograph 3 Main circuit switch 4 High-speed circuit breaker 5 Controller 11 Vacuum valve 12 Commutation switch 13 Commutation capacitor 14 Nonlinear resistance 15 Commutation reactor 11 Vacuum valve 12 Commutation switch 13 Commutation capacitor 14 Nonlinear resistance 15 Flow reactor 16 Saturable reactor 17 Capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内井 太郎 茨城県勝田市市毛1070番地 株式会社 日立製作所 水戸工場内 (56)参考文献 特開 平3−67429(JP,A) 特開 平4−144019(JP,A) 特開 昭54−149873(JP,A) 実開 昭58−133235(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 H01H 33/59 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Taro Uchii 1070 Ma, Katsuta-shi, Ibaraki Pref. Mito Plant, Hitachi, Ltd. (56) References JP-A-3-67429 (JP, A) JP-A-4 JP-A-54-149873 (JP, A) JP-A-58-133235 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01H 33/66 H01H 33/59

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コンデンサ、開閉手段及びリアクトルま
たは配線の浮遊インダクタンスが直列に接続された第1
の直列体と、該コンデンサを充電する充電手段と、直流
を遮断する真空バルブと、該真空バルブに並列に接続さ
れ前記配線の浮遊インダクタンスに蓄えられているエネ
ルギーを消費する素子と、該素子と前記真空バルブを並
列に接続した並列体に可飽和リアクトルを直列に接続し
た第2の直列体と、該第2の直列体と前記第1の直列体
が並列に接続されたことを特徴とする電流遮断装置。
A first capacitor connected in series with a stray inductance of a capacitor, an opening / closing means and a reactor or a wiring;
And a charging means for charging the capacitor, a vacuum valve for shutting off direct current, an element connected in parallel to the vacuum valve and consuming energy stored in the floating inductance of the wiring, and A second series body in which a saturable reactor is connected in series to a parallel body in which the vacuum valves are connected in parallel, and the second series body and the first series body are connected in parallel. Current interrupt device.
【請求項2】 コンデンサ、開閉手段及びリアクトルま
たは配線の浮遊インダクタンスが直列に接続された第1
の直列体と、該コンデンサを充電する充電手段と、直流
を遮断する真空バルブと、該真空バルブに並列に接続さ
れ前記配線の浮遊インダクタンスに蓄えられているエネ
ルギーを消費する素子と、該素子と前記真空バルブを並
列に接続した並列体に可飽和リアクトルを直列に接続し
た第2の直列体と、該第2の直列体と前記第1の直列体
が並列に接続され、前記真空バルブ、可飽和リアクト
ル、開閉手段及びコンデンサを含む閉回路の共振周波数
を2KHz以上とし、転流電流を5000A以上かつ前
記閉回路に含まれる転流インダクタンスを1μH以上と
したことを特徴とする電流遮断装置。
2. A first circuit comprising a capacitor, an opening / closing means, and a stray inductance of a reactor or a wiring connected in series.
And a charging means for charging the capacitor, a vacuum valve for shutting off direct current, an element connected in parallel to the vacuum valve and consuming energy stored in the floating inductance of the wiring, and A second series body in which a saturable reactor is connected in series to a parallel body in which the vacuum valves are connected in parallel; and a second series body and the first series body in which the second series body and the first series body are connected in parallel. A current interrupting device, wherein a resonance frequency of a closed circuit including a saturation reactor, a switching means, and a capacitor is 2 KHz or more, a commutation current is 5000 A or more, and a commutation inductance included in the closed circuit is 1 μH or more.
【請求項3】 コンデンサ、開閉手段及びリアクトルま
たは配線の浮遊インダクタンスが直列に接続された第1
の直列体と、該コンデンサを充電する充電手段と、直流
を遮断する真空バルブと、該真空バルブに並列に接続さ
れた容量性素子及び前記配線の浮遊インダクタンスに蓄
えられているエネルギーを消費する素子と、該素子及び
容量性素子と前記真空バルブを並列に接続した並列体に
可飽和リアクトルを直列に接続した第2の直列体と、該
第2の直列体と前記第1の直列体が並列に接続されたこ
とを特徴とする電流遮断装置。
3. A first capacitor connected in series with a stray inductance of a capacitor, switching means and a reactor or a wiring.
, A charging means for charging the capacitor, a vacuum valve for blocking direct current, a capacitive element connected in parallel to the vacuum valve, and an element consuming energy stored in the floating inductance of the wiring. A second series body in which a saturable reactor is connected in series to a parallel body in which the element and the capacitive element and the vacuum valve are connected in parallel, and the second series body and the first series body are connected in parallel. A current interruption device, wherein the current interruption device is connected to the current interruption device.
【請求項4】 コンデンサ、開閉手段及びリアクトルま
たは配線の浮遊インダクタンスが直列に接続された第1
の直列体と、該コンデンサを充電する充電手段と、直流
を遮断する真空バルブと、該真空バルブに並列に接続さ
れた容量性素子及び前記配線の浮遊インダクタンスに蓄
えられているエネルギーを消費する素子と、該素子及び
容量性素子と前記真空バルブを並列に接続した並列体に
可飽和リアクトルを直列に接続した第2の直列体と、該
第2の直列体と前記第1の直列体が並列に接続され、前
記真空バルブ、可飽和リアクトル、開閉手段及びコンデ
ンサを含む閉回路のループ長より、前記真空バルブ及び
前記配線の浮遊インダクタンスに蓄えられているエネル
ギーを消費する素子を含む閉回路のループ長を短くした
ことを特徴とする電流遮断装置。
4. A first capacitor connected in series with a stray inductance of a capacitor, switching means and a reactor or wiring.
, A charging means for charging the capacitor, a vacuum valve for blocking direct current, a capacitive element connected in parallel to the vacuum valve, and an element consuming energy stored in the floating inductance of the wiring. A second series body in which a saturable reactor is connected in series to a parallel body in which the element and the capacitive element and the vacuum valve are connected in parallel, and the second series body and the first series body are connected in parallel. And a closed circuit loop including an element that consumes energy stored in the floating inductance of the vacuum valve and the wiring, based on a loop length of the closed circuit including the vacuum valve, the saturable reactor, the switching means, and the capacitor. A current cutoff device having a reduced length.
【請求項5】 コンデンサ、開閉手段及びリアクトルま
たは配線の浮遊インダクタンスが直列に接続された第1
の直列体と、該コンデンサを充電する充電手段と、直流
を遮断する真空バルブと、該真空バルブに並列に接続さ
れた容量性素子及び前記配線の浮遊インダクタンスに蓄
えられているエネルギーを消費する素子と、該素子及び
容量性素子と前記真空バルブを並列に接続した並列体に
可飽和リアクトルを直列に接続した第2の直列体と、該
第2の直列体と前記第1の直列体が並列に接続され、前
記真空バルブ、可飽和リアクトル、開閉手段及びコンデ
ンサを含む閉回路のループ長より、前記真空バルブ及び
前記容量性素子を含む閉回路のループ長を短くしたこと
を特徴とする電流遮断装置。
5. A first device in which a stray inductance of a capacitor, a switching means and a reactor or a wiring is connected in series.
, A charging means for charging the capacitor, a vacuum valve for blocking direct current, a capacitive element connected in parallel to the vacuum valve, and an element consuming energy stored in the floating inductance of the wiring. A second series body in which a saturable reactor is connected in series to a parallel body in which the element and the capacitive element and the vacuum valve are connected in parallel, and the second series body and the first series body are connected in parallel. Wherein the loop length of the closed circuit including the vacuum valve and the capacitive element is shorter than the loop length of the closed circuit including the vacuum valve, the saturable reactor, the switching means, and the capacitor. apparatus.
【請求項6】 コンデンサ、開閉手段が直列に接続され
た第1の直列体と、該コンデンサを充電する充電手段
と、直流を遮断する真空バルブと、該真空バルブに並列
に接続された容量性素子と、該容量性素子と前記真空バ
ルブを並列に接続した並列体に可飽和リアクトルを直列
に接続した第2の直列体と、該第2の直列体と前記第1
の直列体が並列に接続されたことを特徴とする電流遮断
装置。
6. A first series body in which a capacitor and an opening / closing means are connected in series, a charging means for charging the capacitor, a vacuum valve for blocking direct current, and a capacitive element connected in parallel to the vacuum valve. and element, the capacitive and second series body element and the vacuum valve was connected to saturable reactor in parallel body connected in parallel with the series, the series body and the first second
A current interrupting device, wherein a series body of the above is connected in parallel.
【請求項7】 架線から主電動機に供給される直流電流
を遮断する電気車の電流遮断装置において、コンデン
サ、開閉手段及びリアクトルまたは配線の浮遊インダク
タンスが直列に接続された第1の直列体と、該コンデン
サを充電する充電手段と、直流を遮断する真空バルブ
と、該真空バルブに並列に接続され前記配線の浮遊イン
ダクタンスに蓄えられているエネルギーを消費する素子
と、該素子と前記真空バルブを並列に接続した並列体に
可飽和リアクトルを直列に接続した第2の直列体と、該
第2の直列体と前記第1の直列体が並列に接続されたこ
とを特徴とする電気車の電流遮断装置。
7. A current interrupting device for an electric vehicle for interrupting a DC current supplied from an overhead wire to a main motor, wherein a first inductor is connected in series with a capacitor, an opening / closing means, and a floating inductance of a reactor or wiring. And a charging means for charging the capacitor, a vacuum valve for shutting off direct current, an element connected in parallel to the vacuum valve and consuming energy stored in the floating inductance of the wiring, and A second series body in which a saturable reactor is connected in series to a parallel body in which the vacuum valves are connected in parallel, and the second series body and the first series body are connected in parallel. Current interrupter for electric vehicles.
【請求項8】 架線から主電動機に供給される直流電流
を遮断する電気車の電流遮断装置において、コンデン
サ、開閉手段及びリアクトルまたは配線の浮遊インダク
タンスが直列に接続された第1の直列体と、該コンデン
サを充電する充電手段と、直流を遮断する真空バルブ
と、該真空バルブに並列に接続された容量性素子及び前
記配線の浮遊インダクタンスに蓄えられているエネルギ
ーを消費する素子と、該素子及び容量性素子と前記真空
バルブを並列に接続した並列体に可飽和リアクトルを直
列に接続した第2の直列体と、該第2の直列体と前記第
1の直列体が並列に接続され、前記真空バルブ、可飽和
リアクトル、開閉手段及びコンデンサを含む閉回路のル
ープ長より、前記真空バルブ及び前記配線の浮遊インダ
クタンスに蓄えられているエネルギーを消費する素子を
含む閉回路のループ長を短くしたことを特徴とする電気
車の電流遮断装置。
8. A current interrupting device for an electric vehicle for interrupting a DC current supplied from an overhead wire to a main motor, comprising: a first series body in which a capacitor, an opening / closing means, and a stray inductance of a reactor or a wiring are connected in series; Charging means for charging the capacitor, a vacuum valve for shutting off direct current, a capacitive element connected in parallel to the vacuum valve and an element consuming energy stored in the floating inductance of the wiring; and A second series body in which a saturable reactor is connected in series to a parallel body in which the capacitive element and the vacuum valve are connected in parallel, and the second series body and the first series body are connected in parallel, Due to the loop length of the closed circuit including the vacuum valve, the saturable reactor, the opening / closing means and the capacitor, the voltage is stored in the floating inductance of the vacuum valve and the wiring. A current cut-off device for an electric vehicle, wherein a loop length of a closed circuit including an element consuming energy is reduced.
JP01887091A 1991-02-12 1991-02-12 Current interrupter Expired - Fee Related JP3245716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01887091A JP3245716B2 (en) 1991-02-12 1991-02-12 Current interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01887091A JP3245716B2 (en) 1991-02-12 1991-02-12 Current interrupter

Publications (2)

Publication Number Publication Date
JPH04259719A JPH04259719A (en) 1992-09-16
JP3245716B2 true JP3245716B2 (en) 2002-01-15

Family

ID=11983578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01887091A Expired - Fee Related JP3245716B2 (en) 1991-02-12 1991-02-12 Current interrupter

Country Status (1)

Country Link
JP (1) JP3245716B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128806B2 (en) * 2002-06-05 2008-07-30 株式会社東芝 DC breaker
CN106537544B (en) * 2014-06-30 2019-10-01 斯基布瑞克股份公司 The devices, systems, and methods of interruptive current
EP3240004B1 (en) * 2014-12-26 2021-04-07 Tokyo Institute of Technology Circuit breaker
EP3276648B1 (en) * 2015-03-24 2020-01-29 Kabushiki Kaisha Toshiba Direct current interruption device
JP6448431B2 (en) * 2015-03-24 2019-01-09 株式会社東芝 DC breaker
JP6386955B2 (en) * 2015-03-24 2018-09-05 株式会社東芝 DC cutoff device and DC cutoff method

Also Published As

Publication number Publication date
JPH04259719A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US5633540A (en) Surge-resistant relay switching circuit
KR0179365B1 (en) Dc high-speed vacuum circuit breaker and electric motor vehicle equipped with this circuit breaker
US5652688A (en) Hybrid circuit using miller effect for protection of electrical contacts from arcing
US5883774A (en) Current limiter
JP3965037B2 (en) DC vacuum interrupter
JPH11234894A (en) Circuit breaker employing semiconductor device
KR20160080015A (en) DC circuit breaker
JP3245716B2 (en) Current interrupter
JP5031607B2 (en) DC high-speed vacuum circuit breaker
JPH0514690Y2 (en)
JPH06233454A (en) Overvoltage protective circuit for power converter
JPH0589753A (en) Direct current breaker
JP2001143581A (en) Shunt breaker of direct current
JP3168846B2 (en) Commutation type DC circuit breaker
JP2002110006A (en) Direct current breaker
JPH07177648A (en) Dc interrupting system for superconducting unit
JPH0367429A (en) High-speed dc vacuum breaker
KR20180072335A (en) Device and method for interrupting dc current by injection of reverse current using vacuum gap switch
JPH11265644A (en) Switching device
JPH09231877A (en) Direct current circuit breaker
JPS63114501A (en) Protective system of power converter for dc electric rolling stock
JP2002093291A (en) Semiconductor switch and its control method
JPH10309034A (en) Current-limiting breaker
JPH06168820A (en) Power supply for nuclear fusion device
JP2001176363A (en) Direct-current breaker

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees