JP3216451B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP3216451B2
JP3216451B2 JP30739994A JP30739994A JP3216451B2 JP 3216451 B2 JP3216451 B2 JP 3216451B2 JP 30739994 A JP30739994 A JP 30739994A JP 30739994 A JP30739994 A JP 30739994A JP 3216451 B2 JP3216451 B2 JP 3216451B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
positive electrode
battery
electrolyte battery
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30739994A
Other languages
Japanese (ja)
Other versions
JPH08167413A (en
Inventor
達也 橋本
健一 大嶋
秀祐 小黒
邦英 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP30739994A priority Critical patent/JP3216451B2/en
Publication of JPH08167413A publication Critical patent/JPH08167413A/en
Application granted granted Critical
Publication of JP3216451B2 publication Critical patent/JP3216451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液電池の、と
くにその正極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonaqueous electrolyte battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】一般に、非水電解液電池の正極には、二
酸化マンガン、酸化銅、FeS、FeS2などの金属酸
化物や金属硫化物およびフッ化黒鉛等からなる活物質
に、アセチレンブラック、ケッチェンブラックや黒鉛な
どの導電材料とフッ素樹脂などの結着剤を練合した後、
乾燥粉砕した粉体を加圧成型した合剤成型体(以後これ
を正極ペレットと呼ぶ)が用いられている。
2. Description of the Related Art In general, a positive electrode of a non-aqueous electrolyte battery includes acetylene black, acetylene black, a metal oxide such as manganese dioxide, copper oxide, FeS, FeS2, and a metal sulfide and graphite fluoride. After kneading a conductive material such as Ketjen Black or graphite and a binder such as fluororesin,
A mixture molded body (hereinafter, referred to as a positive electrode pellet) obtained by press-molding a powder obtained by drying and pulverization is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フッ素
樹脂などの結着剤は導電性や吸液能力が低いため、正極
自体の内部抵抗を低減できなかったり、正極ペレットへ
の電解液の迅速な含浸を阻害するために大電流が取り出
しにくいという問題があった。また、結着性の弱いアセ
チレンブラック、ケッチェンブラックや黒鉛と二酸化マ
ンガンだけでは正極ペレットの作成が困難である。
However, since the binder such as fluororesin has low conductivity and liquid absorbing ability, the internal resistance of the positive electrode itself cannot be reduced or the positive electrode pellet is rapidly impregnated with the electrolytic solution. Therefore, there is a problem that it is difficult to take out a large current. In addition, it is difficult to produce a positive electrode pellet using only acetylene black, Ketjen black, graphite and manganese dioxide having weak binding properties.

【0004】[0004]

【課題を解決するための手段】このような問題を解決す
るため本発明は、正極活物質を、結着性のある導電材料
である平均粒径20μm以上80μm以下の膨脹化黒鉛
で被覆することで、実質的にフッ素樹脂などの結合剤が
存在しない正極ペレットとして用いることを特徴として
いる。
In order to solve such a problem, the present invention provides a method of coating a positive electrode active material with expanded graphite having an average particle diameter of 20 μm or more and 80 μm or less, which is a conductive material having a binding property. And is characterized in that it is used as a positive electrode pellet substantially free of a binder such as a fluororesin.

【0005】[0005]

【作用】本発明の非水電解液電池では正極活物質を膨脹
化黒鉛で被覆しているので、これらの均一な混合状態を
保持でき、膨脹化黒鉛の結着性によって結着剤を添加す
ることなしに正極ペレットの成型ができる。さらに結着
剤を用いないために正極ペレットの吸液性及び導電性を
改善して電池の性能向上を図ることもできる。
In the non-aqueous electrolyte battery of the present invention, since the positive electrode active material is covered with expanded graphite, a uniform mixed state thereof can be maintained, and a binder is added by the binding property of the expanded graphite. A positive electrode pellet can be formed without any trouble. Furthermore, since no binder is used, the liquid absorbing property and conductivity of the positive electrode pellet can be improved to improve the performance of the battery.

【0006】[0006]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は、本発明のリチウム−二酸化マンガン
系のコイン形非水電解液電池の縦断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a lithium-manganese dioxide-based coin-shaped non-aqueous electrolyte battery of the present invention.

【0007】図中、1はステンレス鋼からなる正極端子
を兼ねた電池ケース、2はステンレス鋼からなる負極端
子を兼ねた封口板でその内壁には負極活物質であるリチ
ウム3が圧着されている。4はポリプロピレンからなる
ガスケット、5は非水電解液を含浸したポリプロピレン
不織布からなるセパレータ、6は本発明の特徴とする正
極ペレット、7はシール剤層であり、正極端子を兼ねた
電池ケース1の開口先端部を内方へかしめ、ガスケット
4を介して封口板2の周縁を締めつけることにより密閉
封口をしている。
In FIG. 1, reference numeral 1 denotes a battery case also serving as a positive electrode terminal made of stainless steel, and 2 denotes a sealing plate also used as a negative electrode terminal made of stainless steel. . 4 is a gasket made of polypropylene, 5 is a separator made of a nonwoven fabric impregnated with a non-aqueous electrolyte, 6 is a positive electrode pellet characteristic of the present invention, 7 is a sealant layer, and a battery case 1 also serving as a positive electrode terminal The hermetic sealing is performed by caulking the opening front end inward and tightening the peripheral edge of the sealing plate 2 via the gasket 4.

【0008】次に本発明の正極合剤について説明する。
まず、膨脹化黒鉛を攪拌しながら蒸留水中に均一分散さ
せる。次に、正極活物質である二酸化マンガンが膨脹化
黒鉛と配合比100:7(重量比)となるようにこの液
中に投入し、攪拌混合させて膨脹化黒鉛で二酸化マンガ
ンを被覆した後150℃で熱風乾燥する。乾燥後塊状の
合剤もあるために250μm以下の大きさに粉砕調整
し、この粉末を2〜4トン/cm2で加圧成型し、再び
250℃で熱風乾燥して正極ペレットを得る。この時の
膨脹化黒鉛は平均粒径が10μm以上100μm以下の
ものを使用した。また比較の電池として導電剤にケッチ
ェンブラック、結着剤にフッ素樹脂をそれぞれ合剤に対
して6%添加した以外は本発明と同じである直径20m
m高さ16mmのコイン型リチウム電池を作成した。コ
イン型リチウム電池の性能を調べるために、環境温度2
0℃で負荷1kΩによる高負荷連続放電特性試験と、環
境温度20℃で負荷400Ω15秒間のパルス放電時の
電池電圧を測定した。高負荷連続放電特性試験の結果を
図2に、負荷400Ω15秒間放電時の電池電圧測定結
果を図3にそれぞれ示す。これらの図において実施例の
電池をA、比較例による電池をBとする。試験結果より
次のことが明らかとなった。
Next, the positive electrode mixture of the present invention will be described.
First, the expanded graphite is uniformly dispersed in distilled water while stirring. Next, manganese dioxide, which is a positive electrode active material, was added to the expanded graphite so as to have a compounding ratio of 100: 7 (weight ratio), and the mixture was stirred and mixed to coat the manganese dioxide with the expanded graphite. Dry with hot air at ℃. After drying, there is also a bulk mixture, which is pulverized and adjusted to a size of 250 μm or less, and this powder is molded under pressure at 2 to 4 ton / cm 2 and dried again at 250 ° C. with hot air to obtain positive electrode pellets. The expanded graphite used had an average particle size of 10 μm or more and 100 μm or less. The comparative battery was the same as the present invention except that Ketjen black was added as a conductive agent and fluorocarbon resin as a binder was added at 6% to the mixture.
A coin-type lithium battery having a height of 16 mm was prepared. To check the performance of the coin-type lithium battery, the ambient temperature 2
A high-load continuous discharge characteristic test at 0 ° C. and a load of 1 kΩ and a battery voltage at the time of pulse discharge at 400 ° C. for 15 seconds at an environmental temperature of 20 ° C. were measured. FIG. 2 shows the results of the high-load continuous discharge characteristic test, and FIG. 3 shows the results of measuring the battery voltage when the load was discharged at 400Ω for 15 seconds. In these figures, the battery of the example is A, and the battery of the comparative example is B. The following results became clear from the test results.

【0009】図2より高負荷放電時での電池電圧は比較
例の電池と比べて本発明の電池は高くなっており、また
放電容量も向上している。図3より閉路電圧特性におい
ても比較例の電池に比べて本発明の電池は電圧降下が小
さくなっている。
From FIG. 2, the battery voltage of the present invention is higher at the time of high load discharge than the battery of the comparative example, and the discharge capacity is also improved. FIG. 3 also shows that the battery of the present invention has a smaller voltage drop in the closed-circuit voltage characteristics than the battery of the comparative example.

【0010】これは、本発明の電池では合剤中に発電及
び導電に関与しない結着剤が存在していないために、合
剤内部での電気化学反応が比較例の電池と比較して進行
しやすいものと推定できる。
[0010] This is because the battery of the present invention does not contain a binder that is not involved in power generation and conductivity in the mixture, so that the electrochemical reaction inside the mixture proceeds as compared with the battery of the comparative example. It can be estimated that it is easy to do.

【0011】次に本発明の正極合剤の成形性を調べるた
めに、二酸化マンガンを被覆する膨脹化黒鉛の粒径を変
化させたときの合剤の成形不良率を(表1)に示した。
Next, in order to examine the moldability of the positive electrode mixture of the present invention, the molding failure rate of the mixture when the particle size of the expanded graphite coated with manganese dioxide was changed is shown in Table 1. .

【0012】[0012]

【表1】 [Table 1]

【0013】(表1)より明らかなように、平均粒径が
20μm未満及び80μmよりも大きな膨脹化黒鉛を二
酸化マンガンに被覆した時の成形性が著しく低下するこ
とがわかった。平均粒径が20μm未満の時は二酸化マ
ンガン表面に十分に被膜が形成できないために成型不良
が発生し、また平均粒径が80μmより大きな場合は膨
脹化黒鉛の凝集による偏析や二酸化マンガン表面への膨
脹化黒鉛の過剰な被覆が生じて均一な被膜が形成されな
いために成型不良が発生するものと考えられる。
As is clear from Table 1, it was found that the moldability when the expanded graphite having an average particle size of less than 20 μm and larger than 80 μm was coated on manganese dioxide was remarkably reduced. When the average particle size is less than 20 μm, a film cannot be formed sufficiently on the manganese dioxide surface, and molding failure occurs. When the average particle size is more than 80 μm, segregation due to agglomeration of expanded graphite and manganese dioxide surface. It is considered that excessive coating of the expanded graphite occurs and a uniform coating is not formed, resulting in poor molding.

【0014】つまり二酸化マンガンを被覆する膨脹化黒
鉛の平均粒径は20μm以上80μm以下が好ましく、
特に膨脹化黒鉛の平均粒径が30μm以上60μm以下
のときにはより安定した正極ペレットが得られた。
In other words, the average particle size of the expanded graphite covering the manganese dioxide is preferably 20 μm or more and 80 μm or less.
In particular, when the average particle size of the expanded graphite was 30 μm or more and 60 μm or less, more stable positive electrode pellets were obtained.

【0015】次に平均粒径40μmの膨脹化黒鉛を使用
して粒径10μm以下及び100μm以上の割合を変化
させたときの合剤の成形不良率を(表2)に示した。
Next, Table 2 shows the molding failure rate of the mixture when the ratio of the particle size of 10 μm or less and 100 μm or more was changed using expanded graphite having an average particle size of 40 μm.

【0016】[0016]

【表2】 [Table 2]

【0017】(表2)より明らかなように、粒径が10
μm以下および100μm以上の粒子が合計で10%以
上存在する膨脹化黒鉛で二酸化マンガンを被覆した時に
は成形性が著しく低下することがわかった。粒径が10
μm以下の粒子が10%以上存在すると、二酸化マンガ
ン表面への十分な被膜が形成されずに成形不良が生じ、
粒径が100μm以上の粒子が10%以上存在すると膨
脹化黒鉛の凝集や二酸化マンガン表面への過剰な被覆に
より成型不良が生じているものと考えられる。この点は
平均粒径が異なるものについても同様の結果が得られ
た。
As is clear from Table 2, the particle size is 10
It was found that when the manganese dioxide was coated with expanded graphite in which particles having a particle size of 100 μm or less and a particle size of 100 μm or more were present in total, the moldability was significantly reduced. Particle size 10
When particles having a particle size of μm or less exist in an amount of 10% or more, a sufficient film is not formed on the surface of manganese dioxide, and molding defects occur,
If 10% or more of the particles having a particle diameter of 100 μm or more are present, it is considered that molding defects are caused by aggregation of the expanded graphite and excessive coating on the manganese dioxide surface. In this regard, similar results were obtained for those having different average particle sizes.

【0018】[0018]

【発明の効果】以上のように、本発明の非水電解液電池
は、正極活物質を膨脹化黒鉛で被覆することによりフッ
素樹脂などの結着剤を用いないで正極ペレットを成型す
ることができる。
As described above, in the non-aqueous electrolyte battery of the present invention, the positive electrode pellet can be molded without using a binder such as fluororesin by coating the positive electrode active material with expanded graphite. it can.

【0019】この結果、正極ペレットの吸液性及び導電
性を向上させることができ、放電特性に優れた非水電解
液電池を提供できる。
As a result, it is possible to improve the liquid absorption and conductivity of the positive electrode pellet, and to provide a non-aqueous electrolyte battery having excellent discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のコイン型非水電解液電池の縦断面図FIG. 1 is a longitudinal sectional view of a coin-type nonaqueous electrolyte battery of the present invention.

【図2】本発明の電池と比較例の電池の高負荷連続放電
特性試験の結果を示したグラフ
FIG. 2 is a graph showing the results of a high-load continuous discharge characteristic test of a battery of the present invention and a battery of a comparative example.

【図3】本発明の電池と比較例の電池の閉路電圧特性試
験結果を示したグラフ
FIG. 3 is a graph showing test results of closed-circuit voltage characteristics of the battery of the present invention and a battery of a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 リチウム 4 ガスケット 5 セパレータ 6 正極ペレット 7 シール剤層 DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Lithium 4 Gasket 5 Separator 6 Positive electrode pellet 7 Sealant layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 邦英 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭59−112568(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/06 H01M 4/50 - 4/62 H01M 6/16 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihide Miura 1006 Kazuma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-59-112568 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/02-4/06 H01M 4/50-4/62 H01M 6/16 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極活物質負極活物質非水電解液
基本構成とする非水電解液電池であって、前記正極活物
質は結着性を有する導電材料で被覆されており、前記導
電材料に膨脹化黒鉛を用いることを特徴とする非水電解
液電池。
1. A cathode active material, anode active material, a nonaqueous electrolyte
A non-aqueous electrolyte cell according to the basic configuration, the positive electrode active material is coated with a conductive material having a binding property, said electrically
A non-aqueous electrolyte battery characterized by using expanded graphite as an electric material .
【請求項2】 膨脹化黒鉛の平均粒径が20μm以上8
0μm以下である請求項1記載の非水電解液電池。
2. The expanded graphite has an average particle size of not less than 20 μm and not more than 8 μm.
Non-aqueous electrolyte battery according to claim 1, wherein 0μm is below.
【請求項3】脹化黒鉛は、粒径10μm以下のもの
が総量の10%以下であり、かつ90μm以上のものが
総量の10%以下である請求項2記載の非水電解液電
池。
3. Rise脹化graphite, those having a particle diameter of 10μm or less is 10% or less of the total amount, and the non-aqueous electrolyte battery according to claim 2, wherein 90μm or more of is 10% or less of the total amount.
【請求項4】 正極活物質は二酸化マンガンである請求
項1記載の非水電解液電池。
4. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode active material is manganese dioxide.
JP30739994A 1994-12-12 1994-12-12 Non-aqueous electrolyte battery Expired - Lifetime JP3216451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30739994A JP3216451B2 (en) 1994-12-12 1994-12-12 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30739994A JP3216451B2 (en) 1994-12-12 1994-12-12 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH08167413A JPH08167413A (en) 1996-06-25
JP3216451B2 true JP3216451B2 (en) 2001-10-09

Family

ID=17968588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30739994A Expired - Lifetime JP3216451B2 (en) 1994-12-12 1994-12-12 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3216451B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828064B1 (en) * 1998-01-07 2004-12-07 Eveready Battery Company, Inc. Alkaline cell having a cathode incorporating enhanced graphite
CN1194433C (en) * 1998-07-06 2005-03-23 Tdk株式会社 Electrode for nanoqueous electrolyte battery
JP5191253B2 (en) * 2008-03-13 2013-05-08 Fdkエナジー株式会社 Positive electrode mixture for alkaline battery and alkaline battery
JP5300331B2 (en) * 2008-06-02 2013-09-25 Fdkエナジー株式会社 Positive electrode mixture molded body for lithium battery and lithium battery
CN101908625B (en) * 2009-06-03 2014-02-05 法拉赛斯能源公司 Composite for li-ion cells and preparation process thereof
US8652687B2 (en) * 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
CN102738443A (en) * 2011-04-07 2012-10-17 刘天龙 Preparation technology for positive material of lithium ion secondary battery
JP7223973B2 (en) * 2018-05-08 2023-02-17 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPH08167413A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP3450894B2 (en) Alkaline manganese battery
US4197366A (en) Non-aqueous electrolyte cells
JP5354893B2 (en) Lithium battery
JPH11283629A (en) Organic electrolyte battery
JPH10144298A (en) Lithium secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
JP3216451B2 (en) Non-aqueous electrolyte battery
JP2002367610A (en) Nonaqueous secondary cell
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JPH09213309A (en) Manufacture of positive electrode for lithium secondary cell and lithium secondary cell
JP6246682B2 (en) Lithium ion secondary battery
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JPH09306502A (en) Electrode mix for nonaqueous battery, and nonaqueous battery
JPH11265719A (en) Lithium secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JP3409956B2 (en) Method for producing electrode for lithium ion battery and lithium ion battery using the electrode
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JPH1167277A (en) Lithium secondary battery
JP2004296305A (en) Lithium ion secondary battery
JPH09180736A (en) Alkaline manganese battery
JPH11339810A (en) Nonaqueous electrolyte secondary battery
JP2000048827A (en) Alkaline battery
Zhou et al. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas
JPH10233216A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

EXPY Cancellation because of completion of term