JP2023159916A - Manufacturing method of high elastic modulus fiber-reinforced plastic - Google Patents

Manufacturing method of high elastic modulus fiber-reinforced plastic Download PDF

Info

Publication number
JP2023159916A
JP2023159916A JP2022069842A JP2022069842A JP2023159916A JP 2023159916 A JP2023159916 A JP 2023159916A JP 2022069842 A JP2022069842 A JP 2022069842A JP 2022069842 A JP2022069842 A JP 2022069842A JP 2023159916 A JP2023159916 A JP 2023159916A
Authority
JP
Japan
Prior art keywords
fiber
graphene oxide
reinforced plastic
resin
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022069842A
Other languages
Japanese (ja)
Inventor
隼 郷田
Hayato Goda
武久 岸本
Takehisa Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2022069842A priority Critical patent/JP2023159916A/en
Publication of JP2023159916A publication Critical patent/JP2023159916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To solve the problems that as a matrix resin of a fiber-reinforced plastic having high strength and high elastic modulus, an epoxide resin is widely used, however, with respect to molding using a metal mold like molding at a high cycle, it is necessary to correspond by a batch method of using a resin mold and hardening in an autoclave due to poor demolding properties, or a method of increasing a thickness and a weight so as to secure strength using the other matrix resin, therefore, a fiber-reinforced plastic excellent in moldability and having high strength and high elastic modulus cannot be achieved.SOLUTION: A fiber-reinforced plastic containing a reinforced fiber coated with graphene oxide, and a matrix resin is such that: a volume ratio of the reinforced fiber to the matrix resin in the fiber-reinforced plastic is 15:85-50:50; and the matrix resin contains 30-100 mass% of a radical hardening type resin.SELECTED DRAWING: None

Description

本発明は、酸化グラフェンで被覆された強化繊維と、マトリックス樹脂の一部にラジカル硬化型樹脂を用いた繊維強化プラスチックに関する。 The present invention relates to fiber-reinforced plastics using reinforcing fibers coated with graphene oxide and a radical curable resin as part of the matrix resin.

繊維強化プラスチックは高強度な材料として構造材料として広く利用されている。中でも炭素繊維強化プラスチック高強度と高弾性率を示す。高強度、高弾性率を必要とする成形品にはマトリックス樹脂として、エポキシ樹脂が広く利用されている。しかしながら、エポキシ樹脂は硬化収縮が小さい為、金型を使用したプレス成形や引抜成形等の連続成形を行うと離型が困難であったり、金型に詰まったりし成形が困難であった。そのため、オートクレーブを使用した成形方法で一般的に成形されるが、成形1サイクルの時間が非常に長く非効率的であった。一方、ビニルエステル樹脂等のラジカル硬化型樹脂は成形性に優れるが、強度の面ではエポキシ樹脂に劣っていた。
また、炭素繊維に酸化グラフェンを被覆させることでエポキシ樹脂を用いた炭素繊維強化プラスチックの更なる強度向上を志向した先行例はあるが、成形性の面では議論されていなかった(特許文献1)。
Fiber-reinforced plastics are widely used as structural materials due to their high strength. Among them, carbon fiber reinforced plastics exhibit high strength and high modulus. Epoxy resins are widely used as matrix resins for molded products that require high strength and high elastic modulus. However, since epoxy resin has a small curing shrinkage, when continuous molding such as press molding or pultrusion molding using a mold is performed, it is difficult to release the resin or the mold gets clogged, making molding difficult. Therefore, molding is generally performed using a molding method using an autoclave, but one molding cycle takes a very long time and is inefficient. On the other hand, radical curable resins such as vinyl ester resins have excellent moldability, but are inferior to epoxy resins in terms of strength.
Additionally, there are precedent examples of coating carbon fibers with graphene oxide to further improve the strength of carbon fiber-reinforced plastics using epoxy resins, but there has been no discussion in terms of moldability (Patent Document 1) .

特開2020-169424JP2020-169424

これまで、成形性に優れるが、強度面で問題のあったラジカル硬化型樹脂と強化繊維を組み合わせることで成形性に優れ且つ高強度、高弾性率の繊維強化プラスチックは達成できていなかった。 Until now, fiber-reinforced plastics with excellent moldability, high strength, and high elastic modulus have not been achieved by combining reinforcing fibers with radical-curing resins, which have excellent moldability but have problems in terms of strength.

本発明者らは、上記目的を達成する為に種々検討を行ない、本発明に想到した。
すなわち、酸化グラフェンで被覆された強化繊維と、マトリックス樹脂を含む繊維強化プラスチックであって、前記繊維強化プラスチック中の強化繊維とマトリクス樹脂の体積比が、15:85~50:50であり、かつ前記マトリックス樹脂は、ラジカル硬化型樹脂を30~100質量%含むことを特徴とする繊維強化プラスチックである。
In order to achieve the above object, the present inventors conducted various studies and came up with the present invention.
That is, a fiber-reinforced plastic containing reinforcing fibers coated with graphene oxide and a matrix resin, wherein the volume ratio of the reinforcing fibers to the matrix resin in the fiber-reinforced plastic is 15:85 to 50:50, and The matrix resin is a fiber-reinforced plastic characterized by containing 30 to 100% by mass of a radical curable resin.

本発明の酸化グラフェンで被覆された強化繊維と、マトリックス樹脂を含む繊維強化プラスチックを用いることにより、成形性に優れ且つ高強度・高弾性率の繊維強化プラスチックの利用が容易となる。 By using the graphene oxide-coated reinforcing fiber of the present invention and the fiber-reinforced plastic containing a matrix resin, it becomes easy to use a fiber-reinforced plastic that has excellent moldability, high strength, and high elastic modulus.

以下、本発明を詳細に説明する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
The present invention will be explained in detail below.
Note that a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.

[酸化グラフェンおよび酸化グラフェン分散液]
本発明に用いられる酸化グラフェンは黒鉛を酸化し、剥離することで得られる。酸化グラフェンの製造方法は特には限定されないが、例えば黒鉛を硫酸中、酸化剤を用いることで酸化し、精製後に剥離した酸化グラフェンが好ましい。
[Graphene oxide and graphene oxide dispersion]
The graphene oxide used in the present invention is obtained by oxidizing graphite and exfoliating it. Although the method for producing graphene oxide is not particularly limited, for example, graphene oxide is preferably obtained by oxidizing graphite in sulfuric acid using an oxidizing agent and exfoliating it after purification.

本発明の酸化グラフェンは10層以下であることが好ましい。層数は電子顕微鏡等で分析することができる。より効果的に付着させる観点からは酸化グラフェンの層数は1~10層が好ましく、1~7層がより好ましく、1~5層がさらに好ましく、1~3層が最も好ましい。また、繊維への付着能や、分散性の観点から酸化グラフェン中の炭素酸素元素比(O/C)は0.1~2の範囲が好ましく、0.2~1.5がより好ましく、0.3~1.2が最も好ましい。これらO/Cを適宜調整することで、後述するが、組み合わせる樹脂や添加剤との混合性を調製することが可能である。O/Cは酸化グラフェン合成時の酸化剤量を増やしたり、酸化条件をより強くしたりすることで大きくすることができ、また、酸化グラフェンを還元することで小さくすることが可能である。 The graphene oxide of the present invention preferably has 10 layers or less. The number of layers can be analyzed using an electron microscope or the like. From the viewpoint of more effective adhesion, the number of layers of graphene oxide is preferably 1 to 10 layers, more preferably 1 to 7 layers, even more preferably 1 to 5 layers, and most preferably 1 to 3 layers. In addition, from the viewpoint of adhesion to fibers and dispersibility, the carbon/oxygen ratio (O/C) in graphene oxide is preferably in the range of 0.1 to 2, more preferably 0.2 to 1.5, and .3 to 1.2 is most preferred. By appropriately adjusting these O/C, it is possible to adjust the miscibility with the resin and additives to be combined, as will be described later. O/C can be increased by increasing the amount of oxidizing agent during graphene oxide synthesis or by making the oxidation conditions stronger, and can be decreased by reducing graphene oxide.

本発明に用いられる酸化グラフェンは分散液の形態が好ましい。分散液とすることで、酸化グラフェン同士の(凝集)を抑制し、強化繊維表面に効果的に酸化グラフェンを作用させることが可能である。好ましい分散媒としては、特に限定されないが、例えば水、メタノール、エタノール、2-プロパノール等のアルコール、アセトン、メチルエチルケトン等のケトン溶媒、ジエチルエーテル、シクロペンチルメチルエーテル等のエーテル溶媒、クロロホルム等のハロゲン系溶媒が挙げられる。この中でも水、アルコール溶媒が好ましく、水が最も好ましい。分散液の濃度は0.0001~10%が好ましく、生産性と性能の観点からは0.0001~5%がより好ましく、0.001~3%がさらに好ましく、0.01~2%が最も好ましい。上記範囲であれば、強化繊維に対して酸化グラフェンを良好に付着させることが可能となる。また、分散液は分散性を向上するために、分散処理したものが好ましい。分散処理としては、ホモジナイザー等のせん断処理や、超音波処理が挙げられる。 The graphene oxide used in the present invention is preferably in the form of a dispersion. By forming a dispersion liquid, it is possible to suppress (agglomeration) of graphene oxide and to cause graphene oxide to effectively act on the surface of reinforcing fibers. Preferred dispersion media include, but are not particularly limited to, water, alcohols such as methanol, ethanol, and 2-propanol, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as diethyl ether and cyclopentyl methyl ether, and halogen solvents such as chloroform. can be mentioned. Among these, water and alcohol solvents are preferred, and water is most preferred. The concentration of the dispersion liquid is preferably 0.0001 to 10%, more preferably 0.0001 to 5% from the viewpoint of productivity and performance, even more preferably 0.001 to 3%, and most preferably 0.01 to 2%. preferable. Within the above range, graphene oxide can be satisfactorily attached to the reinforcing fibers. Moreover, in order to improve the dispersibility of the dispersion liquid, it is preferable that the dispersion liquid be subjected to a dispersion treatment. Examples of the dispersion treatment include shearing treatment using a homogenizer, etc., and ultrasonic treatment.

[強化繊維]
本発明で用いられる強化繊維は、特に限定されず、ポリアクリロニトリル系(以下、PAN系)炭素繊維・ピッチ系炭素繊維・ガラス繊維・バサルト繊維・ボロン繊維・芳香族ポリアミド繊維等を上げることができる。酸化グラフェンとの相互作用の高さから、PAN系炭素繊維、ピッチ系炭素繊維が好適に用いることができる。
[Reinforced fiber]
The reinforcing fibers used in the present invention are not particularly limited, and may include polyacrylonitrile-based (hereinafter, PAN-based) carbon fibers, pitch-based carbon fibers, glass fibers, basalt fibers, boron fibers, aromatic polyamide fibers, etc. . PAN-based carbon fibers and pitch-based carbon fibers can be suitably used because of their high interaction with graphene oxide.

[酸化グラフェンで被覆した強化繊維]
本発明の酸化グラフェンで被覆した強化繊維は、強化繊維の表面に酸化グラフェンが付着したものである。酸化グラフェンは薄い厚みと大きな面を有し、面同士の相互作用で高い密着性を発現する。特に、強化繊維として炭素繊維を用いた場合、酸化グラフェンはともに炭素材料であることから、特に相互作用が強い。樹脂への混合性向上の観点からは、強化繊維に対する酸化グラフェンの最低必要量は用いる強化繊維の直径および密度に依存する。例えば、炭素繊維を例とした場合、直径が7μm、密度1.78とすると炭素繊維1kgあたりの表面積は320mとなり、これを覆うのに必要な酸化グラフェン(理論面積1315m/g)は約0.25g(0.25ppm)となる。強化繊維と酸化グラフェンの複合量比はこれ以上であればよいが、ハンドリングや、付着率を考慮して1ppm以上が好ましい。また強化繊維自身の効果を薄めない観点からは1%以下の付着量比であることが好ましい。
[Reinforced fiber coated with graphene oxide]
The reinforcing fiber coated with graphene oxide of the present invention has graphene oxide attached to the surface of the reinforcing fiber. Graphene oxide has a small thickness and large surfaces, and exhibits high adhesion through interaction between the surfaces. In particular, when carbon fiber is used as the reinforcing fiber, the interaction between graphene oxide and graphene oxide is particularly strong since both are carbon materials. From the viewpoint of improving the mixability into the resin, the minimum amount of graphene oxide required for the reinforcing fibers depends on the diameter and density of the reinforcing fibers used. For example, taking carbon fiber as an example, if the diameter is 7 μm and the density is 1.78, the surface area per 1 kg of carbon fiber is 320 m 2 , and the graphene oxide (theoretical area 1315 m 2 /g) required to cover it is approximately It becomes 0.25g (0.25ppm). The composite amount ratio of reinforcing fibers and graphene oxide may be greater than this, but in consideration of handling and adhesion rate, it is preferably 1 ppm or more. Further, from the viewpoint of not diluting the effect of the reinforcing fibers themselves, the adhesion ratio is preferably 1% or less.

[酸化グラフェンで被覆した強化繊維の製造方法]
本発明の酸化グラフェンで被覆した強化繊維の製造方法は特に限定されないが、酸化グラフェン分散液と強化繊維を接触させる工程を含むことが好ましい。接触時の分散媒は、特に限定されないが、例えば水、メタノール、エタノール、2-プロパノール等のアルコール、アセトン、メチルエチルケトン等のケトン溶媒、ジエチルエーテル、シクロペンチルメチルエーテル等のエーテル溶媒、クロロホルム等のハロゲン系溶媒が挙げられる。この中でも水、アルコール溶媒が好ましく、水が最も好ましい。
[Method for producing reinforced fiber coated with graphene oxide]
Although the method for producing reinforcing fibers coated with graphene oxide of the present invention is not particularly limited, it preferably includes a step of bringing the reinforcing fibers into contact with a graphene oxide dispersion. The dispersion medium during contact is not particularly limited, but includes, for example, water, alcohols such as methanol, ethanol, and 2-propanol, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as diethyl ether and cyclopentyl methyl ether, and halogen-based solvents such as chloroform. Examples include solvents. Among these, water and alcohol solvents are preferred, and water is most preferred.

酸化グラフェン分散液と強化繊維との接触方法は、特に限定されないが、酸化グラフェンを効率的に使用する観点からは酸化グラフェン分散液に強化繊維に投入する方法、強化繊維に酸化グラフェン分散液を噴霧する方法が好ましい。例えば、酸化グラフェン分散液が流れている流路に強化繊維を逐次含侵する方法、強化繊維が繊維方向に移送されている(例えば繊維の巻取り工程など)プロセスにおいて、酸化グラフェン分散液を噴霧して強化繊維に付着させる方法等が挙げられる。 The method of contacting the graphene oxide dispersion with the reinforcing fibers is not particularly limited, but from the viewpoint of efficiently using graphene oxide, there are methods such as adding the graphene oxide dispersion to the reinforcing fibers, and spraying the graphene oxide dispersion onto the reinforcing fibers. A method of doing so is preferred. For example, a method in which reinforcing fibers are sequentially impregnated into a channel through which a graphene oxide dispersion is flowing, or a graphene oxide dispersion is sprayed in a process in which reinforcing fibers are transferred in the fiber direction (for example, in a fiber winding process). Examples include a method of attaching the reinforcing fiber to reinforcing fibers.

酸化グラフェン分散液と強化繊維を接触させる工程の温度は特に限定されないが、酸化グラフェンが効果的に付着される観点からは0~90℃の範囲が好ましい。この範囲を外れると酸化グラフェンの付着能が下がる。より好ましくは10~80℃であり、さらに好ましくは20~70℃である。 The temperature in the step of bringing the graphene oxide dispersion into contact with the reinforcing fibers is not particularly limited, but is preferably in the range of 0 to 90°C from the viewpoint of effectively adhering graphene oxide. Outside this range, the adhesion ability of graphene oxide decreases. The temperature is more preferably 10 to 80°C, even more preferably 20 to 70°C.

酸化グラフェン分散液と強化繊維を接触させる工程では、第3の成分が含まれていてよい。例えば酸化グラフェンの付着能をより高める添加剤や、酸化グラフェンを還元する還元剤等である。これらの添加剤は酸化グラフェン分散液に含まれていても良いし、接触工程で同時、あるいはあとで追加することも可能である。付着能を高める添加剤としては、アミン、アンモニウムが好ましい。この中でも低分子化合物のアルキルアミン(例えばラウリルアミン)やアルキルアンモニウム(例えば塩化ベンザルコニウム)、高分子化合物のポリアミン類(例えばポリエチレンイミン、ポリアリルアミン等)、ポリアンモニウム類(ポリジメチルアリルアミン塩酸塩等)が好ましい。
還元剤としては、ヒドラジン、ヨウ化水素、L-アスコルビン酸等が好ましい。
A third component may be included in the step of bringing the graphene oxide dispersion into contact with the reinforcing fibers. Examples include additives that enhance the adhesion ability of graphene oxide, reducing agents that reduce graphene oxide, and the like. These additives may be included in the graphene oxide dispersion, or may be added at the same time or after the contacting step. As the additive for increasing the adhesion ability, amine and ammonium are preferable. Among these, low-molecular compounds such as alkylamines (e.g. laurylamine) and alkylammoniums (e.g. benzalkonium chloride), high-molecular compounds polyamines (e.g. polyethyleneimine, polyallylamine, etc.), polyammoniums (polydimethylallylamine hydrochloride, etc.) ) is preferred.
Preferred reducing agents include hydrazine, hydrogen iodide, and L-ascorbic acid.

酸化グラフェン分散液と強化繊維を接触させる工程のあとに、余分な酸化グラフェンや添加剤を除去する精製工程を含むことも好ましい。強化繊維として炭素繊維を用いた場合、酸化グラフェンは炭素繊維との相互作用が強いことから、条件によっては過剰に付着されることから、この余分な酸化グラフェンを除去することが好ましい。精製工程は溶媒による洗浄が好ましく、溶媒は前述した分散媒が好ましく、中でも水が好ましい。 It is also preferable to include a purification step of removing excess graphene oxide and additives after the step of bringing the graphene oxide dispersion into contact with the reinforcing fibers. When carbon fibers are used as the reinforcing fibers, graphene oxide has a strong interaction with the carbon fibers, so depending on the conditions, excessive graphene oxide may be attached, so it is preferable to remove this excess graphene oxide. In the purification step, washing with a solvent is preferable, and the solvent is preferably the above-mentioned dispersion medium, and water is particularly preferable.

該製造方法には乾燥工程、還元工程を含んでいても良い。乾燥工程は常温または加熱下での乾燥が好ましく、雰囲気は不活性雰囲気、大気、真空でもよい。還元工程は加熱による還元や、還元剤による還元が適当である。加熱による還元は好ましくは120℃以上、より好ましくは150℃以上である。酸化グラフェンの分解を防ぐ観点からは、700℃以下が好ましい。雰囲気は不活性雰囲気、大気、真空でもよい。還元剤を用いる場合は前述の通り、混合工程で添加した還元剤を使用しても良いし、別途還元剤を酸化グラフェンで被覆した強化繊維に適用しても良い。 The manufacturing method may include a drying step and a reduction step. The drying step is preferably performed at room temperature or under heating, and the atmosphere may be an inert atmosphere, air, or vacuum. Reduction by heating or reduction using a reducing agent is suitable for the reduction step. Reduction by heating is preferably carried out at a temperature of 120°C or higher, more preferably 150°C or higher. From the viewpoint of preventing decomposition of graphene oxide, the temperature is preferably 700°C or less. The atmosphere may be an inert atmosphere, air, or vacuum. When using a reducing agent, as described above, the reducing agent added in the mixing step may be used, or a reducing agent may be separately applied to the reinforcing fibers coated with graphene oxide.

[繊維強化プラスチックおよびその成形方法]
本発明の繊維強化プラスチックは、酸化グラフェンで被覆された強化繊維と、マトリックス樹脂を含む繊維強化プラスチックであって、前記繊維強化プラスチック中の強化繊維とマトリクス樹脂との体積比が、15:85~50:50であり、かつ前記マトリックス樹脂は、ラジカル硬化型樹脂を30~100質量%含むことを特徴とする繊維強化プラスチックである。
[Fiber-reinforced plastic and its molding method]
The fiber-reinforced plastic of the present invention is a fiber-reinforced plastic containing reinforcing fibers coated with graphene oxide and a matrix resin, wherein the volume ratio of the reinforcing fibers to the matrix resin in the fiber-reinforced plastic is 15:85 to 15:85. 50:50, and the matrix resin is a fiber-reinforced plastic characterized in that it contains 30 to 100% by mass of a radical curable resin.

本発明の繊維強化プラスチックにおける強化繊維とマトリクス樹脂の体積比は、15:85~50:50であり、より好ましくは20:80~50:50であり、さらに好ましくは30:70~50:50である。上記範囲とすることで、成形性と強度のバランスをとることができる。 The volume ratio of reinforcing fibers to matrix resin in the fiber-reinforced plastic of the present invention is 15:85 to 50:50, more preferably 20:80 to 50:50, even more preferably 30:70 to 50:50. It is. By setting it as the above-mentioned range, it is possible to maintain a balance between moldability and strength.

本発明の繊維強化プラスチックの成型方法としては、特に限定されないが、型に繊維骨材を敷き、硬化剤を混合した樹脂を脱泡しながら多重積層してゆくハンドレイアップ法やスプレーアップ法のほか、あらかじめ骨材と樹脂を混合したシート状のものを金型で圧縮成型するSMCプレス法、インジェクション成形の様に繊維を敷き詰めた合わせ型に樹脂を注入するRTM法、オートクレーブで熱硬化性樹脂を硬化させて成形する方法が挙げられる。 Methods for molding the fiber-reinforced plastic of the present invention include, but are not particularly limited to, a hand lay-up method in which fiber aggregate is placed in a mold, and resin mixed with a curing agent is laminated in multiple layers while defoaming, and a spray-up method. In addition, there is the SMC press method, in which a sheet-like mixture of aggregate and resin is compression-molded in a mold, the RTM method, in which resin is injected into a mating mold lined with fibers similar to injection molding, and thermosetting resin is molded in an autoclave. One example is a method of curing and molding.

繊維強化プラスチックの成形に際して、特に限定はないが適宜必要量の硬化剤、促進剤、助促進剤、鎖移動剤等を用いてもよい。 When molding fiber-reinforced plastics, although there are no particular limitations, appropriate amounts of curing agents, accelerators, co-promoters, chain transfer agents, etc. may be used.

[マトリクス樹脂]
本発明の繊維強化プラスチックのマトリクス樹脂は、ラジカル硬化型樹脂を30~100質量%含む。好ましくは50質量%以上であり、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。
[Matrix resin]
The matrix resin of the fiber-reinforced plastic of the present invention contains 30 to 100% by mass of radical curable resin. Preferably it is 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more.

本発明の繊維強化プラスチックのマトリックス樹脂として用いられるラジカル硬化型樹脂としては、熱硬化性アクリル樹脂・不飽和ポリエステル樹脂・アリル樹脂(ジアリルフタレート樹脂)・エポキシアクリレート樹脂(ビニルエステル樹脂)・ウレタンアクリレート樹脂を用いることができる。これらの樹脂は単独で用いても複数混合してもよい。これらの中でも高強度・高弾性の観点からビニルエステル樹脂が好ましく、ビスフェノール型のビニルエステル樹脂がさらに好ましい。 Radical curing resins used as the matrix resin of the fiber reinforced plastic of the present invention include thermosetting acrylic resins, unsaturated polyester resins, allyl resins (diallyl phthalate resins), epoxy acrylate resins (vinyl ester resins), and urethane acrylate resins. can be used. These resins may be used alone or in combination. Among these, vinyl ester resins are preferred from the viewpoint of high strength and high elasticity, and bisphenol type vinyl ester resins are more preferred.

本発明のマトリクス樹脂は、ラジカル硬化型樹脂以外のその他の樹脂成分を含んでいてもよい。その他の樹脂成分は、ラジカル硬化型樹脂と相溶することが好ましい。これらの樹脂としては特に限定されないが、エポキシ樹脂・ウレタン樹脂・アルキッド樹脂・ユリア樹脂・メラミン樹脂などの熱硬化性樹脂を使用することができる。中でも高強度・高弾性の観点からエポキシ樹脂を用いることが好ましい。 The matrix resin of the present invention may contain resin components other than the radical curable resin. It is preferable that the other resin components are compatible with the radical curable resin. These resins are not particularly limited, but thermosetting resins such as epoxy resins, urethane resins, alkyd resins, urea resins, and melamine resins can be used. Among them, it is preferable to use epoxy resin from the viewpoint of high strength and high elasticity.

その他の樹脂成分の含有量は、マトリクス樹脂の0~70質量%であることが好ましく、0~50質量%がより好ましく、0~30質量%であることがさらに好ましい。マトリクス樹脂中のラジカル硬化型樹脂が30質量%未満である場合は、成形が困難となるため好ましくない。 The content of other resin components is preferably 0 to 70% by mass of the matrix resin, more preferably 0 to 50% by mass, and even more preferably 0 to 30% by mass. If the amount of radical curable resin in the matrix resin is less than 30% by mass, it is not preferable because molding becomes difficult.

マトリックス樹脂には本発明の主旨に反しない限りで各種添加剤を用いても良い。添加剤としては、紫外線吸収剤、帯電防止剤、離型剤、増量剤、着色剤、難燃剤、滑剤、可塑剤等を上げることができる。 Various additives may be used in the matrix resin as long as they do not go against the spirit of the present invention. Examples of additives include ultraviolet absorbers, antistatic agents, mold release agents, extenders, colorants, flame retardants, lubricants, plasticizers, and the like.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. In addition, unless otherwise specified, "parts" shall mean "parts by mass" and "%" shall mean "% by mass."

[ラマンスペクトル測定]
ラマン分光分析は以下の装置、条件により行った。
測定装置:顕微ラマン(日本分光NRS-3100)
測定条件:532nmレーザー使用、対物レンズ20倍、CCD取り込み時間1秒、積算
32回(分解能=4cm-1
測定内容:酸化グラフェンに特徴的なG、Dバンドの有無により存在を確認する。
[Raman spectrum measurement]
Raman spectroscopic analysis was performed using the following equipment and conditions.
Measuring device: Raman microscope (JASCO NRS-3100)
Measurement conditions: 532 nm laser used, 20x objective lens, CCD capture time 1 second, 32 integration times (resolution = 4 cm -1 )
Measurement details: The presence of graphene oxide is confirmed by the presence or absence of characteristic G and D bands.

[X線光電子分光(XPS)]
以下の条件で分析し、酸素、炭素含有量を確認した。
島津クレイトス社製 AXIS-NOVAX線線源・出力 AlKα―100Wパスエネルギー40eV中和銃ON
[X-ray photoelectron spectroscopy (XPS)]
It was analyzed under the following conditions and the oxygen and carbon contents were confirmed.
Shimadzu Kratos AXIS-NOVAX-ray source/output AlKα-100W pass energy 40eV neutralization gun ON

[マイクロドロップレット試験]
炭素繊維に樹脂ドロップレットを成形後、東栄産業製・複合材界面特性評価装置HM410を用いて、引き抜き速度0.12mm/mの速度で5回実施し、界面せん断強度を分析した。最小最大の値は排除し、中間3値の平均をその試験での結果とした。
[Microdroplet test]
After molding resin droplets on carbon fibers, the interfacial shear strength was analyzed using a composite material interface property evaluation device HM410 manufactured by Toei Sangyo Co., Ltd., five times at a drawing speed of 0.12 mm/m. The minimum and maximum values were excluded, and the average of the three intermediate values was taken as the result for that test.

[動的粘弾性(DMA)評価]
厚さ3mm、幅5mm、長さ50mmとなるように成形品を切り出し、動的粘弾性(DMA)測定装置『RSA-G2』で30℃での弾性率を評価した。
[Dynamic viscoelasticity (DMA) evaluation]
A molded product was cut out to have a thickness of 3 mm, a width of 5 mm, and a length of 50 mm, and the elastic modulus at 30° C. was evaluated using a dynamic rheological modulus (DMA) measuring device “RSA-G2”.

[弾性率(ヤング率)評価]
厚さ3mm、幅10mm、長さ80mmとなるように成形品を切り出し、インストロン社製万能試験機を用いて、曲げ幅40mm、曲げ速度1.5mm/mでの3点曲げにより弾性率を評価した。
[Evaluation of elastic modulus (Young's modulus)]
The molded product was cut out to have a thickness of 3 mm, a width of 10 mm, and a length of 80 mm. Using an Instron universal testing machine, the elastic modulus was determined by three-point bending at a bending width of 40 mm and a bending speed of 1.5 mm/m. evaluated.

[酸化グラフェンの調製例]
酸化グラフェン分散液を以下の工程で合成した。反応容器にあらかじめ黒鉛(伊藤黒鉛株式会社製Z-25)15g、硫酸(富士フイルム和光純薬株式会社製)640gを入れ、30℃に調整しながら過マンガン酸カリウム(富士フイルム和光純薬株式会社製)45gを入れた。投入後、30分、35℃に昇温し2時間反応させた。
[Example of preparation of graphene oxide]
A graphene oxide dispersion liquid was synthesized using the following steps. 15 g of graphite (Z-25, manufactured by Ito Graphite Co., Ltd.) and 640 g of sulfuric acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were placed in a reaction container in advance, and potassium permanganate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added while adjusting the temperature to 30°C. (manufactured by) was added. After the addition, the temperature was raised to 35° C. for 30 minutes, and the reaction was allowed to proceed for 2 hours.

反応後反応液を水1070ml、30%過酸化水素水(富士フイルム和光純薬株式会社製)42mlを加え反応停止させた。得られた反応液は静置沈降により、上澄みの除去とイオン交換水による再分散を繰り返し精製した。精製後、ホモジナイザーにより剥離操作を行い、酸化グラフェン分散液(1)(0.1%水分散体)を調製した。得られた酸化グラフェンは電子顕微鏡観察により単層であるとわかった。XPS分析より求められたO/Cは0.55であった。 After the reaction, 1070 ml of water and 42 ml of 30% hydrogen peroxide solution (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added to the reaction solution to stop the reaction. The obtained reaction solution was purified by static sedimentation by repeated removal of the supernatant and redispersion with ion-exchanged water. After purification, a peeling operation was performed using a homogenizer to prepare a graphene oxide dispersion (1) (0.1% water dispersion). The obtained graphene oxide was found to be a single layer by electron microscopy. O/C determined by XPS analysis was 0.55.

[酸化グラフェンで被覆された炭素繊維の調製例]
酸化グラフェン分散液(1)に炭素繊維(そのままおよび、大気下350℃で表面の不純物を除去したもの、CF-PおよびCF-Hと呼ぶ)、炭素繊維クロスおよび炭素繊維ペーパー(いずれも日精株式会社製)を1分間含侵させたのち、水洗し余分な酸化グラフェンを除去した。40℃で送風乾燥させることで、酸化グラフェンで被覆された炭素繊維、酸化グラフェンで被覆された炭素繊維クロスおよび酸化グラフェンで被覆された炭素繊維ペーパーを得た。
[Example of preparation of carbon fiber coated with graphene oxide]
Graphene oxide dispersion (1), carbon fibers (as they are, and those with surface impurities removed at 350°C in the atmosphere, referred to as CF-P and CF-H), carbon fiber cloth, and carbon fiber paper (all manufactured by Nissei Co., Ltd.) After impregnating the sample with 100% graphene oxide (manufactured by the same company) for 1 minute, the sample was washed with water to remove excess graphene oxide. By drying with air at 40° C., graphene oxide-covered carbon fibers, graphene oxide-covered carbon fiber cloth, and graphene oxide-covered carbon fiber paper were obtained.

[実施例1、実施例2]ビニルエステル樹脂でのマイクロドロップレット試験
ビニルエステル樹脂(RF-701、昭和電工株式会社製)を100質量部、促進剤として8%オクテン酸コバルトを0.3質量部、硬化剤として328EM(化薬アクゾ株式会社製)を2質量部用いて、樹脂と促進剤を5分間混合し、そこへ硬化剤を添加し3分間混合後に、酸化グラフェンで被覆した炭素繊維(CF-P(実施例1)およびCF-H(実施例2))に塗布し30分間室温で放置後、送風オーブンで60℃4時間硬化させてドロップレットを作製した。
[Example 1, Example 2] Microdroplet test with vinyl ester resin 100 parts by mass of vinyl ester resin (RF-701, manufactured by Showa Denko K.K.), 0.3 mass of 8% cobalt octenoate as an accelerator Using 2 parts by mass of 328EM (manufactured by Kayaku Akzo Co., Ltd.) as a curing agent, the resin and accelerator were mixed for 5 minutes, the curing agent was added thereto, and after mixing for 3 minutes, carbon fibers coated with graphene oxide were prepared. (CF-P (Example 1) and CF-H (Example 2)) was coated, left at room temperature for 30 minutes, and then cured in a blower oven at 60°C for 4 hours to produce droplets.

[比較例1、比較例2]
酸化グラフェンで被覆していない炭素繊維(CF-PおよびCF-H)を用いた以外は実施例1,2と同様にドロップレットを作製した。
[Comparative example 1, comparative example 2]
Droplets were produced in the same manner as in Examples 1 and 2, except that carbon fibers (CF-P and CF-H) not coated with graphene oxide were used.

実施例1,2、比較例1,2のマイクロドロップレット試験結果を表1に示した。結果、酸化グラフェンで被覆したことで、ビニルエステルで課題であった強度を向上させることができた。このことからより成形性に優れ且つ高強度・高弾性率の炭素繊維強化プラスチックを提供できた。 The microdroplet test results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1. As a result, by coating with graphene oxide, we were able to improve the strength, which was an issue with vinyl ester. This made it possible to provide a carbon fiber reinforced plastic with excellent moldability, high strength, and high modulus of elasticity.

Figure 2023159916000001
Figure 2023159916000001

[実施例3、実施例4]
酸化グラフェンで被覆した炭素繊維クロス(実施例3)、酸化グラフェンで被覆した炭素繊維ペーパー(実施例4)をそれぞれ10枚重ねにし、ビニルエステル樹脂(RF-701、昭和電工株式会社製)を100質量部、促進剤として8%オクテン酸コバルトを0.3質量部、硬化剤としてパークミルH-80(日油株式会社製)を2質量部用いて、金型温度80℃で60分間プレスしたのち、120℃15時間アフターキュアし繊維強化プラスチックを得た。
[Example 3, Example 4]
10 sheets each of carbon fiber cloth coated with graphene oxide (Example 3) and carbon fiber paper coated with graphene oxide (Example 4) were stacked, and 100 sheets of vinyl ester resin (RF-701, manufactured by Showa Denko K.K.) were stacked. After pressing for 60 minutes at a mold temperature of 80°C using 0.3 parts by mass of 8% cobalt octenoate as an accelerator and 2 parts by mass of Percmil H-80 (manufactured by NOF Corporation) as a hardening agent. After curing at 120° C. for 15 hours, a fiber-reinforced plastic was obtained.

[比較例3、比較例4]
酸化グラフェンで被覆していない炭素繊維(CF-PおよびCF-H)を用いた以外は実施例3,4と同様に繊維強化プラスチックを作製した。
[Comparative Example 3, Comparative Example 4]
Fiber-reinforced plastics were produced in the same manner as in Examples 3 and 4, except that carbon fibers (CF-P and CF-H) not coated with graphene oxide were used.

[比較例5,6]
酸化グラフェンで被覆した炭素繊維クロス(参考例1)、酸化グラフェンで被覆した炭素繊維ペーパー(参考例2)をそれぞれ10枚重ねにし、熱硬化性樹脂としてエポキシ樹脂(828EL、三菱ケミカル株式会社製)を100質量部、硬化剤としてキュアゾール1B2MZ(四国化成工業株式会社製)を5質量部用いて、金型温度110℃で60分間プレスしたのち、120℃15時間アフターキュアし繊維強化プラスチックを得た。
[Comparative Examples 5 and 6]
Ten sheets each of carbon fiber cloth coated with graphene oxide (Reference Example 1) and carbon fiber paper coated with graphene oxide (Reference Example 2) were stacked, and epoxy resin (828EL, manufactured by Mitsubishi Chemical Corporation) was used as the thermosetting resin. Using 100 parts by mass and 5 parts by mass of Curesol 1B2MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing agent, they were pressed at a mold temperature of 110°C for 60 minutes, and then after-cured at 120°C for 15 hours to obtain a fiber-reinforced plastic. .

実施例3,4、比較例3,4、5,6のDMA、インストロン評価結果を表2に示した。結果、酸化グラフェンで被覆したことで、ビニルエステルで課題であった強度を向上させることができた。また、酸化グラフェンで被覆した炭素繊維とビニルエステル樹脂を組み合わせることで、従来の熱硬化性樹脂であるエポキシ樹脂と比べて同等以上の強度を発現することが分かった。このことから、酸化グラフェンで被覆した炭素繊維とビニルエステル樹脂を組み合わせることで、より成形性に優れ且つ高強度・高弾性率の炭素繊維強化プラスチックを提供できた。 Table 2 shows the DMA and Instron evaluation results of Examples 3 and 4 and Comparative Examples 3, 4, 5, and 6. As a result, by coating with graphene oxide, we were able to improve the strength, which was an issue with vinyl ester. It was also found that by combining carbon fiber coated with graphene oxide and vinyl ester resin, strength equal to or higher than that of epoxy resin, a conventional thermosetting resin, was revealed. From this, by combining carbon fiber coated with graphene oxide and vinyl ester resin, it was possible to provide a carbon fiber reinforced plastic with excellent moldability, high strength, and high elastic modulus.

Figure 2023159916000002
Figure 2023159916000002

Claims (5)

酸化グラフェンで被覆された強化繊維と、マトリックス樹脂を含む繊維強化プラスチックであって、
前記繊維強化プラスチック中の強化繊維とマトリクス樹脂との体積比が、15:85~50:50であり、
かつ前記マトリックス樹脂は、ラジカル硬化型樹脂を30~100質量%含むことを特徴とする繊維強化プラスチック。
A fiber-reinforced plastic containing reinforced fibers coated with graphene oxide and a matrix resin,
The volume ratio of reinforcing fibers and matrix resin in the fiber-reinforced plastic is 15:85 to 50:50,
The fiber-reinforced plastic is characterized in that the matrix resin contains 30 to 100% by mass of a radical curable resin.
前記強化繊維がPAN系或いはピッチ系の炭素繊維であることを特徴とする請求項1に記載の繊維強化プラスチック。 The fiber-reinforced plastic according to claim 1, wherein the reinforcing fibers are PAN-based or pitch-based carbon fibers. 前記ラジカル硬化型樹脂がビニルエステル樹脂であることを特徴とする請求項1に記載の繊維強化プラスチック。 The fiber reinforced plastic according to claim 1, wherein the radical curable resin is a vinyl ester resin. 前記ラジカル硬化型樹脂がビニルエステル樹脂であることを特徴とする請求項2に記載の繊維強化プラスチック。 The fiber reinforced plastic according to claim 2, wherein the radical curable resin is a vinyl ester resin. 請求項1~4に記載の繊維強化プラスチックを成形する方法であって、金型を使用することを特徴とする繊維強化プラスチックの成型方法。 A method for molding the fiber-reinforced plastic according to claims 1 to 4, characterized in that a mold is used.
JP2022069842A 2022-04-21 2022-04-21 Manufacturing method of high elastic modulus fiber-reinforced plastic Pending JP2023159916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022069842A JP2023159916A (en) 2022-04-21 2022-04-21 Manufacturing method of high elastic modulus fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022069842A JP2023159916A (en) 2022-04-21 2022-04-21 Manufacturing method of high elastic modulus fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2023159916A true JP2023159916A (en) 2023-11-02

Family

ID=88516204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022069842A Pending JP2023159916A (en) 2022-04-21 2022-04-21 Manufacturing method of high elastic modulus fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2023159916A (en)

Similar Documents

Publication Publication Date Title
CN109796725B (en) Nano SiO chemically grafted on carbon fiber surface2Reinforced polyether-ether-ketone composite material and preparation method thereof
EP3502054A1 (en) Functionalized graphene oxide curable formulations
Rahmani et al. Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix
JP6771884B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP4971919B2 (en) Transparent laminate
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
CN102241849A (en) Carbon-fiber-reinforced polyethylene composite material
JP5022265B2 (en) Transparent laminate
JP2013173811A (en) Resin composition, molding material and method for producing the same
US10259917B2 (en) Carbon fibre-containing prepregs
KR20200032536A (en) Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
TWI753133B (en) Oxazoline-based dispersants, etc. for carbon materials, and carbon composite materials using these
JP4230466B2 (en) Vinyl ester resin composition, vinyl ester resin film, prepreg and method for producing molded article
JP2023159916A (en) Manufacturing method of high elastic modulus fiber-reinforced plastic
US20160083544A1 (en) Composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
KR100998184B1 (en) The oxyfluorinated carbon nanomaterials and the preparation method of epoxy curing resin using radioactive rays
JP2007169374A (en) Fullerenes-containing dispersion liquid
WO2022196624A1 (en) Resin composition, prepreg, and fiber-reinforced plastic
CN113430831B (en) High-temperature-resistant universal sizing agent for water-based carbon fibers, and preparation method and application thereof
Ying et al. The effect of coupling agents on the interfacial properties of wood‐fiber–reinforced polyimide composites
JP7178850B2 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and molded article
WO2021187453A1 (en) Resin composition, pre-preg, molded article, and pre-preg manufacturing method
CN112500599B (en) Recycled fibrous material and method
JP2001139831A (en) Carbon fiber-based bulk molding compound material and molded article