JP3048953B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3048953B2
JP3048953B2 JP9109468A JP10946897A JP3048953B2 JP 3048953 B2 JP3048953 B2 JP 3048953B2 JP 9109468 A JP9109468 A JP 9109468A JP 10946897 A JP10946897 A JP 10946897A JP 3048953 B2 JP3048953 B2 JP 3048953B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
secondary battery
capacity
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9109468A
Other languages
Japanese (ja)
Other versions
JPH1050299A (en
Inventor
靖彦 美藤
年秀 村田
修二 伊藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP9109468A priority Critical patent/JP3048953B2/en
Publication of JPH1050299A publication Critical patent/JPH1050299A/en
Application granted granted Critical
Publication of JP3048953B2 publication Critical patent/JP3048953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特にその負極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement of a negative electrode thereof.

【0002】[0002]

【従来の技術】リチウム(Li)やナトリウム(Na)
などのアルカリ金属を負極とする非水電解質二次電池
は、起電力が高く、従来のニッケルカドミウム蓄電池や
鉛蓄電池に較べ高エネルギー密度になると期待され、多
くの研究がなされている。特に、Liを負極とする非水
電解質二次電池について多くの研究がなされている。し
かし、金属状のアルカリ金属を負極に用いると充電時に
デンドライトが発生し、短絡を起こし易く信頼性の低い
電池となる。この問題を解決するために、アルカリ金属
としてのLiとアルミニウム(Al)、や鉛(Pb)と
の合金負極を用いることが検討された。これら合金負極
を用いると、充電でLiは負極合金中に吸蔵され、デン
ドライトの発生がなく信頼性の高い電池となる。しか
し、合金負極の放電電位は金属Liに比べ、約0.5V
貴であるため、電池の電圧も0.5V低く、これにより
電池のエネルギー密度も低いものとなる。一方、黒鉛な
どの炭素とLiの層間化合物を負極活物質とする研究も
なされている。この化合物負極でも、充電ではLiは炭
素の層間に入りデンドライトは発生しない。放電電位は
金属Liに較べ約0.1V貴であり、電池電圧の低下も
小さい。これにより、より好ましい負極と言える。しか
し、この負極活物質も大きい問題があった。充電でLi
が層間に入れるのは、黒鉛の場合、理論上、最高の値で
6Liであり、その場合の電気容量は372Ah/k
gである。また、黒鉛よりも結晶性の低い炭素が上記の
理論値を越える放電容量を有する材料として多くの提案
がなされている。
2. Description of the Related Art Lithium (Li) and sodium (Na)
Non-aqueous electrolyte secondary batteries using an alkali metal such as an anode as a negative electrode have high electromotive force and are expected to have a higher energy density than conventional nickel cadmium storage batteries and lead storage batteries, and many studies have been made. In particular, many studies have been made on non-aqueous electrolyte secondary batteries using Li as a negative electrode. However, when a metal-like alkali metal is used for the negative electrode, dendrite is generated at the time of charging, a short circuit is easily caused, and the battery has low reliability. In order to solve this problem, use of an alloy negative electrode of Li as an alkali metal and aluminum (Al) or lead (Pb) has been studied. When these alloy negative electrodes are used, Li is occluded in the negative electrode alloy upon charging, and a highly reliable battery without dendrite generation is obtained. However, the discharge potential of the alloy negative electrode is about 0.5 V
Being noble, the voltage of the battery is also lower by 0.5 V, which also lowers the energy density of the battery. On the other hand, studies have been made using an intercalation compound of carbon and Li such as graphite as a negative electrode active material. Even in the case of this compound anode, Li does not enter the carbon layer and generate dendrites during charging. The discharge potential is about 0.1 V higher than that of metal Li, and the decrease in battery voltage is small. This can be said to be a more preferable negative electrode. However, this negative electrode active material also has a major problem. Li on charging
In the case of graphite, C 6 Li is theoretically the highest value in the case of graphite, and the electric capacity in that case is 372 Ah / k
g. In addition, many proposals have been made for carbon having lower crystallinity than graphite as a material having a discharge capacity exceeding the above theoretical value.

【0003】[0003]

【発明が解決しようとする課題】上記の炭素材料の放電
容量は不充分であり、しかも、充放電サイクルにともな
う容量低下が大きい。本発明は、充電でLiを吸蔵して
デンドライトが発生せず、電気容量が大きく、サイクル
寿命の優れた非水電解質二次電池を与える負極を提供す
ることを目的とする。さらに、本発明は、Li以外にN
aをも高容量で吸蔵できるようになり、これらの負極を
使用することにより、より高エネルギー密度で、デンド
ライトによる短絡のないサイクル寿命に優れた信頼性の
高い非水電解質二次電池を提供することを目的とする。
The discharge capacity of the above-mentioned carbon material is insufficient, and the capacity is greatly reduced with charge / discharge cycles. An object of the present invention is to provide a negative electrode that provides a nonaqueous electrolyte secondary battery that does not generate dendrite due to occlusion of Li during charging, has a large electric capacity, and has an excellent cycle life. In addition, the present invention provides a method for producing N
a can be occluded at a high capacity, and by using these negative electrodes, a highly reliable non-aqueous electrolyte secondary battery having higher energy density and excellent cycle life without short circuit due to dendrite is provided. The purpose is to:

【0004】[0004]

【課題を解決するための手段】本発明の非水電解質二次
電池は、充電放電に対して可逆性を有する正極と負極、
およびアルカリ金属イオンを含有する非水電解質を具備
し、前記負極が充電状態でアルカリ金属を含有する特定
炭化物を含むことを特徴とする。前記炭化物に含有さ
れるアルカリ金属は、リチウムおよびナトリウムの少な
くとも一方とする。上記構成の負極は、高容量で、かつ
サイクル寿命が極めて優れており、この負極を用いるこ
とによって、より高エネルギー密度で、デンドライトに
よる短絡がなく、サイクル寿命に優れた信頼性の高い非
水電解質二次電池を提供することができる。
A nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode and a negative electrode having reversibility to charge and discharge,
And comprising a non-aqueous electrolyte containing alkali metal ions, specific to the negative electrode containing an alkali metal in a charged state
Characterized by containing a carbide of The alkali metal contained in the carbide is at least one of lithium and sodium. The negative electrode having the above configuration has a high capacity and a very excellent cycle life. By using this negative electrode, a non-aqueous electrolyte having a higher energy density, no short circuit due to dendrite, and a superior cycle life is provided. A secondary battery can be provided.

【0005】[0005]

【発明の実施の形態】本発明は、前記のように、負極が
充電状態でアルカリ金属を含有する特定の炭化物を含む
ものである。ここで、特定の炭化物としては、ナトリウ
ム、カリウム、銅またはマンガンの炭化物がある。これ
らの炭化物の具体例は、Na 2 2 、K 2 2 、Cu 2 2
Mn 3 C、Mn 23 6 、Mn 7 3 などである た、他の
炭化物の具体例は、Cr 4 C、VC 2 、Fe 2 C、FeC
などである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is, as described above, is <br/> that the negative electrode contains certain carbides containing an alkali metal in a charged state. Here, the specific carbide is sodium
, Potassium, copper or manganese carbides. Specific examples of these carbides include Na 2 C 2 , K 2 C 2 , Cu 2 C 2 ,
Mn 3 C, Mn 23 C 6 , Mn 7 C 3 and the like . Specific examples of addition, other <br/> carbide, Cr 4 C, VC 2, Fe 2 C, FeC
And so on.

【0006】[0006]

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。 《実施例1》 まず、Na 2 2 、K 2 2 、Cu 2 2 およびVC2につい
て、負極活物質としての特性を検討するため、図1に示
す試験セルを作った。また、比較例には、黒鉛を用い
た。各活物質10gに対して結着剤としてポリエチレン
粉末1gを混合して合剤とした。この合剤0.1gを直
径17.5mmの円盤に加圧成型して電極とした。図1
は、この電極を用いた試験セルを示す。電極1をケース
2の中央に配し、その上に微孔性ポリプロピレンセパレ
ータ3を配置した。1モル/lの過塩素酸リチウム(L
iClO4)を溶解したエチレンカーボネートとジメト
キシエタンの体積比1:1の混合溶液を非水電解質とし
てセパレータ上に注液した。一方、内側に直径17.5
mmの金属Li4を張り付け、外周部にポリプロピレン
製ガスケット5を付けた封口板6を用意し、これを前記
ケース2に組み合わせて試験セルとした。
Embodiments of the present invention will be described below. Example 1 First, a test cell shown in FIG. 1 was made for Na 2 C 2 , K 2 C 2 , Cu 2 C 2 and VC 2 in order to examine the characteristics as a negative electrode active material. Graphite was used in Comparative Examples. 10 g of each active material was mixed with 1 g of polyethylene powder as a binder to prepare a mixture. 0.1 g of this mixture was pressed into a disk having a diameter of 17.5 mm to form an electrode. FIG.
Shows a test cell using this electrode. The electrode 1 was arranged at the center of the case 2 and the microporous polypropylene separator 3 was arranged thereon. 1 mol / l lithium perchlorate (L
A mixed solution of ethylene carbonate and dimethoxyethane in which iClO 4 ) was dissolved at a volume ratio of 1: 1 was poured on the separator as a non-aqueous electrolyte. On the other hand, the inside diameter is 17.5.
A sealing plate 6 was prepared, in which a metal Li4 having a thickness of 5 mm was attached and a gasket 5 made of polypropylene was attached to the outer periphery, and this was combined with the case 2 to form a test cell.

【0008】各試験セルについて、2mAの定電流で、
電極がLi対極に対して0Vになるまでカソード分極
(活物質電極を負極として見る場合には充電に相当)
し、次に電極が1.0Vになるまでアノード分極(放電
に相当)した。このカソード分極、アノード分極を繰り
返し行い、電極特性を評価した。さらに、100サイク
ルまでこの充放電を繰り返し、サイクルに伴う放電容量
の変化を測定した。初期放電容量、および100サイク
ル目の放電容量の初期放電容量に対する比率、すなわち
放電容量維持率を表1に示す。放電容量は、本実施例の
セルが極めて大きい。また、比較例のセルではサイクル
に伴う容量低下が非常に大きいのに対して、本実施例の
セルでは容量低下がほとんど無いことがわかった。試験
セルの100サイクル目のカソード分極が終了した後、
各試験セルを分解したところ、いずれも金属Liの析出
は認められなかった。以上より本実施例の炭化物を活物
質とする電極では、カソード分極でLiが電極中に吸蔵
され、アノード分極で吸蔵されたLiが放出され、金属
Liの析出はなく、また、充放電容量は極めて大きく、
充放電サイクル特性も優れている。
For each test cell, at a constant current of 2 mA,
Cathode polarization until the electrode becomes 0 V with respect to the Li counter electrode (equivalent to charging when the active material electrode is viewed as a negative electrode)
Then, anodic polarization (corresponding to discharge) was performed until the voltage of the electrode reached 1.0 V. The cathodic polarization and the anodic polarization were repeated to evaluate the electrode characteristics. Further, this charge / discharge was repeated up to 100 cycles, and the change in discharge capacity with the cycles was measured. Table 1 shows the initial discharge capacity and the ratio of the discharge capacity at the 100th cycle to the initial discharge capacity, that is, the discharge capacity maintenance ratio. The discharge capacity of the cell of this embodiment is extremely large. It was also found that the cell of the comparative example had a very large decrease in capacity due to the cycle, whereas the cell of the present example had almost no capacity decrease. After the cathode polarization at the 100th cycle of the test cell is completed,
When each test cell was disassembled, deposition of metallic Li was not observed in any case. As described above, in the electrode using the carbide of the present embodiment as an active material, Li is occluded in the electrode by cathodic polarization, Li occluded by anodic polarization is released, and no metal Li is deposited. Extremely large,
Excellent charge / discharge cycle characteristics.

【0009】[0009]

【表1】 [Table 1]

【0010】《実施例2》 本実施例では、C4Cについて負極活物質としての特
性を検討するため、実施例1と同様にして図1に示す試
験セルを作り、実施例1と同じ条件で試験した。その結
果を表2に示す。放電容量は本実施例のセルが極めて大
きい。比較例のセルでは、サイクルに伴う容量低下が非
常に大きいのに対して、本実施例のセルでは容量低下が
ほとんど無いことがわかった。試験セルの100サイク
ル目のカソード分極が終了した後、試験セルを分解した
ところ、いずれも金属Liの析出は認められなかった。
以上より本実施例の炭化物を活物質とする電極では、カ
ソード分極でLiが電極中に吸蔵され、アノード分極で
吸蔵されたLiが放出され、金属Liの析出はなく、ま
た、充放電容量が極めて大きく、充放電サイクル特性も
優れている。
[0010] In "Example 2" This embodiment, in order to examine the characteristics of the negative electrode active material for C r 4 C, making the test cell shown in FIG. 1 in the same manner as in Example 1, the same as in Example 1 Tested under conditions. Table 2 shows the results. The discharge capacity of the cell of this embodiment is extremely large. In the cell of the comparative example, the capacity decrease accompanying the cycle was very large, whereas in the cell of the present example, it was found that there was almost no capacity decrease. After the cathodic polarization in the 100th cycle of the test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case.
As described above, in the electrode using the carbide of the present example as an active material, Li was occluded in the electrode by cathodic polarization, Li occluded by anodic polarization was released, no metal Li was deposited, and the charge / discharge capacity was low. It is extremely large and has excellent charge / discharge cycle characteristics.

【0011】[0011]

【表2】 [Table 2]

【0012】《実施例3》 本実施例では、Mn 3 C、Mn 23 6 、Mn 7 3 、Fe 2
CおよびFeCについて、負極活物質としての特性を検
討するため、実施例1と同様にして図1に示す試験セル
を作り、実施例1と同じ条件で試験した。その結果を表
3に示す。放電容量は本実施例のセルが極めて大きい。
比較例のセルでは、サイクルに伴う容量低下が非常に大
きいのに対して、本実施例のセルでは容量低下がほとん
ど無いことがわかった。試験セルの100サイクル目の
カソード分極が終了した後、試験セルを分解したとこ
ろ、いずれも金属Liの析出は認められなかった。以上
より本実施例の炭化物を活物質とする電極では、カソー
ド分極でLiが電極中に吸蔵され、アノード分極で吸蔵
されたLiが放出され、金属Liの析出はなく、また、
充放電容量が極めて大きく、充放電サイクル特性も優れ
ている。
Embodiment 3 In this embodiment, Mn 3 C, Mn 23 C 6 , Mn 7 C 3 , Fe 2
In order to examine the characteristics of C and FeC as a negative electrode active material, a test cell shown in FIG. 1 was made in the same manner as in Example 1, and tested under the same conditions as in Example 1. Table 3 shows the results. The discharge capacity of the cell of this embodiment is extremely large.
In the cell of the comparative example, the capacity decrease accompanying the cycle was very large, whereas in the cell of the present example, it was found that there was almost no capacity decrease. After the cathodic polarization in the 100th cycle of the test cell was completed, the test cell was disassembled, and no deposition of metallic Li was observed in any case. As described above, in the electrode using the carbide of the present embodiment as an active material, Li is occluded in the electrode by the cathodic polarization, the occluded Li is released by the anodic polarization, and no metal Li is deposited.
The charge / discharge capacity is extremely large, and the charge / discharge cycle characteristics are also excellent.

【0013】[0013]

【表3】 [Table 3]

【0014】《実施例4》 本実施例では、Na 2 2 、K 2 2 、Cu 2 2 およびVC
2を活物質とする負極を用いて図2に示した円筒形電池
を構成して特性を調べた。比較例の負極活物質には天然
黒鉛を用いた。電池は以下の手順により作製した。正極
活物質であるLiMn1.8Co0.24は、Li2CO3
Mn34とCoCO3とを所定のモル比で混合し、90
0℃で加熱することによって合成した。さらに、これを
100メッシュ以下に分級したものを正極活物質とし
た。正極活物質100gに対して導電剤として炭素粉末
を10g、結着剤としてポリ4フッ化エチレンの水性デ
ィスパージョンを樹脂分で8gと純水を加え、ペースト
状にし、チタンの芯材に塗布し、乾燥、圧延して正極を
得た。正極の正極活物質の重量は5gとした。負極は、
活物質である上記の各炭化物粉末100gと結着剤のポ
リ四フッ化エチレン粉末を重量比100:5の割合で混
合し、石油系溶剤を用いてペースト状としたものを銅の
芯材に塗布後、100℃で乾燥し、負極板とした。負極
はいずれも炭化物粉末の重量は2gとした。
Embodiment 4 In this embodiment, Na 2 C 2 , K 2 C 2 , Cu 2 C 2 and VC
The cylindrical battery shown in FIG. 2 was constructed using the negative electrode containing 2 as an active material, and the characteristics were examined. Natural graphite was used as the negative electrode active material of the comparative example. The battery was manufactured according to the following procedure. LiMn 1.8 Co 0.2 O 4 as a positive electrode active material, mixing Li 2 CO 3 and Mn 3 O 4 and CoCO 3 in a predetermined molar ratio, 90
It was synthesized by heating at 0 ° C. Furthermore, what classified this into 100 mesh or less was used as the positive electrode active material. 10 g of carbon powder as a conductive agent and 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder and 8 g of pure water as a binder are added to 100 g of the positive electrode active material to form a paste, which is applied to a titanium core material. After drying and rolling, a positive electrode was obtained. The weight of the positive electrode active material of the positive electrode was 5 g. The negative electrode is
100 g of each of the above-mentioned carbide powders as an active material and polytetrafluoroethylene powder as a binder were mixed at a weight ratio of 100: 5, and the mixture was made into a paste using a petroleum-based solvent to form a copper core material. After the application, it was dried at 100 ° C. to obtain a negative electrode plate. Each of the negative electrodes had a carbide powder weight of 2 g.

【0015】上記の正極板11と負極板12とを間にセ
パレ−タ13の微孔性ポリプロピレンフィルムを介在さ
せて渦巻き状に捲回した。この極板群を上下にポリプロ
ピレン製の絶縁板16、17を配して金属製電槽18に
挿入し、電槽18の上部に段部を形成させた後、非水電
解液として、1モル/lの過塩素酸リチウムを溶解した
エチレンカーボネートとジメトキシエタンの等比体積混
合溶液を注入し、正極端子20を有する封口板19で密
閉した。なお、正極板11に接続された芯材と同材質の
正極リード14は正極端子20に、また負極板12に接
続された芯材と同材質の負極リード15は電槽18にそ
れぞれ接続されている。この電池は、正極の電気容量の
方が大きく、電池の容量は負極の容量で決まる。
The positive electrode plate 11 and the negative electrode plate 12 were spirally wound with a microporous polypropylene film of a separator 13 interposed therebetween. This electrode plate group is placed on top and bottom with insulating plates 16 and 17 made of polypropylene and inserted into a metal container 18 to form a step on the upper portion of the container 18. / L of lithium perchlorate dissolved in an isobaric mixed solution of ethylene carbonate and dimethoxyethane was injected, and sealed with a sealing plate 19 having a positive electrode terminal 20. The positive electrode lead 14 made of the same material as the core material connected to the positive electrode plate 11 is connected to the positive electrode terminal 20, and the negative electrode lead 15 made of the same material as the core material connected to the negative electrode plate 12 is connected to the battery case 18. I have. In this battery, the electric capacity of the positive electrode is larger, and the capacity of the battery is determined by the capacity of the negative electrode.

【0016】これらの各活物質を負極とする電池につい
て、充放電電流を0.5mA/cm2とし、充放電電圧
範囲を4.3V〜3.0Vとして充放電サイクル試験を
行った。表4に初期容量、および100サイクル後の容
量維持率を示す。電気容量は本実施例の電池が極めて大
きい。しかも、サイクル特性も本実施例の電池の方が極
めて優れている。100サイクル目の充電が終わった
後、電池を分解して金属Liの析出の有無を調べたが、
いずれの電池もLiの析出は認められなかった。また、
Cr 4 C、Mn 3 C、Mn 23 6 、Mn 7 3 、Fe 2 Cおよ
びFeCについても同様に優れた結果が得られた。
A charge / discharge cycle test was performed on the battery using each of these active materials as a negative electrode with a charge / discharge current of 0.5 mA / cm 2 and a charge / discharge voltage range of 4.3 V to 3.0 V. Table 4 shows the initial capacity and the capacity retention rate after 100 cycles. The battery of this example has an extremely large electric capacity. Moreover, the cycle characteristics of the battery of this example are much better. After the charging of the 100th cycle was completed, the battery was disassembled and the presence or absence of metal Li was checked.
No Li deposition was observed in any of the batteries. Also,
Cr 4 C, Mn 3 C, Mn 23 C 6 , Mn 7 C 3 , Fe 2 C and
Similarly, excellent results were obtained for FeC and FeC .

【0017】[0017]

【表4】 [Table 4]

【0018】《実施例5》上記の実施例では、充電で負
極に含有されるアルカリ金属はLiであったが、本実施
例ではNaを検討した。正極活物質にNaNiO2、非
水電解質に1モル/lの過塩素酸ナトリウム(NaCl
4)を溶解したガンマーブチロラクトンを用いる以外
は、重量や組成比などの条件は実施例4と全く同じとし
て図2に示した円筒形電池を構成した。いずれの電池
も、正極の電気容量の方が大きく、電池の容量は負極の
容量で決まる。各電池を充放電電流0.5mA/c
2、充放電電圧範囲4.0〜3.0Vで充電サイクル
試験をした。表5に初期容量および100サイクル後の
容量維持率を示す。
Embodiment 5 In the above embodiment, the alkali metal contained in the negative electrode during charging was Li, but in this embodiment, Na was studied. The cathode active material is NaNiO 2 , and the non-aqueous electrolyte is 1 mol / l sodium perchlorate (NaCl
A cylindrical battery shown in FIG. 2 was constructed under the same conditions as in Example 4 except for the use of gamma-butyrolactone in which O 4 ) was dissolved. In any of the batteries, the electric capacity of the positive electrode is larger, and the capacity of the battery is determined by the capacity of the negative electrode. Charge / discharge current 0.5mA / c for each battery
A charge cycle test was performed at m 2 and a charge / discharge voltage range of 4.0 to 3.0 V. Table 5 shows the initial capacity and the capacity retention rate after 100 cycles.

【0019】[0019]

【表5】 [Table 5]

【0020】実施例による電池は、比較例に比べて極め
て大きな電気容量を有し、サイクル特性も優れている。
100サイクル目の充電が終わった後、電池を分解した
ところ、実施例および比較例いずれの電池とも金属Na
の析出は認められなかった。また、Cr 4 C、Mn 3 C、
Mn 23 6 、Mn 7 3 、Fe 2 CおよびFeCについても
同様に優れた結果が得られた。
The batteries according to the examples have an extremely large electric capacity as compared with the comparative examples, and also have excellent cycle characteristics.
After the charge at the 100th cycle was completed, the batteries were disassembled.
Was not observed. In addition, Cr 4 C, Mn 3 C,
Excellent results were similarly obtained for Mn 23 C 6 , Mn 7 C 3 , Fe 2 C and FeC .

【0021】さらに、上記の実施例では円筒形電池につ
いて説明したが、本発明はこの構造に限定されるもので
はなく、コイン型、角型、偏平型などの形状の二次電池
においても全く同様の効果が得られる。
Further, in the above embodiment, the cylindrical battery has been described. However, the present invention is not limited to this structure, and the same applies to a secondary battery having a coin shape, a square shape, a flat shape or the like. The effect of is obtained.

【0022】[0022]

【発明の効果】本発明によれば、高容量でかつ、サイク
ル寿命の極めて優れた負極を用いることにより、より高
エネルギー密度で、デンドライトによる短絡のない信頼
性の高い非水電解質二次電池を得ることができる。
According to the present invention, by using a negative electrode having a high capacity and an extremely excellent cycle life, a highly reliable non-aqueous electrolyte secondary battery having a higher energy density and no short circuit due to dendrite can be obtained. Obtainable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の活物質の電極特性を評価するための試
験セルの縦断面略図である。
FIG. 1 is a schematic longitudinal sectional view of a test cell for evaluating electrode characteristics of an active material of the present invention.

【図2】本発明の実施例における円筒形電池の縦断面図
である。
FIG. 2 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 本発明による電極 2 ケース 3 セパレータ 4 金属Li 5 ガスケット 6 封口板 11 正極板 12 負極板 13 セパレータ 14 正極リード 15 負極リード 16、17 絶縁板 18 電槽 19 封口板 20 正極端子 DESCRIPTION OF SYMBOLS 1 Electrode by this invention 2 Case 3 Separator 4 Metal Li5 Gasket 6 Sealing plate 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16, 17 Insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−237966(JP,A) 特開 平8−231273(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Ojidoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-237966 (JP, A) JP Hei 8-231273 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/36-4/62 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 充電放電に対して可逆性を有する正極と
負極、およびアルカリ金属イオンを含有する非水電解質
を具備し、前記負極が充電状態でアルカリ金属を含有す
る炭化物を含み、前記炭化物がナトリウム、カリウム、
銅またはマンガンの炭化物であることを特徴とする非水
電解質二次電池。
[Claim 1] comprising a positive electrode and the negative electrode, and a nonaqueous electrolyte containing alkali metal ions having reversibility with respect to charge and discharge, seen contains carbides said negative electrode containing an alkali metal in a charged state, the carbide Is sodium, potassium,
A non-aqueous electrolyte secondary battery comprising copper or manganese carbide .
【請求項2】 充電放電に対して可逆性を有する正極と
負極、およびアルカリ金属イオンを含有する非水電解質
を具備し、前記負極が充電状態でアルカリ金属を含有す
炭化物を含み、前記炭化物がCr 4 C、VC 2 、Fe 2
CまたはFeCであることを特徴とする非水電解質二次
電池。
2. A positive electrode and a negative electrode having reversibility to charge and discharge, and a non-aqueous electrolyte containing an alkali metal ion, wherein the negative electrode contains a carbide containing an alkali metal in a charged state, and the carbide contains Cr 4 C, VC 2 , Fe 2
A non-aqueous electrolyte secondary battery comprising C or FeC .
【請求項3】 前記炭化物が、Na 2 2 、K 2 2 、Cu
2 2 、Mn 3 C、Mn 23 6 またはMn 7 3 である請求項
1記載の非水電解質二次電池。
3. The method according to claim 1, wherein the carbide is Na 2 C 2 , K 2 C 2 , Cu
2 C 2, Mn 3 C, a non-aqueous electrolyte secondary battery of claim 1, wherein the Mn 23 C 6 or Mn 7 C 3.
【請求項4】 アルカリ金属が、リチウムおよびナトリ
ウムの少なくとも一方である請求項1〜のいずれかに
記載の非水電解質二次電池。
Wherein the alkali metal is a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, at least one of lithium and sodium.
JP9109468A 1996-05-31 1997-04-25 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3048953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9109468A JP3048953B2 (en) 1996-05-31 1997-04-25 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-139032 1996-05-31
JP13903296 1996-05-31
JP9109468A JP3048953B2 (en) 1996-05-31 1997-04-25 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1050299A JPH1050299A (en) 1998-02-20
JP3048953B2 true JP3048953B2 (en) 2000-06-05

Family

ID=26449216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9109468A Expired - Fee Related JP3048953B2 (en) 1996-05-31 1997-04-25 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3048953B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740453B2 (en) * 2002-02-27 2004-05-25 Cyprus Amax Minerals Company Electrochemical cell with carbonaceous material and molybdenum carbide as anode
EP1465269B1 (en) * 2003-04-03 2012-08-01 Panasonic Corporation Electrode and electrochemical device using the same
EP2833443A4 (en) 2013-03-08 2016-01-20 Sango Co Ltd Negative electrode material for lithium secondary batteries and method for producing same

Also Published As

Publication number Publication date
JPH1050299A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
CA2137320A1 (en) Electrochemical secondary cell
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JPH10312811A (en) Nonaqeous electrolyte secondary battery
US3998658A (en) High voltage organic electrolyte batteries
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP3405418B2 (en) Non-aqueous electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH09134720A (en) Lithium secondary battery
JP2523997B2 (en) Non-aqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPH10125317A (en) Monaqueous electrolyte secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JP3311550B2 (en) Lithium secondary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JP2712428B2 (en) Non-aqueous electrolyte secondary battery
JP3144929B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees