JP2020085444A - Full charge capacity estimation device - Google Patents

Full charge capacity estimation device Download PDF

Info

Publication number
JP2020085444A
JP2020085444A JP2018214140A JP2018214140A JP2020085444A JP 2020085444 A JP2020085444 A JP 2020085444A JP 2018214140 A JP2018214140 A JP 2018214140A JP 2018214140 A JP2018214140 A JP 2018214140A JP 2020085444 A JP2020085444 A JP 2020085444A
Authority
JP
Japan
Prior art keywords
full charge
charge capacity
charging
estimated
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018214140A
Other languages
Japanese (ja)
Other versions
JP7087936B2 (en
Inventor
和樹 久保
Kazuki Kubo
和樹 久保
田中 信行
Nobuyuki Tanaka
信行 田中
義宏 内田
Yoshihiro Uchida
義宏 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018214140A priority Critical patent/JP7087936B2/en
Publication of JP2020085444A publication Critical patent/JP2020085444A/en
Application granted granted Critical
Publication of JP7087936B2 publication Critical patent/JP7087936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To estimate more properly a full charge capacity of a power storage device.SOLUTION: When a difference between an estimated full charge capacity up to the time and a full charge capacity due to a number of used years based on the number of used years of a power storage device is more than a predetermined value, waiting time is set based on this difference. At the time for charging the power storage device to full charge, the charging is started after the waiting time elapses, and the estimated full charge capacity is estimated based on the difference between the storage amount ratio before and after charging and the integrated value of charging current until full charge. Accordingly, the full charge capacity of the power storage device can be estimated more appropriately.SELECTED DRAWING: Figure 2

Description

本発明は、満充電容量推定装置に関し、詳しくは、蓄電装置の満充電容量の推定値としての推定満充電容量を推定する満充電容量推定装置に関する。 The present invention relates to a full charge capacity estimation device, and more particularly to a full charge capacity estimation device that estimates an estimated full charge capacity as an estimated value of the full charge capacity of a power storage device.

従来、この種の満充電容量推定装置としては、充電前後の蓄電装置の蓄電割合の差と充電電流積算値とに基づいて蓄電装置の満充電容量を推定するものが提案されている(例えば、特許文献1参照)。ここで、蓄電割合は、蓄電装置の全容量のうち蓄電されている容量の割合であり、例えば全容量に対するパーセント表示で示されるまた、満充電容量は、パーセントや[Ah]の単位、[Wh]の単位などにより表示される。また、満充電容量は、ユーザ電費を用いて電動走行可能な距離やそのパーセントにより表示してもよい。なお、表示手段としては、メータでもよいし、ディーラーの表示装置でもよい。 Conventionally, as this type of full-charge capacity estimation device, there has been proposed one that estimates the full-charge capacity of the power storage device based on the difference in the storage ratio of the power storage device before and after charging and the charging current integrated value (for example, See Patent Document 1). Here, the power storage ratio is a ratio of the stored capacity to the total capacity of the power storage device. For example, it is shown as a percentage of the total capacity, and the full charge capacity is a unit of percentage or [Ah], [Wh ] Is displayed in units. Further, the full charge capacity may be displayed by a distance or a percentage thereof that can be electrically driven by using the user electricity cost. The display means may be a meter or a display device of a dealer.

特開2013−101072号公報JP, 2013-101072, A

一般的に、蓄電装置の満充電容量は蓄電装置の経年劣化により減少するが、使用状態によって劣化の程度は異なるため、使用年数だけで蓄電装置の満充電容量を推定することはできない。上述の装置のように充電前後の蓄電装置の蓄電割合の差と充電電流積算値とに基づいて蓄電装置の満充電容量を推定する場合、蓄電装置の分極が解消していない状態で満充電容量を推定すると、推定精度が低くなり、適正な満充電容量を推定することができない。分極はある程度放置しておくことにより解消するものであるが、どの程度の時間放置する必要があるかについてはユーザには判断ができず、十分な時間に亘る放置を行なわない場合には精度の悪い推定が行なわれ、過剰な時間に亘る放置を行なう場合、放置時間が長く、ユーザに違和感を与えてしまう。 Generally, the full charge capacity of a power storage device decreases due to aging deterioration of the power storage device, but since the degree of deterioration varies depending on the usage state, it is not possible to estimate the full charge capacity of the power storage device only by the years of use. When estimating the full charge capacity of a power storage device based on the difference between the storage ratios of the power storage device before and after charging and the integrated charging current value as in the above-mentioned device, the full charge capacity can be calculated when the polarization of the power storage device is not resolved. , The estimation accuracy becomes low, and the proper full charge capacity cannot be estimated. The polarization can be resolved by leaving it to some extent, but the user cannot determine how long it should be left, and if the user does not leave it for a sufficient time, the accuracy will be reduced. If a bad estimation is made and the user is left for an excessive period of time, the user will feel uncomfortable for a long period of time.

本発明の満充電容量推定装置は、蓄電装置の満充電容量をより適正に推定することを主目的とする。 The full charge capacity estimation device of the present invention is mainly intended to more appropriately estimate the full charge capacity of a power storage device.

本発明の満充電容量推定装置は、上述の主目的を達成するために以下の手段を採った。 The full charge capacity estimation device of the present invention employs the following means in order to achieve the above-mentioned main object.

本発明の満充電容量推定装置は、
蓄電装置の満充電容量の推定値としての推定満充電容量を推定する満充電容量推定装置であって、
前記推定満充電容量と前記蓄電装置の使用年数に基づく使用年数起因満充電容量との差分が所定値以上のときには、前記差分に基づいて待期時間を設定し、前記蓄電装置を満充電まで充電を行なう際に、前記待期時間が経過してから充電を開始し、充電の前後の蓄電割合の差と満充電までの充電電流の積算値とに基づいて前記推定満充電容量を推定する、
ことを特徴とする。
The full charge capacity estimation device of the present invention is
A full charge capacity estimation device for estimating an estimated full charge capacity as an estimated value of the full charge capacity of a power storage device,
When the difference between the estimated full charge capacity and the age-based full charge capacity based on the number of years of use of the power storage device is a predetermined value or more, a waiting time is set based on the difference, and the power storage device is charged to full charge. When performing, the charging is started after the waiting time has elapsed, and the estimated full charge capacity is estimated based on the difference between the charge ratios before and after the charging and the integrated value of the charging current until full charge,
It is characterized by

この本発明の満充電容量推定装置では、それまでの推定満充電容量と蓄電装置の使用年数に基づく使用年数起因満充電容量との差分が所定値以上のときには、まず、差分に基づいて待期時間を設定する。そして、蓄電装置を満充電まで充電を行なう際に、待期時間が経過してから充電を開始し、充電の前後の蓄電割合の差と満充電までの充電電流の積算値とに基づいて推定満充電容量を推定する。推定満充電容量と使用年数起因満充電容量との差分に基づく待期時間だけ待期してから充電を開始するのである。この結果、より適正な待期時間を設定することができ、より適正に推定満充電容量を推定することができる。 In the full-charge capacity estimation device of the present invention, when the difference between the estimated full-charge capacity up to that point and the full-charge capacity due to the number of years of use of the power storage device is greater than or equal to a predetermined value, the waiting period is first determined based on the difference. Set the time. Then, when charging the power storage device to full charge, the charging is started after the waiting time has elapsed, and is estimated based on the difference between the power storage ratio before and after charging and the integrated value of the charging current up to full charge. Estimate full charge capacity. The charging is started after waiting for a waiting time based on the difference between the estimated full charge capacity and the full charge capacity due to the number of years of use. As a result, a more appropriate waiting time can be set, and the estimated full charge capacity can be estimated more appropriately.

ここで、待期時間は、推定満充電容量と使用年数起因満充電容量との差分が大きいほど大きくなる傾向に設定するのが好ましい。差分が大きいほど分極の影響が大きく生じていると考えられるからである。なお、満充電容量は、充電電流の積算値を充電前後の蓄電割合の差分で割ることにより計算することができる。 Here, the waiting time is preferably set to increase as the difference between the estimated full charge capacity and the age-based full charge capacity increases. This is because it is considered that the larger the difference is, the larger the influence of polarization is. The full-charge capacity can be calculated by dividing the integrated value of the charging current by the difference between the storage rates before and after charging.

本発明の一実施例としての満充電容量推定装置を搭載する電気自動車20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric vehicle 20 carrying the full charge capacity estimation apparatus as one Example of this invention. 電子制御ユニット70により実行される満充電容量推定処理の一例を示すフローチャートである。6 is a flowchart showing an example of a full charge capacity estimation process executed by an electronic control unit 70. 使用年数起因満充電容量設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for full charge capacity setting based on years of use. 充電前待期時間設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for waiting time before charging.

次に、本発明を実施するための形態を実施例を用いて説明する。 Next, modes for carrying out the present invention will be described using examples.

図1は、本発明の一実施例としての満充電容量推定装置を搭載する電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、直流電源としてのバッテリ36と、充電用リレー50と、電子制御ユニット70と、を備える。 FIG. 1 is a configuration diagram showing an outline of a configuration of an electric vehicle 20 equipped with a full charge capacity estimation device as one embodiment of the present invention. As illustrated, the electric vehicle 20 of the embodiment includes a motor 32, an inverter 34, a battery 36 as a DC power source, a charging relay 50, and an electronic control unit 70.

モータ32は、例えば同期発電電動機として構成されており、回転子が駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。インバータ34は、モータ32の駆動に用いられると共に電力ライン38とシステムメインリレー35とを介してバッテリ36に接続されている。モータ32は、電子制御ユニット70によってインバータ34の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。 The motor 32 is configured as, for example, a synchronous generator motor, and has a rotor connected to a drive shaft 26 that is connected to the drive wheels 22a and 22b via a differential gear 24. The inverter 34 is used to drive the motor 32 and is connected to the battery 36 via the power line 38 and the system main relay 35. The motor 32 is rotationally driven by the electronic control unit 70 controlling switching of a plurality of switching elements (not shown) of the inverter 34.

バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、システムメインリレー35およびインバータ34を介してモータ32と電力のやりとりを行なう。即ち、モータ32を力行制御することによりバッテリ36からの電力を用いてモータ32から駆動用の動力を出力し、モータ32を回生制御することによりモータ32からの回生電力によってバッテリ36を充電する。 The battery 36 is configured as, for example, a lithium-ion secondary battery or a nickel-hydrogen secondary battery, and exchanges electric power with the motor 32 via the system main relay 35 and the inverter 34. That is, the power running of the motor 32 is used to output driving power from the motor 32 using the electric power from the battery 36, and the motor 32 is regeneratively controlled to charge the battery 36 with the regenerative power from the motor 32.

充電用リレー50は、車外の充電スタンド90のスタンド側コネクタ91に接続される車両側コネクタ51と電力ライン38とを接続する電力ライン52に設けられている。充電用リレー50は、図示しないが、正極リレーと負極リレーを備えている。 The charging relay 50 is provided in a power line 52 that connects the vehicle-side connector 51 connected to the stand-side connector 91 of the charging stand 90 outside the vehicle and the power line 38. Although not shown, the charging relay 50 includes a positive electrode relay and a negative electrode relay.

電子制御ユニット70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUに加えて、処理プログラムを記憶するROMや、データを一時的に記憶するRAM、フラッシュメモリ、入出力ポート、通信ポートなどを備える。 Although not shown, the electronic control unit 70 is configured as a microprocessor centered on a CPU, and in addition to the CPU, a ROM for storing a processing program, a RAM for temporarily storing data, a flash memory, an input/output. It is equipped with ports, communication ports, etc.

電子制御ユニット70には、各種センサからの信号が入力ポートを介して入力される。電子制御ユニット70に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する図示しない回転位置センサからのモータ32の回転子の回転位置θmや、モータ32の各相の相電流を検出する図示しない電流センサからのモータ32の各相の相電流Iu,Iv,Iwを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからのバッテリ36の電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサ36bからのバッテリ36の電流Ib、バッテリ36に取り付けられた温度センサ36cからのバッテリ36の温度Tbも挙げることができる。車両側コネクタ51がスタンド側コネクタ91に接続されているか否かを検出する接続検出センサ53からの接続検出信号や車両側コネクタ51と充電用リレー50との間の電力ライン52に取り付けられた電圧センサ52aからの充電電圧Vchgも挙げることができる。図示しないが、さらに、イグニッションスイッチからのイグニッション信号や、シフトレバーの操作位置を検出するシフトポジションセンサからのシフトポジションSP、アクセルペダルの踏み込み量を検出するアクセルペダルポジションセンサからのアクセル開度Acc、ブレーキペダルの踏み込み量を検出するブレーキペダルポジションセンサからのブレーキペダルポジションBP、車速センサからの車速Vなども挙げることができる。 Signals from various sensors are input to the electronic control unit 70 via an input port. The signals input to the electronic control unit 70 include, for example, the rotational position θm of the rotor of the motor 32 from a rotational position sensor (not shown) that detects the rotational position of the rotor of the motor 32, and the phase of each phase of the motor 32. The phase currents Iu, Iv, Iw of each phase of the motor 32 from a current sensor (not shown) that detects a current can be mentioned. Further, the voltage Vb of the battery 36 from the voltage sensor 36 a attached between the terminals of the battery 36, the current Ib of the battery 36 from the current sensor 36 b attached to the output terminal of the battery 36, and the temperature attached to the battery 36. The temperature Tb of the battery 36 from the sensor 36c can also be mentioned. A connection detection signal from a connection detection sensor 53 that detects whether the vehicle-side connector 51 is connected to the stand-side connector 91 or a voltage attached to the power line 52 between the vehicle-side connector 51 and the charging relay 50. The charging voltage Vchg from the sensor 52a can also be mentioned. Although not shown, an ignition signal from an ignition switch, a shift position SP from a shift position sensor that detects an operation position of a shift lever, an accelerator opening Acc from an accelerator pedal position sensor that detects a depression amount of an accelerator pedal, The brake pedal position BP from the brake pedal position sensor that detects the depression amount of the brake pedal, the vehicle speed V from the vehicle speed sensor, and the like can also be mentioned.

電子制御ユニット70からは、各種制御信号が出力ポートを介して出力される。電子制御ユニット70から出力される信号としては、例えば、インバータ34への制御信号やシステムメインリレー35への制御信号,充電用リレー50への制御信号を挙げることができる。また、車両側コネクタ51がスタンド側コネクタ91に接続されているときに車両側コネクタ51およびスタンド側コネクタ91の通信ラインを介して充電スタンド90に充電に必要な情報も挙げることができる。電子制御ユニット70は、電流センサ36bからのバッテリ36の入出力電流Ibの積算値に基づいてバッテリ36の蓄電量Sbや蓄電割合SOCを演算している。ここで、蓄電量Cbは、バッテリ36から放電可能な電力量であり、蓄電割合SOCは、バッテリ36の全容量Capに対する蓄電量Cbの割合である。 Various control signals are output from the electronic control unit 70 via the output port. Examples of the signal output from the electronic control unit 70 include a control signal to the inverter 34, a control signal to the system main relay 35, and a control signal to the charging relay 50. Further, information necessary for charging the charging stand 90 through the communication line of the vehicle side connector 51 and the stand side connector 91 when the vehicle side connector 51 is connected to the stand side connector 91 can also be mentioned. The electronic control unit 70 calculates the storage amount Sb and the storage ratio SOC of the battery 36 based on the integrated value of the input/output current Ib of the battery 36 from the current sensor 36b. Here, the charged amount Cb is the amount of electric power that can be discharged from the battery 36, and the charged ratio SOC is the ratio of the charged amount Cb to the total capacity Cap of the battery 36.

こうして構成された実施例の電気自動車20では、バッテリ50の推定満充電容量を推定する処理を実行する電子制御ユニット70が満充電容量推定装置に相当する。図2は、電子制御ユニット70により実行される満充電容量推定処理の一例を示すフローチャートである。 In the thus configured electric vehicle 20 of the embodiment, the electronic control unit 70 that executes the process of estimating the estimated full charge capacity of the battery 50 corresponds to the full charge capacity estimation device. FIG. 2 is a flowchart showing an example of the full charge capacity estimation process executed by the electronic control unit 70.

満充電容量推定処理が実行されると、電子制御ユニット70は、まず、それまでの推定満充電容量Mestと使用年数Nenとを取得する処理を実行する(ステップS100)。推定満充電容量Mestは最後に本処理で計算されたものであり、使用年数Nenはバッテリ50の使用を開始してからの年数である。これらは、電子制御ユニット70の図示しないフラッシュメモリなどに記憶されたものを入力することにより取得するものとした。 When the full charge capacity estimation process is executed, the electronic control unit 70 first executes a process of acquiring the estimated full charge capacity Mest and the years of use Nen up to that point (step S100). The estimated full charge capacity Mest is the one finally calculated in this process, and the number of years of use Nen is the number of years since the start of using the battery 50. These are acquired by inputting the one stored in a flash memory or the like (not shown) of the electronic control unit 70.

続いて、取得した使用年数Nenを使用年数起因満充電容量設定用マップに適用して使用年数起因満充電容量Mnenを導出する(ステップS110)。使用年数起因満充電容量設定用マップの一例を図3に示す。このマップは、バッテリ50に対して実験などにより定めることができる。図示するように、使用年数Nenが大きいほど使用年数起因満充電容量Mnenは小さくなる。 Subsequently, the obtained years of use Nen is applied to the full years of use-related full charge capacity setting map to derive the years of use-related full charge capacity Mnen (step S110). FIG. 3 shows an example of a map for setting the full charge capacity due to the number of years of use. This map can be set for the battery 50 by an experiment or the like. As shown in the figure, the larger the years of use Nen, the smaller the full charge capacity Menen due to the years of use.

次に、推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分が閾値Mref以上であるか否かを判定する(ステップS120)。閾値Mrefは、推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分として許容することができる最大値やこれより若干大きな値を用いることができる。推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分が閾値Mref未満であると判定したときには、推定満充電容量Mestは適正に推定されていると判断し、本処理を終了する。 Next, it is determined whether or not the difference between the estimated full charge capacity Mest and the age-based full charge capacity Mnen is greater than or equal to the threshold value Mref (step S120). As the threshold Mref, a maximum value that can be allowed as a difference between the estimated full charge capacity Mest and the age-based full charge capacity Mnen or a value slightly larger than this can be used. When it is determined that the difference between the estimated full charge capacity Mest and the age-based full charge capacity Mnen is less than the threshold value Mref, it is determined that the estimated full charge capacity Mest is properly estimated, and this processing is ended.

ステップS120で推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分が閾値Mref以上であると判定したときには、推定満充電容量Mestは不適正と判断し、この差分を充電前待期時間設定用マップに適用して充電前待期時間Twaitを設定する(ステップS130)。充電前待期時間設定用マップの一例を図4に示す。図示するように、推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分が大きくなるほど長くなる傾向に充電前待期時間Twaitが設定される。これは、差分が大きいほど分極の影響が大きいと考えられることに基づく。 When it is determined in step S120 that the difference between the estimated full charge capacity Mest and the age-based full charge capacity Mnen is greater than or equal to the threshold value Mref, the estimated full charge capacity Mest is determined to be inappropriate, and this difference is determined as the pre-charge waiting time. The waiting time before charging Twait is set by applying it to the setting map (step S130). FIG. 4 shows an example of the pre-charge waiting time setting map. As shown in the figure, the pre-charge waiting time Twait is set such that the larger the difference between the estimated full charge capacity Mest and the age-based full charge capacity Mnen, the longer the pre-charge waiting time Twait. This is based on the fact that the greater the difference, the greater the influence of polarization.

続いて、充電スタンド90のスタンド側コネクタ91が車両側コネクタ51に接続されているのを確認し(ステップS140)、充電間待期時間Twaitが経過するのを待って(ステップS150)、電圧センサ36aからの電圧Vbを充電開始時電圧Vstartとして取得する(ステップS160)。そして、充電スタンド90からの電力によるバッテリ50の充電を開始し(ステップS170)、電流センサ36bからの電流Ibの積算を開始する(ステップS180)。 Subsequently, it is confirmed that the stand-side connector 91 of the charging stand 90 is connected to the vehicle-side connector 51 (step S140), and waits for the inter-charge waiting time Twait to elapse (step S150). The voltage Vb from 36a is acquired as the charging start voltage Vstart (step S160). Then, the charging of the battery 50 by the electric power from the charging stand 90 is started (step S170), and the integration of the current Ib from the current sensor 36b is started (step S180).

次に、充電スタンド90からの電力によるバッテリ50の充電が適正に終了するのを待って(ステップS190)、電圧センサ36aからの電圧Vbを充電終了時電圧Vendとして取得し(ステップS200)、取得した充電開始時電圧Vstartと充電終了時電圧Vendと積算した充電電流積算値Ihとに基づいて推定満充電容量Mestを計算し(ステップS210)、本処理を終了する。推定満充電容量Mestの計算は、充電開始時電圧Vstartと充電終了時電圧Vendとに基づいて充電開始時の蓄電割合Sstartと充電終了時の蓄電割合Sendとを求め、充電電流積算値Ihを充電前後の蓄電割合の差分(Send−Sstart)で割ることによって計算することができる。充電開始時電圧Vstartは、充電前待期時間Twaitの経過によってバッテリ50の分極が解消されているため、バッテリ50の開放電圧OCVとみなすことができる。このため、充電開始時電圧Vstartに基づいて充電開始時の蓄電割合Sstartをより適正に求めることができる。この結果、推定満充電容量Mestをより適正に推定することができる。 Next, after waiting for the charging of the battery 50 by the electric power from the charging stand 90 to properly end (step S190), the voltage Vb from the voltage sensor 36a is acquired as the charging end voltage Vend (step S200), and the acquisition. The estimated full charge capacity Mest is calculated based on the charging start voltage Vstart, the charging end voltage Vend, and the integrated charging current integrated value Ih (step S210), and this processing is ended. The estimated full charge capacity Mest is calculated by obtaining the storage ratio Sstart at the start of charging and the storage ratio Send at the end of charging based on the voltage Vstart at the start of charging and the voltage Vend at the end of charging, and charging the charging current integrated value Ih. It can be calculated by dividing by the difference (Send-Start) of the power storage ratio before and after. The charging start voltage Vstart can be regarded as the open circuit voltage OCV of the battery 50 because the polarization of the battery 50 has been eliminated by the pre-charge waiting time Twait. Therefore, the charge ratio Sstart at the start of charging can be more appropriately calculated based on the charge start voltage Vstart. As a result, the estimated full charge capacity Mest can be estimated more appropriately.

以上説明した実施例の電気自動車20が搭載する満充電容量推定装置では、推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分に基づいて充電前待期時間Twaitを設定し、充電前待期時間Twaitが経過した後に充電開始時電圧Vstartを取得して充電スタンド90からの電力によるバッテリ50の充電を開始し、充電電流Ibの積算を開始する。そして、充電が終了したときに充電終了時電圧Vendを取得し、充電開始時電圧Vstartと充電終了時電圧Vendと充電電流積算値Ihとに基づいて推定満充電容量Mestを計算する。充電開始時電圧Vstartは、充電前待期時間Twaitの経過によってバッテリ50の分極が解消されているため、バッテリ50の開放電圧OCVとみなすことができるため、充電開始時電圧Vstartに基づいて充電開始時の蓄電割合Sstartをより適正に求めることができる。この結果、推定満充電容量Mestをより適正に推定することができる。また、推定満充電容量Mestと使用年数起因満充電容量Mnenとの差分に基づいて充電前待期時間Twaitを設定するから、十分な時間の待期が行なわれることによる精度の悪い推定を抑制することができ、過剰な時間の待期が行なわれることによるユーザへの違和感を与えるといった不都合を回避することができる。 In the full-charge capacity estimation device mounted on the electric vehicle 20 of the embodiment described above, the pre-charge waiting time Twait is set based on the difference between the estimated full-charge capacity Mest and the full-charge capacity Menen due to the number of years of use. After the waiting time Twait has elapsed, the charging start voltage Vstart is acquired, the charging of the battery 50 by the electric power from the charging stand 90 is started, and the integration of the charging current Ib is started. Then, when the charging is completed, the charging end voltage Vend is acquired, and the estimated full charge capacity Mest is calculated based on the charging start voltage Vstart, the charging end voltage Vend, and the charging current integrated value Ih. The charging start voltage Vstart can be regarded as the open circuit voltage OCV of the battery 50 because the polarization of the battery 50 has been eliminated as the pre-charge waiting time Twait elapses. Therefore, the charging start voltage Vstart is started based on the charging start voltage Vstart. The power storage ratio Sstart at that time can be obtained more appropriately. As a result, the estimated full charge capacity Mest can be estimated more appropriately. Further, the pre-charging waiting time Twait is set based on the difference between the estimated full charge capacity Mest and the age-based full charge capacity Mnen, so that inaccurate estimation due to a sufficient waiting time is suppressed. Therefore, it is possible to avoid the inconvenience that the user feels uncomfortable due to the excessive waiting time.

実施例では、満充電容量推定装置は電気自動車20に搭載されるものとしたが、ハイブリッド自動車に搭載されているものや、燃料電池車に搭載されるものとしてもよい。また、満充電容量推定装置は、自動車以外の移動体に搭載されるものとしてもよく、移動体以外の設備などに組み込まれるものとして構わない。 In the embodiment, the full-charge capacity estimation device is mounted on the electric vehicle 20, but may be mounted on a hybrid vehicle or a fuel cell vehicle. Further, the full-charge capacity estimation device may be installed in a moving body other than the automobile, or may be incorporated in equipment other than the moving body.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above with reference to the embodiments, the present invention is not limited to these embodiments, and various embodiments are possible within the scope not departing from the gist of the present invention. Of course, it can be implemented.

本発明は、満充電容量推定装置の製造産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in the manufacturing industry of the full charge capacity estimation device and the like.

20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、34 インバータ、35 システムメインリレー、36 バッテリ、36a 電圧センサ、36b 電流センサ、36c 温度センサ、38 電力ライン、50 充電用リレー、51 車両側コネクタ、52 電力ライン、52a 電圧センサ、53 接続検出センサ、70 電子制御ユニット、90 充電スタンド、91 スタンド側コネクタ。 20 electric vehicle, 22a, 22b drive wheel, 24 differential gear, 26 drive shaft, 32 motor, 34 inverter, 35 system main relay, 36 battery, 36a voltage sensor, 36b current sensor, 36c temperature sensor, 38 power line, 50 charging Relay, 51 vehicle side connector, 52 power line, 52a voltage sensor, 53 connection detection sensor, 70 electronic control unit, 90 charging stand, 91 stand side connector.

Claims (1)

蓄電装置の満充電容量の推定値としての推定満充電容量を推定する満充電容量推定装置であって、
前記推定満充電容量と前記蓄電装置の使用年数に基づく使用年数起因満充電容量との差分が所定値以上のときには、前記差分に基づいて待期時間を設定し、前記蓄電装置を満充電まで充電を行なう際に、前記待期時間が経過してから充電を開始し、充電の前後の蓄電割合の差と満充電までの充電電流の積算値とに基づいて前記推定満充電容量を推定する、
ことを特徴とする満充電容量推定装置。
A full charge capacity estimation device for estimating an estimated full charge capacity as an estimated value of the full charge capacity of a power storage device,
When the difference between the estimated full charge capacity and the age-based full charge capacity based on the number of years of use of the power storage device is a predetermined value or more, a waiting time is set based on the difference, and the power storage device is charged to full charge. When performing, the charging is started after the waiting time has elapsed, and the estimated full charge capacity is estimated based on the difference between the charge ratios before and after the charging and the integrated value of the charging current until full charge,
A full charge capacity estimating device characterized by the above.
JP2018214140A 2018-11-14 2018-11-14 Full charge capacity estimation device Active JP7087936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018214140A JP7087936B2 (en) 2018-11-14 2018-11-14 Full charge capacity estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018214140A JP7087936B2 (en) 2018-11-14 2018-11-14 Full charge capacity estimation device

Publications (2)

Publication Number Publication Date
JP2020085444A true JP2020085444A (en) 2020-06-04
JP7087936B2 JP7087936B2 (en) 2022-06-21

Family

ID=70907423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018214140A Active JP7087936B2 (en) 2018-11-14 2018-11-14 Full charge capacity estimation device

Country Status (1)

Country Link
JP (1) JP7087936B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160113A (en) * 1994-12-02 1996-06-21 Nippon Soken Inc Battery state judgement device
JP2016109466A (en) * 2014-12-02 2016-06-20 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
JP2016201984A (en) * 2015-04-10 2016-12-01 株式会社豊田自動織機 Power storage device and power storage method
JP2017017887A (en) * 2015-07-02 2017-01-19 古河電気工業株式会社 Device and method for lead-acid battery management
WO2017085869A1 (en) * 2015-11-20 2017-05-26 日産自動車株式会社 Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
WO2017130673A1 (en) * 2016-01-29 2017-08-03 日立オートモティブシステムズ株式会社 Cell state estimation device, cell control device, cell system, and cell state estimation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160113A (en) * 1994-12-02 1996-06-21 Nippon Soken Inc Battery state judgement device
JP2016109466A (en) * 2014-12-02 2016-06-20 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
JP2016201984A (en) * 2015-04-10 2016-12-01 株式会社豊田自動織機 Power storage device and power storage method
JP2017017887A (en) * 2015-07-02 2017-01-19 古河電気工業株式会社 Device and method for lead-acid battery management
WO2017085869A1 (en) * 2015-11-20 2017-05-26 日産自動車株式会社 Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
WO2017130673A1 (en) * 2016-01-29 2017-08-03 日立オートモティブシステムズ株式会社 Cell state estimation device, cell control device, cell system, and cell state estimation method

Also Published As

Publication number Publication date
JP7087936B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
US10322634B2 (en) Estimating battery capacity in an electric vehicle
JP6136950B2 (en) Driving distance calculation system
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
CN103842837A (en) Secondary battery control device and method
JP2004271434A (en) System and method for estimating remaining capacity of secondary battery, and recording medium readable by computer storing program for putting computer into execution of processing by the remaining capacity estimation method of secondary battery
JP5126150B2 (en) Storage capacity estimation device and storage capacity estimation method
US10926642B2 (en) Electric vehicle
JP7020375B2 (en) Electric vehicle
US11750006B2 (en) Estimation system and estimation method
US20180264958A1 (en) Motor vehicle
JP2017071299A (en) Charge-discharge control apparatus for power storage device
JP7087936B2 (en) Full charge capacity estimation device
CN111098721B (en) Electric vehicle
US20220212545A1 (en) Electrified vehicle control using battery electrochemical equilibrium based state of charge and power capability estimates
JP2015045561A (en) Power device
JP2020125914A (en) Full charge capacity estimation device
JP7135843B2 (en) vehicle power supply
JP7205203B2 (en) Full charge capacity estimation device
JP2015052461A (en) Power storage system and charging rate estimation method
CN112824920B (en) Speculation system and speculation method
JP7003896B2 (en) Electric vehicle
JP2022136405A (en) Vehicle and vehicle charging method
JP2024058837A (en) Electric vehicles
JP2023137297A (en) electric car
JP2022141013A (en) Cell system and battery voltage estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151