JP2705242B2 - Reactor gas supply system for fuel cell - Google Patents

Reactor gas supply system for fuel cell

Info

Publication number
JP2705242B2
JP2705242B2 JP1246109A JP24610989A JP2705242B2 JP 2705242 B2 JP2705242 B2 JP 2705242B2 JP 1246109 A JP1246109 A JP 1246109A JP 24610989 A JP24610989 A JP 24610989A JP 2705242 B2 JP2705242 B2 JP 2705242B2
Authority
JP
Japan
Prior art keywords
fuel gas
air
battery
fuel cell
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1246109A
Other languages
Japanese (ja)
Other versions
JPH03108269A (en
Inventor
平四郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1246109A priority Critical patent/JP2705242B2/en
Publication of JPH03108269A publication Critical patent/JPH03108269A/en
Application granted granted Critical
Publication of JP2705242B2 publication Critical patent/JP2705242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】 この発明は、燃料ガスと空気とを連続供給して電気化
学反応により発電させる燃料電池に関し、更に詳しくは
電池スタック内の反応ガス濃度の偏りを改善するための
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which fuel gas and air are continuously supplied to generate electric power by an electrochemical reaction, and more particularly, to an apparatus for improving a bias of a reaction gas concentration in a cell stack. .

【従来の技術】[Prior art]

第2図及び第3図は従来の燃料電池における反応ガス
供給構成を示す概略図で、第2図は横断面図、第3図は
そのはIII−III線に沿う断面図である。 第2図において、1は積層された多数の単電池からな
る電池スタック、2は燃料ガスの主供給配管、3は燃料
ガスを電池スタック1の各部に配分する入口マニホル
ド、4は電池スタック1から排出された未反応の燃料ガ
スを集める出口マニホルド、5は集められた燃料ガスを
次のプラント系統に送る主排出配管である。また、6は
空気の主供給配管、7は空気を電池スタック1の各部に
配分する入口マニホルド、8は電池スタック1から排出
された未反応の空気を集める出口マニホルド、9は集め
られた空気を次のプラント系統に送る主排出配管で、こ
れらの空気経路は上記燃料ガス経路に対して直交してい
る。 電池スタック1は、第3図に示すように高さ方向にい
くつかの電池ブロック1−1〜1−Nに区画されてお
り、これに伴って燃料ガスの入口マニホルド3及び出口
マニホルド4もそれぞれ3−1〜3−N及び4−1〜4
−Nに区画されている。電池ブロック1−1〜1−Nに
は主供給配管2から分割配管2−1〜2−Nを通して燃
料ガスが並列に分割供給され、また未反応の燃料ガスは
分割配管5−1〜5−Nを通して主排出配管から排出さ
れるようになっている。 第3図は第2図の断面図であるため空気の供給経路は
示されていないが、空気の入口マニホルド7及び出口マ
ニホルド8も同様にそれぞれ7−1〜7−N及び8−1
〜8−Nに区間され、これらは分割配管6−1〜6−N
及び9−1〜9−Nによりそれぞれ空気の主供給配管6
及び主排気配管9に接続されている。なお、電池スタッ
ク1は絶縁板10を介して架台11に支持されている。
2 and 3 are schematic views showing a reaction gas supply configuration in a conventional fuel cell. FIG. 2 is a cross-sectional view, and FIG. 3 is a cross-sectional view along line III-III. In FIG. 2, reference numeral 1 denotes a cell stack composed of a number of stacked unit cells, 2 denotes a main supply pipe for fuel gas, 3 denotes an inlet manifold for distributing the fuel gas to each part of the cell stack 1, and 4 denotes a cell stack. An outlet manifold 5 for collecting the discharged unreacted fuel gas is a main discharge pipe for sending the collected fuel gas to the next plant system. 6 is a main air supply pipe, 7 is an inlet manifold for distributing air to each part of the battery stack 1, 8 is an outlet manifold for collecting unreacted air discharged from the battery stack 1, and 9 is a collected air. At the main discharge line to the next plant system, these air paths are orthogonal to the fuel gas path. The battery stack 1 is divided into several battery blocks 1-1 to 1-N in the height direction as shown in FIG. 3, and accordingly, the fuel gas inlet manifold 3 and the outlet manifold 4 are also provided, respectively. 3-1 to 3-N and 4-1 to 4
-N. Fuel gas is divided and supplied to the battery blocks 1-1 to 1-N in parallel from the main supply pipe 2 through divided pipes 2-1 to 2-N, and unreacted fuel gas is supplied to the divided pipes 5-1 to 5-N. N is discharged from the main discharge pipe. FIG. 3 is a cross-sectional view of FIG. 2, so that the air supply path is not shown, but the air inlet manifold 7 and the outlet manifold 8 are likewise respectively 7-1 to 7-N and 8-1.
~ 8-N, which are divided pipes 6-1 to 6-N
And 9-1 to 9-N respectively for the main supply pipe 6 for air.
And the main exhaust pipe 9. Note that the battery stack 1 is supported on a gantry 11 via an insulating plate 10.

【発明が解決しようとする課題】[Problems to be solved by the invention]

ところで、燃料ガスの組成は分子量が2の水素が約80
%、分子量が44の炭酸ガスが約20%である。この燃料ガ
スは主供給配管2内をゆっくりと上昇し、単電池が3〜
5mの高さに積層された温度が140〜190℃の電池スタック
1内に供給マニホルド3を通して供給されるが、管内を
流れている間に軽い水素は供給マニホルド3の上部に多
く供給され、電池スタック1の上部は水素リッチな燃料
ガス供給になる傾向がある。一方、空気の組成は分子量
が32の酸素が約20%、分子量が24の窒素が約80%であ
る。そのため、空気供給では入口マニホルド7の下部に
重い酸素が多く供給され、電池スタック1の下部は酸素
リッチな空気供給となる傾向にある。 第4図はこのような傾向を示す線図で、第4図(A)
は入口燃料ガス中の水素濃度(横軸)と電池スタック1
の高さ位置との関係を示し、第4図(B)は同じく酸素
濃度(横軸)と電池スタック1の高さ位置との関係を示
す。このように、電池スタック1の下部には水素成分の
少ない燃料ガスが供給され、逆に電池スタック1の上部
には酸素成分の少ない空気が供給されると、それぞれの
成分についてはガス不足と同様の現象となり、従来の燃
料電池では電池スタック1の最上部及び最下部で電池寿
命が低下する問題が生じている。 この発明は、水素及び酸素の特性に基づく上記問題を
軽減し、電池寿命の向上を図った燃料電池の反応ガス補
給装置を提供することを目的とするものである。
Incidentally, the composition of the fuel gas is such that hydrogen having a molecular weight of 2 is about 80%.
%, Carbon dioxide with a molecular weight of 44 is about 20%. This fuel gas slowly rises in the main supply pipe 2 and the cells
Although the temperature stacked at a height of 5 m is supplied through the supply manifold 3 into the battery stack 1 having a temperature of 140 to 190 ° C., a large amount of light hydrogen is supplied to the upper portion of the supply manifold 3 while flowing through the tubes. The top of the stack 1 tends to be a hydrogen-rich fuel gas supply. On the other hand, the composition of air is about 20% of oxygen having a molecular weight of 32 and about 80% of nitrogen having a molecular weight of 24. Therefore, in the air supply, a large amount of heavy oxygen is supplied to the lower portion of the inlet manifold 7, and the lower portion of the battery stack 1 tends to supply oxygen-rich air. FIG. 4 is a diagram showing such a tendency, and FIG. 4 (A)
Is the hydrogen concentration in the inlet fuel gas (horizontal axis) and the cell stack 1
FIG. 4 (B) similarly shows the relationship between the oxygen concentration (horizontal axis) and the height position of the battery stack 1. As described above, when the fuel gas having a small hydrogen component is supplied to the lower portion of the battery stack 1 and the air having a small oxygen component is supplied to the upper portion of the battery stack 1, each component has the same effect as the gas shortage. In the conventional fuel cell, there is a problem that the life of the battery is shortened at the uppermost portion and the lowermost portion of the cell stack 1. An object of the present invention is to provide a reaction gas replenishing device for a fuel cell, which alleviates the above-described problems based on the characteristics of hydrogen and oxygen and improves the life of the battery.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、この発明は、積層された
多数の単電池からなる電池スタックが高さ方向にいくつ
かの電池ブロックに区画され、これら電池ブロックには
主供給配管から並列に反応ガスが分割供給される燃料電
池において、上位部分の適宜数の電池ブロックの空気入
口マニホルド内に酸素濃度センサを設けるとともに、下
位部分の適宜数の電池ブロックの燃料ガス入口マニホル
ド内に水素濃度センサを設け、これらセンサで検出され
た酸素濃度あるいは水素濃度が基準値より一定値以上小
さいときは、主供給配管から分岐するバイパス配管を開
いて空気あるいは燃料ガスを前記電池ブロックに補給す
るものとする。
In order to achieve the above object, according to the present invention, a battery stack composed of a number of stacked unit cells is divided into several battery blocks in the height direction, and these battery blocks are provided with a reaction gas in parallel from a main supply pipe. In a fuel cell which is divided and supplied, an oxygen concentration sensor is provided in an air inlet manifold of an appropriate number of battery blocks in an upper part, and a hydrogen concentration sensor is provided in a fuel gas inlet manifold of an appropriate number of battery blocks in an lower part. When the oxygen concentration or the hydrogen concentration detected by these sensors is smaller than a reference value by a certain value or more, a bypass pipe branched from the main supply pipe is opened to supply air or fuel gas to the battery block.

【作 用】[Operation]

酸素濃度及び水素濃度が低下するそれぞれ上位及び下
位部分の電池ブロックに酸素濃度及び水素濃度センサを
設けておき、酸素あるいは水素の濃度が基準値に満たな
いときはバイパス配管から空気あるいは水素を補給す
る。
Provide oxygen concentration and hydrogen concentration sensors in the upper and lower battery blocks where the oxygen concentration and hydrogen concentration decrease respectively, and when the oxygen or hydrogen concentration is less than the reference value, supply air or hydrogen from the bypass pipe .

【実施例】【Example】

第1図はこの発明の実施例を示す要部縦断面図であ
る。なお、従来例と同一部分には同一の符号を付け説明
を省略する。 第1図において、燃料ガスの主供給配管2の下部から
バイパス配管12が分岐し、分割配管12−1及び12−2を
介して電池スタック1の下位部分の2つの電池ブロック
1−(N−1)及び1−Nの入口マニホルド3−(N−
1)及び3−Nにそれぞれ接続されている。主供給配管
2におけるバイパス配管12が分岐する部分の後段には燃
料ガス供給弁13が挿入され、またバイパス配管12の途中
には燃料ガス補給弁14及び燃料ガスオリフィス15が挿入
されている。16は入口マニホルド1−(N−1)及び1
−N内にそれぞれ設けられた水素濃度センサで、燃料ガ
ス流量制御器17を介して燃料ガス補給弁14を制御する。 また、空気の主供給配管6からはバイパス配管18が分
岐し、分割配管18−1及び18−2を介して電池スタック
1の上位部分の2つの電池ブロック1−1及び1−2の
入口マニホルド7−1及び7−2にそれぞれ接続されて
いる。19は主供給配管6に挿入された空気供給弁、20及
び21はバイパス配管18に挿入されたそれぞれ空気補給弁
及び空気オリフィスである。入口マニホルド7−1及び
7−2内には酸素濃度センサ22が設けられ、空気流量制
御器23を介して空気補給弁20を制御するようになってい
る。 このような構成において、燃料ガス流量制御器17及び
空気流量制御器23には発電負荷に応じて燃料ガス供給制
御信号24及び空気供給制御信号25が与えられ、これによ
り燃料ガス供給弁13及び空気供給弁19が開閉して電池ス
タック1に対する全体の反応ガス流量が調整される。 ここで、第4図(A)に示すように、燃料ガスが、例
えば基準値77%よりも4%以上低い73%以下の水素濃度
で供給された場合(図の斜線の範囲)には、これを水素
濃度センサ16で検出して燃料ガス流量制御器17に信号を
送り、燃料ガス補給弁14を開いてオリフィス15で調整し
ながら一定量の燃料ガスを電池ブロック1−(N−1)
及び1−Nに供給する。水素濃度が回復して図の2点鎖
線のレベルに達したら補給を停止する。 同様に、第4図(B)に示すように、空気が、例えば
基準値20.9%よりも0.8%以上低い20.1%以下の濃度で
供給された場合(図の斜線の範囲)には、これを酸素濃
度センサ22で検出して空気流量制御器23に信号を送り、
空気補給弁20を開いてオリフィス21で調整しながら一定
量の空気を電池ブロック1−1及び1−2に補給する。
酸素濃度が回復して図の1点鎖線のレベルに達したら補
給を停止する。 このような構成によれば、電池スタック1の上位部分
についても基準値に対して4%の酸素濃度の差の範囲内
で空気を供給することができ、また電池スタック1の下
位部分についても基準値に対して0.8%の水素濃度の差
の範囲内で燃料ガスを供給することができる。
FIG. 1 is a longitudinal sectional view of an essential part showing an embodiment of the present invention. The same parts as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted. In FIG. 1, a bypass pipe 12 branches from a lower part of a main supply pipe 2 for fuel gas, and two battery blocks 1- (N−) in a lower part of the battery stack 1 are divided via divided pipes 12-1 and 12-2. 1) and 1-N inlet manifold 3- (N-
1) and 3-N. A fuel gas supply valve 13 is inserted in the main supply pipe 2 at a stage after the bypass pipe 12 branches, and a fuel gas supply valve 14 and a fuel gas orifice 15 are inserted in the middle of the bypass pipe 12. 16 is an inlet manifold 1- (N-1) and 1
The fuel gas replenishment valve 14 is controlled via a fuel gas flow rate controller 17 by hydrogen concentration sensors provided in each of -N. A bypass pipe 18 branches off from the main air supply pipe 6, and the inlet manifolds of the upper two battery blocks 1-1 and 1-2 of the battery stack 1 are divided via split pipes 18-1 and 18-2. 7-1 and 7-2. 19 is an air supply valve inserted into the main supply pipe 6, and 20 and 21 are an air supply valve and an air orifice inserted into the bypass pipe 18, respectively. An oxygen concentration sensor 22 is provided in the inlet manifolds 7-1 and 7-2, and controls the air supply valve 20 via an air flow controller 23. In such a configuration, the fuel gas flow control device 17 and the air flow control device 23 are provided with a fuel gas supply control signal 24 and an air supply control signal 25 in accordance with the power generation load. The supply valve 19 is opened and closed to adjust the overall flow rate of the reaction gas to the battery stack 1. Here, as shown in FIG. 4 (A), when the fuel gas is supplied at a hydrogen concentration of 73% or less which is 4% or more lower than the reference value of 77%, for example (in the hatched area in the figure), This is detected by the hydrogen concentration sensor 16 and a signal is sent to the fuel gas flow controller 17. The fuel gas supply valve 14 is opened, and a fixed amount of fuel gas is adjusted while adjusting the orifice 15.
And 1-N. When the hydrogen concentration recovers and reaches the level indicated by the two-dot chain line in the figure, the supply is stopped. Similarly, as shown in FIG. 4 (B), when air is supplied at a concentration of 20.1% or less, which is 0.8% or more lower than the reference value of 20.9%, for example, the air is supplied at a concentration of 20.1% or less. Detected by the oxygen concentration sensor 22 and sends a signal to the air flow controller 23,
A certain amount of air is supplied to the battery blocks 1-1 and 1-2 while opening the air supply valve 20 and adjusting the orifice 21.
When the oxygen concentration recovers and reaches the level indicated by the one-dot chain line in the figure, the supply is stopped. According to such a configuration, air can be supplied to the upper part of the battery stack 1 within the range of the oxygen concentration difference of 4% with respect to the reference value. The fuel gas can be supplied within a range of a difference in hydrogen concentration of 0.8% from the value.

【発明の効果】【The invention's effect】

この発明によれば、電池スタックにおける反応ガスの
水素濃度及び酸素濃度の偏りを軽減し、電池寿命を大幅
に延ばすことができる。
ADVANTAGE OF THE INVENTION According to this invention, the bias of the hydrogen concentration and the oxygen concentration of the reaction gas in the battery stack can be reduced, and the battery life can be greatly extended.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例の要部縦断面図、第2図は従
来の燃料電池における反応ガス供給の概略構成を示す横
断面図、第3図は第2図のIII−III線に沿う断面図、第
4図(A)は燃料ガス中の水素濃度と電池スタックの高
さ位置との関係を示す線図、第4図(B)は同じく空気
中の酸素濃度と電池スタックの高さ位置との関係を示す
線図である。 1……電池スタック、1−1〜1−N……電池ブロッ
ク、2……燃料ガス主供給配管、3……入口マニホル
ド、6……空気供給主配管、7……空気入口マニホル
ド、12……燃料ガスバイパス配管、16……水素濃度セン
サ、18……空気バイパス配管、22……酸素濃度センサ。
FIG. 1 is a longitudinal sectional view of a main part of an embodiment of the present invention, FIG. 2 is a transverse sectional view showing a schematic configuration of a reaction gas supply in a conventional fuel cell, and FIG. 3 is a line III-III in FIG. FIG. 4 (A) is a diagram showing the relationship between the hydrogen concentration in the fuel gas and the height position of the cell stack, and FIG. 4 (B) is also the oxygen concentration in the air and the height of the cell stack. FIG. 4 is a diagram showing a relationship with a position. DESCRIPTION OF SYMBOLS 1 ... Battery stack, 1-1 to 1-N ... Battery block, 2 ... Main fuel gas supply pipe, 3 ... Inlet manifold, 6 ... Air supply main pipe, 7 ... Air inlet manifold, 12 ... ... fuel gas bypass pipe, 16 ... hydrogen concentration sensor, 18 ... air bypass pipe, 22 ... oxygen concentration sensor.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】積層された多数の単電池からなる電池スタ
ックが高さ方向にいくつかの電池ブロックに区画され、
これら電池ブロックには主供給配管から並列に反応ガス
が分割供給される燃料電池において、上位部分の適宜数
の電池ブロックの空気入口マニホルド内に酸素濃度セン
サを設けるとともに、下位部分の適宜数の電池ブロック
の燃料ガス入口マニホルド内に水素濃度センサを設け、
これらセンサで検出された酸素濃度あるいは水素濃度が
基準値より一定値以上小さいときは、主供給配管から分
岐するバイパス配管を開いて空気あるいは燃料ガスを前
記電池ブロックに補給するようにしたことを特徴とする
燃料電池の反応ガス補給装置。
1. A battery stack composed of a number of unit cells stacked is divided into several battery blocks in a height direction,
In a fuel cell in which a reaction gas is divided and supplied in parallel from a main supply pipe to these battery blocks, an oxygen concentration sensor is provided in an air inlet manifold of an appropriate number of battery blocks in an upper part and an appropriate number of batteries in a lower part. A hydrogen concentration sensor is installed in the fuel gas inlet manifold of the block,
When the oxygen concentration or the hydrogen concentration detected by these sensors is smaller than a reference value by a certain value or more, a bypass pipe branched from the main supply pipe is opened to supply air or fuel gas to the battery block. A reaction gas replenishing device for a fuel cell.
JP1246109A 1989-09-21 1989-09-21 Reactor gas supply system for fuel cell Expired - Lifetime JP2705242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246109A JP2705242B2 (en) 1989-09-21 1989-09-21 Reactor gas supply system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246109A JP2705242B2 (en) 1989-09-21 1989-09-21 Reactor gas supply system for fuel cell

Publications (2)

Publication Number Publication Date
JPH03108269A JPH03108269A (en) 1991-05-08
JP2705242B2 true JP2705242B2 (en) 1998-01-28

Family

ID=17143618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246109A Expired - Lifetime JP2705242B2 (en) 1989-09-21 1989-09-21 Reactor gas supply system for fuel cell

Country Status (1)

Country Link
JP (1) JP2705242B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763113A (en) * 1996-08-26 1998-06-09 General Motors Corporation PEM fuel cell monitoring system
JP2001229946A (en) * 2000-02-17 2001-08-24 Denso Corp Fuel cell system
DE10106536A1 (en) 2000-02-17 2001-08-23 Denso Corp Fuel cell system with a fuel cell for generating electrical energy through a chemical reaction between hydrogen and oxygen
JP2002362164A (en) * 2001-06-07 2002-12-18 Toyota Motor Corp Piping structure of fuel cell
JP5200312B2 (en) 2001-09-03 2013-06-05 富士通株式会社 Electronics
JP2007280933A (en) * 2006-03-16 2007-10-25 Toyota Motor Corp Fuel cell system
JP5803686B2 (en) * 2012-01-16 2015-11-04 トヨタ自動車株式会社 Fuel cell system and vehicle equipped with the same
JP5988367B2 (en) * 2012-09-28 2016-09-07 京セラ株式会社 Fuel cell module

Also Published As

Publication number Publication date
JPH03108269A (en) 1991-05-08

Similar Documents

Publication Publication Date Title
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
CN101682061B (en) Fuel cell system and current control method thereof
JP3596332B2 (en) Operating method of stacked fuel cell, stacked fuel cell, and stacked fuel cell system
JP2854138B2 (en) Constant voltage fuel cell with improved reactant supply and control system
CN101682058B (en) Fuel cell system
US7820333B2 (en) Fuel cell operating method with improved hydrogen and oxygen utilization
CN101322268B (en) Utilization-based fuel cell monitoring and control
CN203326036U (en) Cathode exhaust gas recirculation system used for proton exchange membrane fuel cell (PEMFC)
US20080090124A1 (en) Fuel Cell System With A Liquid Separator
CN103050723A (en) Cathode exhaust recirculating system for proton exchange membrane fuel cell
CN101755355B (en) Fuel cell system and its control method
CN100570939C (en) The method of operation of fuel cell system and fuel cell
JPH02291667A (en) Fuel cell system
JP2705242B2 (en) Reactor gas supply system for fuel cell
CN114068997B (en) High-efficiency energy-saving fuel cell stack test system
JP2012528448A (en) Open fuel cell system
JP2003031245A (en) Humidifying system for fuel cell
CN103915638A (en) Humidifier for fuel cells and fuel cell stack with humidifier
CN208806305U (en) A kind of fuel battery anode flow field board
JP2001143732A (en) Solid polymer fuel cell power generating system and its operating method
CN203326037U (en) Cathode exhaust gas recirculation system used for proton exchange membrane fuel cell (PEMFC)
CN110212221B (en) Fuel cell and humidity control method thereof
JP4464066B2 (en) Fuel cell system
CN102208667B (en) Utilization-based fuel cell monitoring and control
JPH11312531A (en) Fuel cell system