JP2020202729A - High-voltage power reception facility monitoring system - Google Patents

High-voltage power reception facility monitoring system Download PDF

Info

Publication number
JP2020202729A
JP2020202729A JP2019110568A JP2019110568A JP2020202729A JP 2020202729 A JP2020202729 A JP 2020202729A JP 2019110568 A JP2019110568 A JP 2019110568A JP 2019110568 A JP2019110568 A JP 2019110568A JP 2020202729 A JP2020202729 A JP 2020202729A
Authority
JP
Japan
Prior art keywords
power
generated
generation device
voltage
private
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019110568A
Other languages
Japanese (ja)
Inventor
靖幸 三谷
Yasuyuki Mitani
靖幸 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Electric Inc
Original Assignee
Kawamura Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Electric Inc filed Critical Kawamura Electric Inc
Priority to JP2019110568A priority Critical patent/JP2020202729A/en
Publication of JP2020202729A publication Critical patent/JP2020202729A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a high-voltage power reception facility monitoring system having a function of controlling a private power generation device so that the power generated by the private power generation device does not flow back to a commercial power system.SOLUTION: A high-voltage power reception facility monitoring system includes a monitoring device 2 that monitors a cubicle 1 which receives commercial power transmitted from a power company, is connected to a private power generation device, and supplies both power to a load, and that transmits use power information and generated power information to an external cloud server 5. The monitoring device 2 includes a generated power control unit that controls power generated by a photovoltaic power generation device 7. The generated power control unit controls the generated power so as not to exceed use power.SELECTED DRAWING: Figure 1

Description

本発明は、高圧受電設備を外部から監視する高圧受電設備監視システムに関し、特に自家発電装置を備えた高圧受電設備を監視する高圧受電設備監視システムに関する。 The present invention relates to a high-voltage power receiving equipment monitoring system that monitors high-voltage power receiving equipment from the outside, and more particularly to a high-voltage power receiving equipment monitoring system that monitors high-voltage power receiving equipment provided with a private power generation device.

高圧受電設備であるキュービクルに高圧受電設備の状態を監視する監視装置を設けて、外部から高圧受電設備の受電電力や内部温度等を監視するシステムがある。
例えば特許文献1のキュービクル管理システムでは、キュービクル内に監視装置を配置する一方、外部に監視装置が収集した情報を管理するクラウドサーバを配置し、電力、電流、電圧を監視装置が計測してクラウドサーバに送信し、データを蓄積したクラウドサーバにアクセスすることで計測データを閲覧して高圧受電設備の状況を把握可能とした。
There is a system in which a monitoring device for monitoring the state of the high-voltage power receiving equipment is provided in the cubicle, which is the high-voltage power receiving equipment, and the received power and the internal temperature of the high-voltage power receiving equipment are monitored from the outside.
For example, in the cubicle management system of Patent Document 1, while a monitoring device is arranged in the cubicle, a cloud server that manages information collected by the monitoring device is arranged outside, and the monitoring device measures power, current, and voltage in the cloud. By sending to the server and accessing the cloud server that stores the data, it is possible to browse the measurement data and grasp the status of the high-voltage power receiving equipment.

特開2019−32761号公報JP-A-2019-32761

上記従来のキュービクル管理システムでは、キュービクルに設置される監視装置により、商用電力から供給される電力に加えて需要家が備えている自家発電装置による発電電力、更には発電電力の逆潮流が発生したら、その売電電力も監視した。
一方で、電力会社との契約が売電無しの場合、即ち逆潮流を不可とする契約の場合は、逆潮流が発生しないよう逆潮流を遮断する必要があり、別途逆電力継電器を設置して逆潮流が発生しないよう制御した。
しかしながら、自家発電装置による逆潮流を不可とする契約の場合でも、監視装置が逆潮流が発生しないよう制御できれば、別途逆電力継電器を設ける必要が無くなりコストダウンを図ることができる。
In the above-mentioned conventional cubicle management system, if the monitoring device installed in the cubicle generates the power generated by the private power generation device provided by the customer in addition to the power supplied from the commercial power, and further, if the reverse power flow of the generated power is generated. , The power sold was also monitored.
On the other hand, if the contract with the electric power company does not sell power, that is, if the contract prohibits reverse power flow, it is necessary to shut off the reverse power flow so that reverse power flow does not occur, and a separate reverse power relay is installed. Control was performed so that reverse power flow did not occur.
However, even in the case of a contract that prohibits reverse power flow by a private power generation device, if the monitoring device can be controlled so that reverse power flow does not occur, it is not necessary to separately install a reverse power relay, and cost reduction can be achieved.

そこで、本発明はこのような問題点に鑑み、自家発電装置の発電電力が商用電力系統に逆潮流することのないよう自家発電装置を制御する機能を備えた高圧受電設備監視システムを提供することを目的としている。 Therefore, in view of such a problem, the present invention provides a high-voltage power receiving equipment monitoring system having a function of controlling the private power generation device so that the generated power of the private power generation device does not flow back to the commercial power system. It is an object.

上記課題を解決する為に、請求項1の発明は、電力会社から送電された商用電力を受電すると共に自家発電装置が接続されて、双方の電力を負荷に供給する高圧受電設備を監視して、外部のクラウドサーバに使用電力情報及び発電電力情報を送信する監視装置を備えた高圧受電設備監視システムであって、監視装置は、自家発電装置の発電電力を制御する発電電力制御部を具備し、発電電力制御部は、発電電力が使用電力を超えないよう制御することを特徴とする。
この構成によれば、監視装置が発電電力制御部を備えて、発電電力が使用電力を超えないよう制御、即ち逆潮流が発生しないよう自家発電装置を制御するため、逆電力継電器の動作による遮断を抑制して、自家発電装置の停止を防ぐことができる。
In order to solve the above problem, the invention of claim 1 monitors a high-voltage power receiving facility that receives commercial power transmitted from an electric power company and is connected to a private power generation device to supply both powers to a load. , A high-voltage power receiving equipment monitoring system equipped with a monitoring device that transmits power usage information and generated power information to an external cloud server, and the monitoring device includes a generated power control unit that controls the generated power of the private power generation device. The generated power control unit is characterized in that the generated power is controlled so as not to exceed the power used.
According to this configuration, the monitoring device is provided with a generated power control unit to control the generated power so as not to exceed the used power, that is, to control the private power generation device so that reverse power flow does not occur, so that the power is cut off by the operation of the reverse power relay. It is possible to prevent the private power generation device from stopping.

請求項2の発明は、請求項1に記載の構成において、自家発電装置が太陽光発電装置であり、発電電力制御部は、発電電力を交流に変換するパワーコンディショナを制御して発電電力の抑制を図ることを特徴とする。
この構成のよれば、パワーコンディショナを制御することで、発電電力の無段階制御が可能であり、買電電力を最小限に留めることができ使用電力に応じた無駄の無い制御が可能となる。
In the invention of claim 2, in the configuration according to claim 1, the private power generation device is a photovoltaic power generation device, and the generated power control unit controls a power conditioner that converts the generated power into AC to generate power. It is characterized by trying to suppress it.
According to this configuration, by controlling the power conditioner, stepless control of the generated power is possible, the purchased power can be kept to a minimum, and the control without waste according to the power used becomes possible. ..

本発明によれば、使用電力情報及び発電電力情報をクラウドサーバに送信する監視装置が発電電力制御部を備えて、発電電力が使用電力を超えないよう制御、即ち逆潮流が発生しないよう自家発電装置を制御するため、逆電力継電器の動作による遮断を抑制して、自家発電装置の停止を防ぐことができる。 According to the present invention, the monitoring device that transmits the used power information and the generated power information to the cloud server is provided with the generated power control unit, and controls the generated power so as not to exceed the used power, that is, private power generation so as not to generate a reverse power flow. Since the device is controlled, it is possible to suppress the interruption due to the operation of the reverse power relay and prevent the private power generation device from stopping.

本発明に係る高圧受電監視システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the high voltage power receiving monitoring system which concerns on this invention. 監視装置のブロック図である。It is a block diagram of a monitoring device. 発電電力制御部の制御説明図である。It is a control explanatory drawing of the generated power control part. 制御内容の説明図であり、買電電力と使用電力の関係を示すグラフ図である。It is explanatory drawing of the control content, and is the graph figure which shows the relationship between the power purchased power and the power used.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る高圧受電設備監視システムの一例を示す概略構成図を示し、1は高圧受電設備を収容するキュービクル、2はキュービクル1の内部に設置された監視装置、3は自家発電装置としての太陽電池モジュール、4は太陽電池モジュール3が発電した直流電力を交流に変換するパワーコンディショナ、5は監視装置2が収集した各種情報を蓄積するクラウドサーバ、6はキュービクル1の管理者がキュービクル1の状況を把握するために使用する管理端末である。太陽電池モジュール3とパワーコンディショナ4とで太陽光発電装置7を構成している。 Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram showing an example of a high-voltage power receiving equipment monitoring system according to the present invention, where 1 is a cubicle accommodating high-voltage power receiving equipment, 2 is a monitoring device installed inside the cubicle 1, and 3 is a private power generation device. The solar cell module 4 is a power conditioner that converts the DC power generated by the solar cell module 3 into alternating current, 5 is a cloud server that stores various information collected by the monitoring device 2, and 6 is the administrator of the cubicle 1. This is a management terminal used to grasp the status of the cubicle 1. The solar cell module 3 and the power conditioner 4 constitute a photovoltaic power generation device 7.

監視装置2は通信ネットワークNに有線又は無線で接続され、キュービクル1内の各所に設置したセンサ等から収集した電圧、電流、温度の情報、更には算出した使用電力情報、発電電力情報等の情報をクラウドサーバ5に送信する。また、管理端末6は監視装置2及びクラウドサーバ5の双方に通信ネットワークNを介して接続され、必要な情報を入手できる。 The monitoring device 2 is connected to the communication network N by wire or wirelessly, and has voltage, current, and temperature information collected from sensors and the like installed in various places in the cubicle 1, as well as calculated power consumption information, power generation information, and the like. To the cloud server 5. Further, the management terminal 6 is connected to both the monitoring device 2 and the cloud server 5 via the communication network N, and necessary information can be obtained.

図2は監視装置2のブロック図を示している。図2に示すように、監視装置2は、図示しないスマートメータと通信するスマートメータ通信IF21、高圧又は低圧電路に設置された図示しない電路から電圧情報を入力する電圧情報入力部22、同様に高圧又は低圧電路に設置された図示しない変流器からの電流情報を入力する電流情報入力部23、計測値等を表示する表示部24、入手したデータを記憶する記憶部25、パワーコンディショナ4を制御する発電電力制御部26、使用電力、発電電力の算出等所定の演算を実施すると共に監視装置2を制御する監視装置CPU27、クラウドサーバ5等と通信する外部通信IF28等を備えている。 FIG. 2 shows a block diagram of the monitoring device 2. As shown in FIG. 2, the monitoring device 2 includes a smart meter communication IF21 that communicates with a smart meter (not shown), a voltage information input unit 22 that inputs voltage information from an electric path (not shown) installed in a high-voltage or low-voltage path, and similarly high-voltage. Alternatively, a current information input unit 23 for inputting current information from a current transformer (not shown) installed on a low voltage path, a display unit 24 for displaying measured values, a storage unit 25 for storing obtained data, and a power conditioner 4 are provided. It includes a generated power control unit 26 to control, a monitoring device CPU 27 that controls a monitoring device 2 while performing predetermined calculations such as calculation of power consumption and generated power, and an external communication IF 28 that communicates with a cloud server 5 and the like.

尚、スマートメータは、電力会社から送電された商用電力である高圧受電電力が、キュービクル1内において低圧電力に変換された後の負荷に供給される需要電力を計測するし、逆潮流が発生した場合は逆潮流電力も合わせて計測する。 The smart meter measures the demand power supplied to the load after the high-voltage received power, which is the commercial power transmitted from the electric power company, is converted into the low-voltage power in the cubicle 1, and reverse power flow occurs. In that case, the reverse power flow is also measured.

監視装置2は、電流情報入力部23の情報から逆潮流の発生を監視すると共に、使用電力が予め設定された電力値(目標デマンド値)を超えると想定されると、特定の負荷に供給する電力を削減或いは遮断するデマンド制御を実施する。このときの制御の基準となる目標デマンド値はクラウドサーバ5に登録されており、この値を入手して制御が成される。 The monitoring device 2 monitors the occurrence of reverse power flow from the information of the current information input unit 23, and supplies the power to a specific load when it is assumed that the power consumption exceeds a preset power value (target demand value). Implement demand control to reduce or cut off power. The target demand value, which is the reference for the control at this time, is registered in the cloud server 5, and the control is performed by obtaining this value.

図3は発電電力制御部26の制御説明図であり、太陽光発電装置7は太陽電池モジュール3とパワーコンディショナ4の組を3組備えた構成を示している。発電電力制御部26はスマートメータから送られて来る受電電力情報を基に、逆潮流が発生しないよう個々のパワーコンディショナ4を制御する。
図4は具体的な制御内容を示すグラフ図であり、商用電力から受電する買電電力と使用電力の関係を示している。図4において、Q1は負荷に供給される使用電力、Q2は太陽光発電装置7の発電電力、Q3は商用電力からの買電電力であり、使用電力Q1が太陽光発電装置7の最大発電電力Qmを超えている間(T1の領域)は不足分を買電電力Q3で賄い、最大発電電力Qmが使用電力Q1を上回る間(T2の領域)は、買電電力Q3を使用すること無く発電電力Q2を制御して使用電力分を賄い、逆潮流を防止することができる。また、図4に示すように、パワーコンディショナ4を制御することで発電電力Q2を無段階制御することができる。
FIG. 3 is a control explanatory view of the generated power control unit 26, and shows a configuration in which the photovoltaic power generation device 7 includes three sets of a solar cell module 3 and a power conditioner 4. The generated power control unit 26 controls each power conditioner 4 so that reverse power flow does not occur, based on the received power information sent from the smart meter.
FIG. 4 is a graph showing specific control contents, and shows the relationship between the purchased power received from commercial power and the used power. In FIG. 4, Q1 is the power used to be supplied to the load, Q2 is the power generated by the solar power generation device 7, Q3 is the power purchased from commercial power, and the power used Q1 is the maximum power generated by the solar power generation device 7. While it exceeds Qm (T1 area), the shortage is covered by the purchased power Q3, and while the maximum generated power Qm exceeds the used power Q1 (T2 area), power is generated without using the purchased power Q3. It is possible to control the electric power Q2 to cover the amount of electric power used and prevent backflow. Further, as shown in FIG. 4, the generated power Q2 can be steplessly controlled by controlling the power conditioner 4.

このように、高圧受電設備監視システムが逆潮流が発生しないよう太陽光発電装置7を制御するため、逆電力継電器の動作による遮断を抑制して、太陽光発電装置7の停止を防ぐことができる。
また、監視装置2は逆潮流の発生を監視できるため、系統連系規程に定める逆電力継電器として使用することも可能であり、別途逆電力継電器等の逆潮流の発生を防止する設備を設ける必要が無くなり、最小限のコストで逆潮流を防止できる。
更に、パワーコンディショナ4を制御することで、発電電力Q2を無段階制御して買電電力Q3を最小限に留めることができ、使用電力に応じた無駄の無い制御が可能となる。
In this way, since the high-voltage power receiving equipment monitoring system controls the photovoltaic power generation device 7 so that reverse power flow does not occur, it is possible to suppress interruption due to the operation of the reverse power relay and prevent the photovoltaic power generation device 7 from stopping. ..
Further, since the monitoring device 2 can monitor the occurrence of reverse power flow, it can also be used as a reverse power relay specified in the grid interconnection regulations, and it is necessary to separately provide equipment for preventing the occurrence of reverse power flow such as a reverse power relay. Can be prevented and reverse power flow can be prevented at the minimum cost.
Further, by controlling the power conditioner 4, the generated power Q2 can be steplessly controlled to minimize the purchased power Q3, and the power consumption can be controlled without waste.

尚、上記実施形態は、自家発電装置が太陽光発電装置7の場合を説明したが、風力発電等の他の再生可能発電設備の場合も同様に制御できる。 In the above embodiment, the case where the private power generation device is the solar power generation device 7 has been described, but the same control can be performed in the case of other renewable power generation facilities such as wind power generation.

1・・キュービクル(高圧受電設備)、2・・監視装置、4・・パワーコンディショナ、5・・クラウドサーバ、7・・太陽光発電装置(自家発電装置)、21・・スマートメータ通信IF、22・・電圧情報入力部、23・・電流情報入力部、26・・発電電力制御部。 1 ... cubicle (high voltage power receiving equipment), 2 ... monitoring device, 4 ... power conditioner, 5 ... cloud server, 7 ... solar power generation device (private power generation device), 21 ... smart meter communication IF, 22 ... Voltage information input unit, 23 ... Current information input unit, 26 ... Power generation control unit.

Claims (2)

電力会社から送電された商用電力を受電すると共に自家発電装置が接続されて、双方の電力を負荷に供給する高圧受電設備を監視して、外部のクラウドサーバに使用電力情報及び発電電力情報を送信する監視装置を備えた高圧受電設備監視システムであって、
前記監視装置は、前記自家発電装置の発電電力を制御する発電電力制御部を具備し、
前記発電電力制御部は、前記発電電力が使用電力を超えないよう制御することを特徴とする高圧受電設備監視システム。
It receives commercial power transmitted from the electric power company and is connected to a private power generation device to monitor the high-voltage power receiving equipment that supplies both powers to the load, and sends power usage information and generated power information to an external cloud server. It is a high-voltage power receiving equipment monitoring system equipped with a monitoring device.
The monitoring device includes a power generation power control unit that controls the power generated by the private power generation device.
The generated power control unit is a high-voltage power receiving equipment monitoring system characterized in that the generated power is controlled so as not to exceed the used power.
前記自家発電装置が太陽光発電装置であり、前記発電電力制御部は、発電電力を交流に変換するパワーコンディショナを制御して発電電力の抑制を図ることを特徴とする請求項1記載の高圧受電設備監視システム。 The high pressure according to claim 1, wherein the private power generation device is a photovoltaic power generation device, and the generated power control unit controls a power conditioner that converts the generated power into AC to suppress the generated power. Power receiving equipment monitoring system.
JP2019110568A 2019-06-13 2019-06-13 High-voltage power reception facility monitoring system Pending JP2020202729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019110568A JP2020202729A (en) 2019-06-13 2019-06-13 High-voltage power reception facility monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019110568A JP2020202729A (en) 2019-06-13 2019-06-13 High-voltage power reception facility monitoring system

Publications (1)

Publication Number Publication Date
JP2020202729A true JP2020202729A (en) 2020-12-17

Family

ID=73742872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019110568A Pending JP2020202729A (en) 2019-06-13 2019-06-13 High-voltage power reception facility monitoring system

Country Status (1)

Country Link
JP (1) JP2020202729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961195B1 (en) * 2021-09-17 2021-11-05 松尾建設株式会社 Power control systems, power control methods, and power control programs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005168A (en) * 2010-06-14 2012-01-05 Daiwa House Industry Co Ltd Energy management system and energy management method
JP2012175858A (en) * 2011-02-23 2012-09-10 Ntt Facilities Inc Photovoltaic power generation system and power conversion device comprising system
JP2017093127A (en) * 2015-11-09 2017-05-25 株式会社デンソー Power controller
WO2017090151A1 (en) * 2015-11-26 2017-06-01 三菱電機株式会社 Water heater control system, control method, and program
JP2017103866A (en) * 2015-11-30 2017-06-08 河村電器産業株式会社 Cubicle
JP2017169292A (en) * 2016-03-14 2017-09-21 シャープ株式会社 Controller, control method, and program
WO2018229861A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Control device, power management system, control method for appliance, and program
JP2019032761A (en) * 2017-08-09 2019-02-28 河村電器産業株式会社 Cubicle management system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005168A (en) * 2010-06-14 2012-01-05 Daiwa House Industry Co Ltd Energy management system and energy management method
JP2012175858A (en) * 2011-02-23 2012-09-10 Ntt Facilities Inc Photovoltaic power generation system and power conversion device comprising system
JP2017093127A (en) * 2015-11-09 2017-05-25 株式会社デンソー Power controller
WO2017090151A1 (en) * 2015-11-26 2017-06-01 三菱電機株式会社 Water heater control system, control method, and program
JP2017103866A (en) * 2015-11-30 2017-06-08 河村電器産業株式会社 Cubicle
JP2017169292A (en) * 2016-03-14 2017-09-21 シャープ株式会社 Controller, control method, and program
WO2018229861A1 (en) * 2017-06-13 2018-12-20 三菱電機株式会社 Control device, power management system, control method for appliance, and program
JP2019032761A (en) * 2017-08-09 2019-02-28 河村電器産業株式会社 Cubicle management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961195B1 (en) * 2021-09-17 2021-11-05 松尾建設株式会社 Power control systems, power control methods, and power control programs

Similar Documents

Publication Publication Date Title
JP5372724B2 (en) Power generation system using natural energy
KR100903304B1 (en) Device for covering the peak load
US8212405B2 (en) Metering assembly and customer load panel for power delivery
EP2420020B1 (en) System and method of monitoring and optimizing power quality in a network
JP5788306B2 (en) Distribution system monitoring control device and distribution system monitoring control method
WO2011129054A1 (en) Electric-power management system, electric-power management method, and section controller
US11223210B2 (en) Utility meter for use with distributed generation device
JP5933857B1 (en) Voltage control device and voltage measurement device
JP5793719B2 (en) Control device
EP3206275B1 (en) Output control and compensation for ac coupled systems
US10496060B2 (en) Power management system and method for power management
JP6386064B2 (en) Power management apparatus, power management method, and power management system
JP2016073003A (en) Power control system, method, and breaking controller
JP6478588B2 (en) Voltage control device and voltage measurement device
EP3506459A1 (en) Power management server, power management method, and power management system
JP6356517B2 (en) System monitoring and control device
JP2014217195A (en) Electricity rate setting system and electricity supply control system
KR101200950B1 (en) Power management system for using wired and wireless data gathering unit
JP2020202729A (en) High-voltage power reception facility monitoring system
US9979228B2 (en) Energy management apparatus and method of controlling the same
JP6738074B1 (en) Power feeding control system, power feeding control method, and power feeding control program
JP7104473B2 (en) Energy management system, power conversion control device, and power conversion control method
JP2017022913A (en) Power storage control system, power storage control method and program
KR20230090900A (en) I/O components system used in power conversion devices
KR20190000462U (en) An Apparatus For Automatically Notifying The Restoration Of A System Power Based On Internet of Things

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231226