JP3193471B2 - Integrated composite electrode - Google Patents

Integrated composite electrode

Info

Publication number
JP3193471B2
JP3193471B2 JP23699892A JP23699892A JP3193471B2 JP 3193471 B2 JP3193471 B2 JP 3193471B2 JP 23699892 A JP23699892 A JP 23699892A JP 23699892 A JP23699892 A JP 23699892A JP 3193471 B2 JP3193471 B2 JP 3193471B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
integrated composite
composite electrode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23699892A
Other languages
Japanese (ja)
Other versions
JPH0678889A (en
Inventor
宏和 杉原
誠 竹谷
忠泰 光亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP23699892A priority Critical patent/JP3193471B2/en
Priority to EP19930114091 priority patent/EP0585933B1/en
Priority to DE1993633945 priority patent/DE69333945T2/en
Publication of JPH0678889A publication Critical patent/JPH0678889A/en
Application granted granted Critical
Publication of JP3193471B2 publication Critical patent/JP3193471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体活動の電気的計
測、特に神経細胞の電気的活動を計測する神経電気生理
の分野で用いる、多電極を有する一体化複合電極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated composite electrode having multiple electrodes, which is used in the field of electrical measurement of biological activity, particularly in the field of neuroelectrophysiology for measuring electrical activity of nerve cells.

【0002】[0002]

【従来の技術】近年、神経細胞の医学的検討や電気素子
としての適用の可能性の検討などが活発に行われてきて
いる。神経細胞が活動する際には、活動電位が発生す
る。活動電位は、神経細胞のイオン透過性の変化に伴
い、細胞膜内外のイオン濃度が変わることによって生じ
るものである。そして電極により、神経細胞近傍のイオ
ン濃度変化(すなわちイオン電流)に伴う電位変化を測
定することによって、神経活動の検出、検討が行われて
いる。
2. Description of the Related Art In recent years, medical examination of nerve cells and possibility of application as an electric element have been actively conducted. When a nerve cell is activated, an action potential is generated. The action potential is caused by a change in ion concentration inside and outside the cell membrane due to a change in ion permeability of a nerve cell. Detecting and examining nerve activity is performed by measuring potential changes associated with ion concentration changes (that is, ionic currents) near nerve cells using electrodes.

【0003】従来、神経細胞の電気的活動を計測するに
は、ガラス電極等からなる記録電極と、金属電極等から
なる刺激電極とを各々細胞内または細胞間に挿入し、刺
激電極より刺激電流(または電圧)を印加した際の、神
経細胞の電気的活動を記録電極により計測するのが普通
であった。
Conventionally, in order to measure the electrical activity of a nerve cell, a recording electrode composed of a glass electrode or the like and a stimulation electrode composed of a metal electrode or the like are inserted into cells or between cells, respectively, and the stimulation current is supplied from the stimulation electrode. It was common to measure the electrical activity of the nerve cells when a voltage (or voltage) was applied using a recording electrode.

【0004】これ以外にも、例えば細胞体を細管状のガ
ラス吸引電極で突き刺し、細胞帯の内部をガラス吸引電
極中の液で還流し、このガラス吸引電極から電気信号を
与えて細胞を観察するいわゆる細胞内還流法等多数の変
法がある。
In addition to this, for example, a cell body is pierced with a thin glass suction electrode, the inside of the cell band is refluxed with the liquid in the glass suction electrode, and an electric signal is applied from the glass suction electrode to observe the cells. There are many variations, such as the so-called intracellular perfusion method.

【0005】さらには、絶縁性の基盤上にITO(酸化
インジウム錫)等の導電性物質で直径(または1辺)1
5〜20μmの電極を形成し、この上で神経細胞を培養
することにより、細胞に電極を刺入する事なく、細胞に
電気的刺激を印加し、また神経細胞の電気的活動を記録
する方法についても本発明者等が別途提案している。
Further, a conductive material such as ITO (indium tin oxide) is formed on an insulating substrate with a diameter (or one side) of 1 mm.
A method of forming an electrode of 5 to 20 μm and culturing nerve cells thereon, thereby applying an electrical stimulus to the cell without inserting the electrode into the cell and recording the electrical activity of the nerve cell Have been separately proposed by the present inventors.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の技術お
よびその変法においては、ガラス電極など、細胞に比べ
てかなりの大きさにならざるを得ない電極を用いるの
で、主に空間的な制約と操作精度上の制約で、1つのサ
ンプル中に一度に2本以上の記録電極を挿入し、神経細
胞の電気的活動を記録する多点同時計測は非常に困難で
あるという課題があった。
In the above-mentioned prior art and its modifications, electrodes which must be considerably larger than cells, such as glass electrodes, are used. In addition, due to restrictions on operation accuracy, there is a problem that it is very difficult to perform multi-point simultaneous measurement for recording electrical activity of nerve cells by inserting two or more recording electrodes at a time in one sample.

【0007】神経回路網全体の働きを検討するために
は、多くの神経細胞の活動を同時に記録する必要もあ
り、測定点が増えるに従って、困難さの度合が増加し、
多細胞間の観察ができ難いという課題があった。
In order to study the operation of the entire neural network, it is necessary to simultaneously record the activities of many nerve cells, and as the number of measurement points increases, the degree of difficulty increases.
There is a problem that observation between multiple cells is difficult.

【0008】さらには、ガラス・金属等の電極を細胞内
に刺入する必要があるために、細胞に与える損傷が大き
く、数時間以上の長時間にわたる測定ができ難いという
問題点があった。
Furthermore, since it is necessary to insert an electrode such as glass or metal into a cell, there is a problem that the cell is seriously damaged and it is difficult to perform measurement for a long time of several hours or more.

【0009】一方、絶縁性の基盤上にITO等の導電性
物質で直径(または1辺)15〜20μmの円形(また
は正方形)の電極を形成したものを用いれば、多細胞間
に渡る信号伝達の観察が可能となる。しかしながら、電
極面積が177μm2 〜400μm2 と小さいため、培
養液界面での電極抵抗は数MΩとなり、通常刺激は定電
流で与えられるので、電気抵抗が大きいと電極間には極
めて大きな電位差が発生することになり、かかる大きな
電圧で長期に渡り電気刺激を与えるとITOの破壊がお
き、このため長期に渡る観察が困難であるという問題点
があった。
On the other hand, when a circular (or square) electrode having a diameter (or one side) of 15 to 20 μm is formed of an electrically conductive substance such as ITO on an insulating substrate, signal transmission between multiple cells is performed. Observation becomes possible. However, since the electrode area is small and 177μm 2 ~400μm 2, the electrode resistance is the number MΩ next culture liquid interface, usually stimulating because given by a constant current, between the electrical resistance is large electrode extremely large potential difference is generated Therefore, when electrical stimulation is applied for a long period of time at such a large voltage, ITO is destroyed, and there is a problem that observation over a long period of time is difficult.

【0010】本発明は、かかる従来の問題点を解決し、
神経細胞などの多点同時刺激・計測を簡便に行い、多細
胞間に渡る信号伝達観察を数時間以上の長期に渡り可能
ならしめる一体化複合電極を提供することを目的とす
る。
The present invention solves such a conventional problem,
An object of the present invention is to provide an integrated composite electrode capable of easily performing simultaneous multipoint stimulation / measurement of nerve cells or the like and observing signal transmission between multiple cells for a long period of several hours or more.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明の一体化複合電極は、絶縁基盤上に、最近接
の電極間距離が相等しい複数個の電極を備え、前記電極
からリード線を略放射状に配設した配線部と、前記リー
ド線をカバーする絶縁層とを設け、かつ電極が、正方
あって、その1辺の長さが20μmを超え、且つ20
0μm以下である構成を有する。また、本発明の一体化
複合電極において、電極が円形である場合は、その直径
が100μm以上200μm以下の範囲にあることが好
ましい。
In order to solve the above-mentioned problems, an integrated composite electrode according to the present invention comprises a plurality of electrodes having the same distance between the nearest electrodes on an insulating substrate, and leads from the electrodes. a wiring portion which is disposed a line substantially radial, provided and an insulating layer covering the lead wires and electrodes, a square shape
A is greater than the length Saga 20μm its one side, and 20
It has a configuration of 0 μm or less. Also, the integration of the present invention
For composite electrodes, if the electrode is circular, its diameter
Is preferably in the range of 100 μm or more and 200 μm or less.
Good.

【0012】更に、前記本発明の一体化複合電極におい
ては、最近接の電極間距離が、10〜1000μmであ
ることが好ましい。また、前記本発明の一体化複合電極
においては、リード線をカバーする絶縁層が、各電極上
に孔を有し、かつリード線の外部回路との接点部近傍を
除いて前記絶縁基盤のほぼ全面に設けられた絶縁層であ
ることが好ましい。
Further, in the integrated composite electrode of the present invention, it is preferable that the distance between the nearest electrodes is 10 to 1000 μm. Further, in the integrated composite electrode of the present invention, the insulating layer covering the lead wire has a hole on each electrode, and the insulating base is substantially formed except for the vicinity of the contact portion between the lead wire and the external circuit. The insulating layer is preferably provided on the entire surface.

【0013】更にまた、前記本発明の一体化複合電極に
おいては、複数個の電極中心部が、8×8の格子上の各
交点に位置することが好ましい。
Further, in the integrated composite electrode of the present invention, it is preferable that a plurality of electrode central portions are located at respective intersections on an 8 × 8 grid.

【0014】[0014]

【作用】本発明の一体化複合電極は、絶縁基盤上に、最
近接の電極間距離が相等しい複数個の電極を備え、前記
電極からリード線を略放射状に配設した配線部と、前記
リード線をカバーする絶縁層とを設けているので、本発
明の一体化複合電極上に培養した神経細胞に信号を与
え、同時に細胞間の信号の伝達を計測する際に、最近接
の電極間距離を測定対象の神経細胞(すなわち細胞体と
樹状突起と軸索突起)の長さとほぼ等しく調整し、しか
もこの電極間を等間隔で並ばせることにより、一細胞体
が電極上に配置し、この細胞体から伸びた細胞突起を介
した細胞体が、隣合う電極上に位置する確率が高くな
る。したがって、隣合う細胞体間の信号の伝達を検知で
きる。
The integrated composite electrode according to the present invention comprises a plurality of electrodes having the same distance between the nearest electrodes on an insulating substrate, and a wiring portion in which lead wires are arranged substantially radially from the electrodes. lead covers the insulating layer and the set Ketei Runode, gives a signal to the neural cells cultured on the integrated multiple electrode of the present invention, when measuring the transmission of signals between cells at the same time, closest electrode The inter-cell distance is adjusted to be approximately equal to the length of the nerve cell to be measured (that is, the cell body, dendrites, and axons), and by arranging these electrodes at equal intervals, one cell body is placed on the electrodes. However, the probability that the cell body extending from the cell body via the cell process is located on an adjacent electrode is increased. Therefore, transmission of a signal between adjacent cell bodies can be detected.

【0015】しかも、電極から伸ばしたリード線を略放
射状に配置したので、例えばリード線を平行に配置した
場合に比べて、リード線間の容量成分(キャパシタン
ス)が少なくなり、電気信号であるパルス信号波形の崩
れを小さくでき、回路の時定数が小さくなるため、早い
パルス信号に対する応答性が向上し、神経細胞活動の速
い成分に対する追従性が向上する。
Further, since the lead wires extending from the electrodes are arranged substantially radially, a capacitance component (capacitance) between the lead wires is reduced as compared with, for example, a case where the lead wires are arranged in parallel, and a pulse as an electric signal is provided. Since the collapse of the signal waveform can be reduced and the time constant of the circuit is reduced, the responsiveness to a fast pulse signal is improved, and the responsiveness to a fast component of nerve cell activity is improved.

【0016】さらに、電極が正方形であり、その1辺
20μmより大きく200μm以下の範囲で調整するこ
とにより(電極が円形の場合は、100〜200μmの
範囲)、数時間以上の長期間にわたり細胞に電気刺激を
与え、かつ細胞の電気的活動を測定することができる
ともに、良好なS/N比が得られる。
Further, by adjusting the electrode in a square shape, one side of which is larger than 20 μm and 200 μm or less (when the electrode is circular, 100 to 200 μm ).
Range), provide electrical stimulation to the cells over a long period of several hours or more, and when it is possible to measure the electrical activity of cells
In both cases, a good S / N ratio is obtained.

【0017】また、前記本発明の一体化複合電極におい
て、最近接の電極間距離が、10〜1000μmである
好ましい態様とすることにより、一般的に神経細胞の長
さがこの範囲内であるので、細胞体が電極上に位置し、
且つ神経突起を介して結合する可能性が高く、神経細胞
の測定に好都合な電極間距離となる。
In the integrated composite electrode according to the present invention, the distance between the nearest electrodes is preferably 10 to 1000 μm, so that the length of a nerve cell is generally within this range. , The cell body is located on the electrode,
In addition, there is a high possibility of coupling via neurites, and the distance between electrodes is favorable for measurement of nerve cells.

【0018】また、前記本発明の一体化複合電極におい
て、リード線をカバーする絶縁層が、各電極上に孔を有
し、かつリード線の外部回路との接点部近傍を除いて前
記絶縁基盤のほぼ全面に設けられた絶縁層である好まし
い態様とすることにより、絶縁層をリード線上のみに選
択的に設ける場合に比べ、感光性樹脂からなる絶縁材料
を使用して、ほぼ全面にこの樹脂を塗布し、フォトエッ
チング手法により、各電極上の絶縁層を除去して電極が
露出するように孔を開けるなどのフォトエッチングで容
易に必要な絶縁層が形成でき、生産を容易にすることが
できるし、絶縁不良の確率を小さくできるので好まし
い。
In the integrated composite electrode according to the present invention, the insulating layer covering the lead has a hole on each electrode, and the insulating base except for the vicinity of a contact portion between the lead and an external circuit. By using a preferred embodiment in which the insulating layer is provided on almost the entire surface of the resin, compared with the case where the insulating layer is selectively provided only on the lead wire, the insulating material made of a photosensitive resin is used, and the resin is formed on almost the entire surface. Then, the required insulating layer can be easily formed by photo etching, such as removing the insulating layer on each electrode by photo-etching and opening a hole to expose the electrode, thereby facilitating production. This is preferable because the probability of insulation failure can be reduced.

【0019】更にまた、前記本発明の一体化複合電極に
おいては、複数個の電極中心部が、8×8の格子上の各
交点に位置することにより、前記本発明の電極からリー
ド線を略放射状に配設できる最高の電極数とすることが
できるので好ましい。
Further, in the integrated composite electrode of the present invention, the plurality of electrode central portions are located at the respective intersections on the 8.times.8 grid, so that the lead wires are substantially separated from the electrode of the present invention. This is preferable because the maximum number of electrodes that can be radially arranged can be obtained.

【0020】[0020]

【実施例】本発明に供される絶縁基盤材料としては、細
胞培養後顕微鏡観察する必要があるため透明な基盤が好
ましく、石英ガラス、鉛ガラス、ホウ珪酸ガラス等のガ
ラス、若しくは石英等の無機物質、または、ポリメタク
リル酸メチルまたはその共重合体、ポリスチレン、ポリ
塩化ビニル、ポリエステル、ポリプロピレン、尿素樹
脂、メラミン樹脂などの透明性を有する有機物質等が挙
げられるが、機械的強度と透明性とを加味すると無機物
質が好ましい。
EXAMPLES As the insulating substrate material used in the present invention, a transparent substrate is preferable because it is necessary to observe the cells after culturing the cells, and a glass such as quartz glass, lead glass, borosilicate glass, or an inorganic material such as quartz is preferable. Substances, or polymethyl methacrylate or a copolymer thereof, polystyrene, polyvinyl chloride, polyester, polypropylene, urea resin, organic materials having transparency such as melamine resin, and the like, but mechanical strength and transparency In view of the above, an inorganic substance is preferred.

【0021】本発明に供される電極材料としては、例え
ば酸化インジウム錫(ITO)、酸化錫、Cr、Au、
Cu、Ni、Al等が使用可能である。特に、ITO若
しくは酸化錫を用いると、電極はわずかに黄色を帯びた
透明なものとなり、神経細胞の顕微鏡下での視認性が良
く、実験操作上有利であるが、とりわけITOが良導伝
性であるため望ましい。
As the electrode material used in the present invention, for example, indium tin oxide (ITO), tin oxide, Cr, Au,
Cu, Ni, Al, etc. can be used. In particular, when ITO or tin oxide is used, the electrode becomes slightly yellowish and transparent, and the visibility of nerve cells under a microscope is good, which is advantageous in experimental operation. In particular, ITO has good conductivity. Is desirable.

【0022】リード線材料にも同様の材料が適応でき、
やはり電極材料と同様の理由でITOが好ましい。特に
限定するものではないが、通常これらの電極やリード線
の厚みは、およそ500〜5000オングストローム程
度であり、通常これらの材料を絶縁基盤上に蒸着し、フ
ォトレジストを用いてエッチングにより所望のパターン
に形成できる。
A similar material can be applied to the lead wire material.
Again, ITO is preferred for the same reasons as the electrode material. Although not particularly limited, the thickness of these electrodes and lead wires is usually about 500 to 5000 Å, and these materials are usually deposited on an insulating substrate, and a desired pattern is formed by etching using a photoresist. Can be formed.

【0023】また、本発明に供されるリード線を絶縁す
るための絶縁層材料としては、例えばポリイミド(P
I)樹脂、エポキシ樹脂、アクリレート樹脂、ポリエス
テル樹脂、或はポリアミド樹脂等の透明な樹脂が挙げら
れる。
As an insulating layer material for insulating the lead wire provided in the present invention, for example, polyimide (P
I) Transparent resins such as resin, epoxy resin, acrylate resin, polyester resin and polyamide resin.

【0024】これらの樹脂は、リード線上に通常の手法
によって塗布して絶縁層が構成される。なお、絶縁層材
料が光照射重合性等の感光性樹脂であると、前述したよ
うに電極を露出させるために電極上の絶縁層部分に孔を
開けるなどのパターン形成が可能となるため好ましい。
These resins are applied on the lead wires by an ordinary method to form an insulating layer. Note that it is preferable that the insulating layer material is a photosensitive resin such as light irradiation polymerizable, because a pattern can be formed by opening a hole in the insulating layer portion on the electrode to expose the electrode as described above.

【0025】特に、絶縁層材料がPIであり、培養する
細胞が神経細胞である場合には、良好な生育を示すため
望ましい。さらにPIの中でも、ネガティブフォトセン
シティブポリイミド(NPI)が、配線部のパターン形
成と同様に、略全面にネガティブフォトセンシティブポ
リイミドを塗布した後フォトエッチングプロセスを用い
て電極上に孔を形成できるため好ましい。
In particular, when the insulating layer material is PI and the cells to be cultured are nerve cells, it is desirable because they show good growth. Further, among PIs, negative photo-sensitive polyimide (NPI) is preferable because, similarly to the pattern formation of the wiring portion, a hole can be formed on the electrode by using a photo-etching process after applying the negative photo-sensitive polyimide over substantially the entire surface.

【0026】また、絶縁層の厚みは絶縁性が付与できる
程度であればよく、特に限定するものではないが、通常
0.1〜10μmが好ましく、1〜5μm程度がさらに
好ましい。
The thickness of the insulating layer is not particularly limited as long as the insulating property can be imparted, but is preferably 0.1 to 10 μm, more preferably about 1 to 5 μm.

【0027】本発明の一体化複合電極は、直接細胞を培
養して細胞の電気活動を計測記録する。培養条件若しく
は細胞の種類によって、細胞体の大きさ若しくは樹状突
起や軸索などの細胞突起の長さが異なるが、一体化複合
電極の最近接の電極間距離は、10〜1000μmが好
ましい。電極間距離が10μm未満であると、互いに近
接し過ぎるため細胞体が細胞突起を介して相隣合う確立
が減り、またリード線の配線も困難となる。また、10
00μmを越えると、リード線の配線はしやすいが、細
胞突起が1000μm程度も伸びることは稀なため、細
胞体が電極上に位置する確立が減る。一般の条件で培養
した細胞の長さは、哺乳動物の中枢神経細胞の場合、平
均200〜300μm程度であるため、電極間距離は2
00〜300μm程度が望ましい。
The integrated composite electrode of the present invention directly cultures cells and measures and records the electrical activity of the cells. The size of the cell body or the length of cell projections such as dendrites and axons vary depending on the culture conditions or cell types, but the closest inter-electrode distance of the integrated composite electrode is preferably 10 to 1000 μm. When the distance between the electrodes is less than 10 μm, the cell bodies are too close to each other, so that the probability that the cell bodies are adjacent to each other via cell projections is reduced, and the wiring of the lead wires becomes difficult. Also, 10
When the thickness exceeds 00 μm, wiring of lead wires is easy, but since cell projections rarely extend to about 1000 μm, the probability that cell bodies are located on the electrodes is reduced. The length of cells cultured under general conditions is about 200 to 300 μm on average in the case of mammalian central nervous cells.
It is desirably about 100 to 300 μm.

【0028】電極の形状は、最近接の電極間距離を一定
にする要請のため、円形か正方形が好ましい。電極面積
については、長期にわたり細胞に電気刺激を印加する際
の電極破壊を避けるため、培養液との界面での抵抗を小
さくする必要があるため、ある程度以上の大きさが要求
される。しかしながら、電極面積が大きくなり培養液と
の界面での抵抗が小さくなると、測定される細胞の電気
的活動は小さくなり、S/N比が低下する。すなわち、
電流Iが一定とすると、I=V/Rであるから、抵抗値
Rが小さくなると測定される電位Vの変化も小さくな
る。つまり測定される細胞の電気的活動が小さくなりS
/N比が低下する。このため、電極面積は慎重に調整さ
れる必要があり、円形状の電極の場合、直径が100〜
200μm、正方形状の電極の場合1辺が20μmより
大きく200μm以下、特に100μm〜200μmが
好ましい。
The shape of the electrode is preferably circular or square because of the requirement to keep the distance between the nearest electrodes constant. The electrode area is required to have a certain size or more because it is necessary to reduce the resistance at the interface with the culture solution in order to avoid electrode destruction when applying electrical stimulation to cells for a long period of time. However, when the electrode area increases and the resistance at the interface with the culture solution decreases, the measured electrical activity of the cells decreases and the S / N ratio decreases. That is,
Assuming that the current I is constant, I = V / R. Therefore, when the resistance value R decreases, the change in the measured potential V decreases. In other words, the electrical activity of the cell to be measured decreases, and S
/ N ratio decreases. For this reason, the electrode area needs to be carefully adjusted, and in the case of a circular electrode , the diameter is 100 to 100.
200 [mu] m, 1 side when the square electrode is larger than 20 [mu] m 200 [mu] m or less, 1 00μm~200μm is preferred especially.

【0029】さらに、本発明の前述した好ましい態様に
よれば、一体化複合電極の絶縁層中の孔は、一体化複合
電極上で培養した細胞体に電気刺激を与えると同時に、
隣合う細胞体から電気的活動を検知するため、電極を露
出する目的で形成し、電極中心部に位置する。この孔の
大きさは、電極の大きさ以下にすることが好ましく、一
辺または直径が15〜195μm程度が好ましい。
Further, according to the preferred embodiment of the present invention, the holes in the insulating layer of the integrated composite electrode provide electrical stimulation to the cell bodies cultured on the integrated composite electrode,
In order to detect electrical activity from adjacent cell bodies, it is formed for the purpose of exposing electrodes and is located at the center of the electrodes. The size of this hole is preferably smaller than the size of the electrode, and one side or diameter is preferably about 15 to 195 μm.

【0030】また、本発明の一体化複合電極の電極中心
部が、同心円状若しくは8×8以下の格子状の各交点に
位置する構成であると、リード線を放射状に配線でき、
特に可能な限り多くの電極を構成し、多点同時刺激・記
録を行うという観点からは、8×8の格子状の各交点に
電極を設けることが望ましい。
Further, when the electrode central portion of the integrated composite electrode of the present invention is located at each intersection of concentric circles or a grid of 8 × 8 or less, the lead wires can be radially wired,
In particular, from the viewpoint of arranging as many electrodes as possible and performing simultaneous stimulation and recording at multiple points, it is desirable to provide electrodes at each intersection of an 8 × 8 grid.

【0031】以下具体的実施例で、本発明の一体化複合
電極をさらに詳細に説明する。 実施例1 図1は絶縁基盤3上に電極1とリード線2を形成した本
発明の一体化複合電極の絶縁層のない状態の配線部のパ
ターンを示した平面図である。図2は図1で示した部材
の上に形成された絶縁層のみの平面図の一部切り欠き図
である。図3は本発明の一体化複合電極の一部の断面図
である。以下これらの図面を参照しながら説明する。
Hereinafter, the integrated composite electrode of the present invention will be described in more detail with reference to specific examples. Embodiment 1 FIG. 1 is a plan view showing a pattern of a wiring portion of an integrated composite electrode according to the present invention in which an electrode 1 and a lead wire 2 are formed on an insulating substrate 3 without an insulating layer. FIG. 2 is a partially cutaway view of a plan view of only the insulating layer formed on the member shown in FIG. FIG. 3 is a sectional view of a part of the integrated composite electrode of the present invention. Hereinafter, description will be made with reference to these drawings.

【0032】まず、複合電極配線部の作製について述べ
る。一体化複合電極の絶縁基盤3は機械的強度の強い透
明な絶縁素材として、50×50×1mmの硬質ガラス
(“IWAKI CODE 7740 GLASS”
[岩城硝子(株)製]以下同じ)を用いた。
First, the fabrication of the composite electrode wiring section will be described. The insulating substrate 3 of the integrated composite electrode is made of a 50 × 50 × 1 mm hard glass (“IWAKI CODE 7740 GLASS”) as a transparent insulating material having high mechanical strength.
[Iwaki Glass Co., Ltd.] The same applies hereinafter).

【0033】電極1およびリード線2の材料にITOを
用い、前記硬質ガラスの絶縁基盤3上の全面に約100
0オングストローム厚に蒸着し、その後洗浄した。次
に、8×8の格子上の各交点(図2の5で示されたよう
な位置)に各電極1の中心部が位置し、各電極の最近接
の電極の中心間距離が等しく、しかもリード線2が放射
状に伸びた形状の電極1およびリード線2のパターンに
なるように、フォトレジストを用いて露光し、純水5
0、塩酸50、硝酸1の体積比で混合した溶液中でIT
Oをエッチングした後、フォトレジストを除去した。電
極1の直径は60μm、リード線2の幅は30μm、電
極中心間距離は300μmの配線部を形成した。
The material of the electrode 1 and the lead wire 2 is made of ITO, and about 100
Deposited to a thickness of 0 Å and then cleaned. Next, the center of each electrode 1 is located at each intersection (the position indicated by 5 in FIG. 2) on the 8 × 8 grid, and the distance between the centers of the electrodes closest to each electrode is equal. In addition, exposure is performed using a photoresist so that the lead wire 2 is formed into a pattern of the electrode 1 and the lead wire 2 having a radially extending shape, and pure water 5 is used.
0, hydrochloric acid 50, nitric acid 1
After etching O, the photoresist was removed. A wiring portion was formed in which the diameter of the electrode 1 was 60 μm, the width of the lead wire 2 was 30 μm, and the distance between electrode centers was 300 μm.

【0034】ついで、絶縁層4としてネガティブフォト
センシティブポリイミド(以下NPIと略す)を、乾燥
後の厚みが1μmとなるようにスピンコートし、図2に
示すように配線部の各電極の中心に一辺50μmの正方
形の孔5ができるように、絶縁層パターンを露光形成し
た。
Next, a negative photo-sensitive polyimide (hereinafter abbreviated as NPI) as the insulating layer 4 is spin-coated so that the thickness after drying becomes 1 μm, and one side of the electrode is placed at the center of each electrode of the wiring section as shown in FIG. The insulating layer pattern was exposed and formed so that a square hole 5 of 50 μm was formed.

【0035】リード線2の電極1と反対方向の端部近傍
の部分の外部回路との接点は、金7およびニッケル8で
コートし、耐久性を向上させた。さらに、絶縁層4の孔
5の部分の電極1の部分を1%の塩化白金酸六水和物と
0.01%酢酸鉛の混合水溶液中に電極を浸漬し、50
mA/cm2 の電流を30秒間通電し電極表面に白金黒
6を析出させることで、インピーダンスを低下させた
後、以下の実験に供した。
The contact of the lead wire 2 with the external circuit near the end in the direction opposite to the electrode 1 was coated with gold 7 and nickel 8 to improve the durability. Further, the electrode 1 at the hole 5 portion of the insulating layer 4 was immersed in a mixed aqueous solution of 1% chloroplatinic acid hexahydrate and 0.01% lead acetate,
A current of mA / cm 2 was supplied for 30 seconds to deposit platinum black 6 on the electrode surface, thereby lowering the impedance.

【0036】なお、本実施例では電極1およびリード2
の部分にITO、絶縁層にNPIを用いたが、用いる材
料はこれらに限定されないことは既に述べた。また、本
発明の一体化複合電極を構成するためのプロセスは本実
施例の方法に限定されない。
In this embodiment, the electrode 1 and the lead 2
Although ITO was used for the portion and NPI was used for the insulating layer, it was already described that the material to be used is not limited to these. Further, the process for forming the integrated composite electrode of the present invention is not limited to the method of this embodiment.

【0037】実施例2 次に、一体化複合電極上での神経細胞の培養について述
べる。実施例1のようにして構成した一体化複合電極上
で、神経細胞としてラット大脳視覚皮質を培養した。
Example 2 Next, the culture of nerve cells on the integrated composite electrode will be described. The rat cerebral visual cortex was cultured as neurons on the integrated composite electrode configured as in Example 1.

【0038】以下、培養法について詳細に述べる。 (イ)妊娠後16〜18日を経過したSDラットの胎児
の脳を摘出し、氷冷したハンクス平衡塩液(以下HBB
Sと略す)に浸す。
Hereinafter, the culturing method will be described in detail. (A) The brain of the fetal rat of SD rat 16-18 days after pregnancy was excised and ice-cooled Hanks balanced salt solution (hereinafter HBB)
(Abbreviated as S).

【0039】(ロ)氷冷HBBS中の脳から視覚皮質を
切り出し、イーグル最小必須培地(以下MEMと略す)
液中に移す。 (ハ)MEM液中で、視覚皮質をできるだけ細かく、最
大でも0.2mm角となるように切断する。
(B) The visual cortex is cut out from the brain in ice-cold HBBS, and Eagle's minimum essential medium (hereinafter abbreviated as MEM)
Transfer into solution. (C) In the MEM solution, the visual cortex is cut as finely as possible and cut into a maximum of 0.2 mm square.

【0040】(ニ)細かく切断した視覚皮質を遠沈管
(遠心分離用試験管)に入れ、カルシウムおよびマグネ
シウムを含まないHBBS(以下CMF−HBBSと略
す)で3回洗浄した後、適量の同液中に分散する。
(D) The finely cut visual cortex is placed in a centrifuge tube (test tube for centrifugation), washed three times with HBBS containing no calcium and magnesium (hereinafter abbreviated as CMF-HBBS), and then an appropriate amount of the same solution is used. Disperse in.

【0041】(ホ)上記(ニ)の遠沈管中に、トリプシ
ンのCMF−HBBS溶液(0.25重量%)を加え、
全量を倍にする。緩やかに撹拌しながら、37℃で15
分から20分間恒温状態に保ち酵素反応をおこなわせ
た。
(E) In the centrifuge tube of (d), a trypsin CMF-HBBS solution (0.25% by weight) was added.
Double the total amount. 15 minutes at 37 ° C with gentle stirring
The mixture was kept at a constant temperature for 20 minutes to 20 minutes to carry out the enzyme reaction.

【0042】(ヘ)牛胎児血清(FCS)10%を含む
ダルベッコ変更イーグル培地(DMEM)とHamF−
12培地を1対1の体積比で混合したDMEM/F−1
2混合培地を、上記(ホ)を経た遠沈管中に加え、全量
をさらに倍にする。先端をバーナーであぶり口径を小さ
くしたパスツールピペットで、緩やかにピペッティング
を繰り返し(最大20回程度)、細胞をほぐす。
(F) Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum (FCS) and HamF-
DMEM / F-1 in which 12 mediums were mixed at a volume ratio of 1: 1
(2) The mixed medium is added to the centrifuge tube passed through the above (e) to further double the total amount. Using a pasteur pipette whose tip is burned with a burner and whose diameter is reduced, gently repeat pipetting (up to about 20 times) to loosen the cells.

【0043】(ト)9806.65m/sec2 (すな
わち1000g)で約5分間遠心分離をおこなう。遠心
分離終了後、上清を捨て、沈澱をFCS5%を含むDM
EM/F−12混合培地に懸濁する。
(G) Centrifuge at 9806.65 m / sec 2 (ie, 1000 g) for about 5 minutes. After the centrifugation, the supernatant was discarded, and the precipitate was washed with DM containing 5% FCS.
Suspend in EM / F-12 mixed medium.

【0044】(チ)上記(ト)および(チ)をあと2回
(計3回)繰り返す。 (ヌ)最終的に得られた沈澱を、5%FCSを含むDM
EM/F−12混合培地に懸濁し、懸濁液中の細胞濃度
を赤血球計数盤を用いて計測する。同様の培地を用いて
細胞濃度を2〜4×106 個/mlになるように調整す
る。
(H) The above (g) and (h) are repeated two more times (a total of three times). (Nu) The finally obtained precipitate was washed with DM containing 5% FCS.
The cells are suspended in an EM / F-12 mixed medium, and the cell concentration in the suspension is measured using a red blood cell counter. Using the same medium, the cell concentration is adjusted to 2 to 4 × 10 6 cells / ml.

【0045】(ル)一体化複合電極上に直径25mm、
高さ6mmのプラスティック製円筒を、複合電極の中心
とプラスティック円筒の中心を合わせて接着することに
より構成した細胞培養用ウェル中に、あらかじめ5%F
CSを含むDMEM/F−12混合培地500μlを加
え、CO2 インキュベータ内(O2 濃度95%、CO 2
濃度5%、湿度97%、温度37℃)で暖めておく。
(L) 25 mm in diameter on the integrated composite electrode
A plastic cylinder with a height of 6 mm is attached to the center of the composite electrode.
And the center of the plastic cylinder
5% F in the cell culture well
Add 500 μl of DMEM / F-12 mixed medium containing CS
Huh, COTwoIn the incubator (OTwo95% concentration, CO Two
(5% concentration, 97% humidity, 37 ° C temperature).

【0046】(ヲ)上記(ル)のウェル中に細胞濃度を
調整した懸濁液100μlを静かに加え、再びCO2
ンキュベータ内に静置する。 (ヨ)上記(ル)の操作より3日後に、培地の半量を新
しいものと交換する。交換培地はFCSを含まないDM
EM/F−12混合培地を用いる。
(Iii) 100 μl of the suspension whose cell concentration has been adjusted is gently added to the well of the above (l), and the mixture is left again in the CO 2 incubator. (G) Three days after the above operation (I), half of the medium is replaced with a new medium. The exchange medium was DM without FCS.
An EM / F-12 mixed medium is used.

【0047】(タ)以降、4〜5日毎に上記と同様の培
地交換をおこなう。 これら一連の操作により、一体化複合電極上でラット大
脳皮質の神経細胞を培養することができた。
(T) Thereafter, the same medium exchange as above is performed every 4 to 5 days. Through a series of these operations, the neurons of the rat cerebral cortex could be cultured on the integrated composite electrode.

【0048】細胞は絶縁層(NPI)上でも白金黒を析
出させた電極上でも良好に生育した。したがって、適切
な位置にある電極を刺激電極または記録電極として用い
れば、神経細胞電気活動の同時多点計測が可能であっ
た。
The cells grew well both on the insulating layer (NPI) and on the electrode on which platinum black was deposited. Therefore, simultaneous multi-point measurement of nerve cell electrical activity was possible by using an electrode at an appropriate position as a stimulation electrode or a recording electrode.

【0049】また、ウェルにDMEM/F−12培養液
を満たした状態で、2個の電極を通じ、一方を正極他方
を負極として100μAの定電流刺激を0.2Hzで4
8時間以上与えても、電極の破壊はみられなかった。
In a state where the wells were filled with the DMEM / F-12 culture solution, a constant current stimulus of 100 μA at 0.2 Hz was applied through two electrodes, one of which was a positive electrode and the other was a negative electrode.
Even after the application for 8 hours or more, no destruction of the electrode was observed.

【0050】したがって、神経細胞電気活動の同時多点
計測を48時間以上の長期に渡り連続的におこなうこと
が可能であった。なお、神経細胞の培養法は本実施例以
外にも多くの変法があり、本実施例に限定されるもので
はない。
Therefore, simultaneous multipoint measurement of the nerve cell electrical activity could be continuously performed over a long period of 48 hours or more. The method for culturing nerve cells has many variations other than the present embodiment, and is not limited to the present embodiment.

【0051】[0051]

【発明の効果】本発明は、神経細胞の培養が可能で、従
来不可能または非常に困難であった神経細胞電気活動の
同時多点計測および多細胞に渡る信号伝達の数時間以上
の長期観察が実現でき、また、応答性の優れた一体化複
合電極を提供できる。
Industrial Applicability The present invention is capable of culturing nerve cells and simultaneously measuring multi-points of nerve cell electrical activity and long-term observation of signal transmission over multiple cells for several hours or more, which was impossible or extremely difficult in the past. And an integrated composite electrode having excellent responsiveness can be provided.

【0052】また、最近接の電極間距離が、10〜10
00μmである本発明の好ましい態様とすることによ
り、各細胞体が各電極上に位置し、且つ神経突起を介し
て結合する可能性が高くでき、神経細胞の測定に好都合
な一体化複合電極を提供できる。
The distance between the nearest electrodes is 10 to 10
By adopting a preferred embodiment of the present invention, which is 00 μm, each cell body is located on each electrode, and the possibility of binding via neurites can be increased, and an integrated composite electrode convenient for measurement of nerve cells can be obtained. Can be provided.

【0053】また、リード線をカバーする絶縁層が、各
電極上に孔を有し、かつリード線の外部回路との接点部
近傍を除いて前記絶縁基盤のほぼ全面に設けられた絶縁
層である本発明の好ましい態様とすることにより、感光
性樹脂からなる絶縁材料を使用して、ほぼ全面にこの樹
脂を塗布し、フォトエッチング手法により、容易に必要
な絶縁層パターンが形成でき、生産が容易で、絶縁不良
の確率の小さい一体化複合電極を提供できる。
Further, the insulating layer covering the lead wire has a hole on each electrode, and is provided on almost the entire surface of the insulating base except for the vicinity of the contact portion between the lead wire and the external circuit. According to a preferred embodiment of the present invention, a desired insulating layer pattern can be easily formed by a photo-etching method by applying this resin to almost the entire surface using an insulating material made of a photosensitive resin. An integrated composite electrode that is easy and has a low probability of insulation failure can be provided.

【0054】また、複数個の電極中心部が、8×8の格
子上の各交点に位置する本発明の好ましい態様とするこ
とにより、電極からリード線を略放射状に配設できる最
高の電極数を有する一体化複合電極を提供できる。
In a preferred aspect of the present invention, in which a plurality of electrode central portions are located at respective intersections on an 8 × 8 grid, the maximum number of electrodes from which the lead wires can be arranged substantially radially from the electrodes. Can be provided.

【0055】[0055]

【図面の簡単な説明】[Brief description of the drawings]

【0056】[0056]

【図1】本発明の一実施例の絶縁基盤上に電極とリード
線を形成した本発明の一体化電極の絶縁層のない状態の
配線部のパターンを示した平面図である。
FIG. 1 is a plan view showing a pattern of a wiring portion without an insulating layer of an integrated electrode of the present invention in which an electrode and a lead wire are formed on an insulating substrate according to an embodiment of the present invention.

【0057】[0057]

【図2】本発明の一体化複合電極の一実施例の絶縁層の
みの平面図の一部切り欠き図である。
FIG. 2 is a partially cutaway view of a plan view of only an insulating layer of one embodiment of the integrated composite electrode of the present invention.

【0058】[0058]

【図3】本発明の一体化複合電極の一実施例の一部の断
面図である。
FIG. 3 is a partial cross-sectional view of one embodiment of the integrated composite electrode of the present invention.

【0059】[0059]

【符号の説明】[Explanation of symbols]

1 電極 2 リード線 3 絶縁基盤 4 絶縁層 5 孔 6 白金黒 7 金 8 ニッケル DESCRIPTION OF SYMBOLS 1 Electrode 2 Lead wire 3 Insulating base 4 Insulating layer 5 Hole 6 Platinum black 7 Gold 8 Nickel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 27/30 A61B 5/04 300Z 27/416 300J 33/48 G01N 27/46 341M H01B 5/14 (56)参考文献 特開 平4−204244(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 33/483 A61B 5/0408 A61B 5/0492 G01N 27/26 G01N 27/30 G01N 27/416 G01N 33/48 H01B 5/14 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 7 Identification symbol FI G01N 27/30 A61B 5/04 300Z 27/416 300J 33/48 G01N 27/46 341M H01B 5/14 (56) References JP Hei 4-204244 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 33/483 A61B 5/0408 A61B 5/0492 G01N 27/26 G01N 27/30 G01N 27/416 G01N 33/48 H01B 5/14

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁基盤上に、最近接の電極間距離が相
等しい複数個の電極を備え、前記電極からリード線を略
放射状に配設した配線部と、前記リード線をカバーする
絶縁層とを設け、かつ電極が、正方形であって、その1
辺の長さが20μmを超え、且つ200μm以下である
一体化複合電極。
1. A wiring section comprising a plurality of electrodes having the same distance between the nearest electrodes on an insulating base, and a lead portion disposed substantially radially from the electrodes, and an insulating layer covering the lead wires. preparative provided, and electrodes, a square shape, its 1
Greater than the length Saga 20μm sides and integrated multiple electrode is 200μm or less.
【請求項2】 電極が円形であって、その直径が100
μm以上200μm以下の範囲にある請求項1記載の一
体化複合電極。
2. An electrode having a circular shape and a diameter of 100
The integrated composite electrode according to claim 1, wherein the integrated composite electrode is in a range of not less than 200 m and not more than 200 m .
【請求項3】 最近接の電極間距離が、10〜1000
μmの範囲である請求項1または2記載の一体化複合電
極。
3. The closest distance between electrodes is 10 to 1000.
3. The integrated composite electrode according to claim 1 , which has a range of μm .
【請求項4】 リード線をカバーする絶縁層が、各電極
上に孔を有し、かつリード線の外部回路との接点近傍を
除いて前記絶縁基盤のほぼ全面に設けられた絶縁層であ
請求項1〜3のいずれかに記載の一体化複合電極。
4. The method according to claim 1 , wherein the insulating layer covering the lead wire comprises an electrode.
With a hole on the top and near the contact point of the lead wire with the external circuit
Excluding the insulating layer provided on almost the entire surface of the insulating base.
Integrated composite electrode according to claim 1 that.
【請求項5】 複数個の電極中心部が、8×8の格子上
の各交点に位置する請求項1から4のいずれかに記載の
一体化複合電極。
5. A plurality of electrode central parts are arranged on an 8 × 8 grid.
The method according to any one of claims 1 to 4, which is located at each intersection of
Integrated composite electrode.
JP23699892A 1992-09-04 1992-09-04 Integrated composite electrode Expired - Fee Related JP3193471B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23699892A JP3193471B2 (en) 1992-09-04 1992-09-04 Integrated composite electrode
EP19930114091 EP0585933B1 (en) 1992-09-04 1993-09-02 Planar electrode
DE1993633945 DE69333945T2 (en) 1992-09-04 1993-09-02 Flat electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23699892A JP3193471B2 (en) 1992-09-04 1992-09-04 Integrated composite electrode

Publications (2)

Publication Number Publication Date
JPH0678889A JPH0678889A (en) 1994-03-22
JP3193471B2 true JP3193471B2 (en) 2001-07-30

Family

ID=17008876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23699892A Expired - Fee Related JP3193471B2 (en) 1992-09-04 1992-09-04 Integrated composite electrode

Country Status (1)

Country Link
JP (1) JP3193471B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041794A1 (en) * 2008-10-08 2010-04-15 Korea Institute Of Science And Technology A flexible, multi-channel microelectrode for recording laboratory animal eeg and method for recording laboratory animal eeg using the same
KR102060590B1 (en) * 2019-04-11 2019-12-30 권태영 Air neck cushion for multipurpose

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40209E1 (en) 1994-06-13 2008-04-01 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
JP2930181B2 (en) 1995-06-20 1999-08-03 松下電器産業株式会社 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
JP2930182B2 (en) * 1995-06-20 1999-08-03 松下電器産業株式会社 Two-dimensional sensor for measuring nerve cell activity and measuring device using the same
US6890762B1 (en) 1996-01-24 2005-05-10 Matsushita Technical Information Services Co., Ltd. Method for measuring physiocochemical properties of tissues of cells, method for examining chemicals, and apparatus therefor
JP4707875B2 (en) * 2001-05-22 2011-06-22 株式会社北里サプライ Egg impedance measuring device and cell impedance measuring device
JP3570715B2 (en) * 2001-06-05 2004-09-29 松下電器産業株式会社 Signal detection sensor with multiple electrodes
CN1204396C (en) 2001-06-20 2005-06-01 松下电器产业株式会社 Extracellular recording electrode
JP3801617B2 (en) 2003-06-27 2006-07-26 松下電器産業株式会社 Pharmacological measurement apparatus and system and well container used therefor
JP4510766B2 (en) * 2006-01-31 2010-07-28 日本電信電話株式会社 Extracellular electrode
TWI421492B (en) * 2007-09-28 2014-01-01 Hitachi Chemical Co Ltd Metal ion sensor, metal ion sensor system and portable metal ion sensor system
JP5047878B2 (en) * 2008-05-27 2012-10-10 株式会社アルバック Microelectrode array device, manufacturing method thereof and bioassay method
JP5544474B2 (en) * 2009-12-11 2014-07-09 国立大学法人東北大学 Bioassay kit for cytology
JP6550694B2 (en) * 2014-07-08 2019-07-31 国立大学法人九州工業大学 Extracellular potential measuring device and extracellular potential measuring method
CN109952505B (en) 2016-12-02 2022-10-18 索尼半导体解决方案公司 Semiconductor device and potential measuring device
WO2018101075A1 (en) 2016-12-02 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device, and potential measurement device
KR102316273B1 (en) * 2019-10-15 2021-10-25 이화여자대학교 산학협력단 Method of Manufacturing Planar Multi-electrode Array Using Laser Patterning and Photosensitive Polymer Insulating Film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041794A1 (en) * 2008-10-08 2010-04-15 Korea Institute Of Science And Technology A flexible, multi-channel microelectrode for recording laboratory animal eeg and method for recording laboratory animal eeg using the same
US8798707B2 (en) 2008-10-08 2014-08-05 Korea Institute Of Science And Technology Flexible, multi-channel microelectrode for recording laboratory animal EEG and method for recording laboratory animal EEG using the same
KR102060590B1 (en) * 2019-04-11 2019-12-30 권태영 Air neck cushion for multipurpose

Also Published As

Publication number Publication date
JPH0678889A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
JP3193471B2 (en) Integrated composite electrode
US6151519A (en) Planar electrode
JP3101122B2 (en) Integrated composite electrode
EP0585933B1 (en) Planar electrode
CN102445477B (en) Ex-vivo nerve information dual-mode detection microelectrode array chip and preparation method thereof
CN103031246B (en) Microelectrode array chip for multi-parameter detection of nerve cells and preparation method thereof
EP1300678B1 (en) Extracellular recording integrated composite electrode
JP5555709B2 (en) Biocompatible electrode
JP3570715B2 (en) Signal detection sensor with multiple electrodes
CN110367979A (en) It is a kind of to record and regulate and control based on nanometer pin electrode flexible microfluidic control device and preparation method thereof for brain tissue electric signal
US20050237065A1 (en) Compartment-arrayed probe for measuring extracellular electrical potential and method of measuring pharmacological effect using the same
CN111272819B (en) Interdigital arrangement conductive nanotube sensing device for detecting multi-element activity of myocardial cells
JPH0862209A (en) Cell potential measuring apparatus
JP2949845B2 (en) Electrodes for measuring cell electrical activity
CN103630583A (en) Multizone multifunctional nerve dual-mode detection microelectrode array chip and preparation method
Mohr et al. Performance of a thin film microelectrode array for monitoring electrogenic cells in vitro
US6890762B1 (en) Method for measuring physiocochemical properties of tissues of cells, method for examining chemicals, and apparatus therefor
JP4510766B2 (en) Extracellular electrode
JP2013188173A (en) Method for creating cell tissue having function
US20180224421A1 (en) Method and apparatus for a surface microstructured multielectrode array
JP2014124133A (en) Device and method for measuring extracellular potential
KR100481743B1 (en) Extracellular recording electrode
CN117405749A (en) Density-adjustable three-dimensional nanostructure intracellular and extracellular sensing device and preparation method thereof
JP3182127U (en) Extracellular potential measuring apparatus and method
JP2001281201A (en) Electrode for extracellular recording

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees