JP2019194369A - Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition - Google Patents

Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition Download PDF

Info

Publication number
JP2019194369A
JP2019194369A JP2018087923A JP2018087923A JP2019194369A JP 2019194369 A JP2019194369 A JP 2019194369A JP 2018087923 A JP2018087923 A JP 2018087923A JP 2018087923 A JP2018087923 A JP 2018087923A JP 2019194369 A JP2019194369 A JP 2019194369A
Authority
JP
Japan
Prior art keywords
fiber
composite
short fiber
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087923A
Other languages
Japanese (ja)
Other versions
JP7154816B2 (en
Inventor
祐輔 小坂
Yusuke Kosaka
祐輔 小坂
隆 多羅尾
Takashi Tarao
隆 多羅尾
洋介 角前
Yosuke Kadosaki
洋介 角前
政宏 倉持
Masahiro Kuramochi
政宏 倉持
智弘 平野
Tomohiro Hirano
智弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2018087923A priority Critical patent/JP7154816B2/en
Publication of JP2019194369A publication Critical patent/JP2019194369A/en
Application granted granted Critical
Publication of JP7154816B2 publication Critical patent/JP7154816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide the extra fine short fiber and the composite comprising the extra short fibers dispersed in the resin composition with excellent mechanical strength, wherein the extra fine short fiber can realize composites that cannot be realized with a conventional technology, and can provide the composites with excellent mechanical strength.SOLUTION: The extra fine short fiber of the present invention has an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less, and is suitable for preparing the composite by being added to the resin composition because both the average fiber diameter and an average fiber length are small. Furthermore, the extra fine short fiber of the present invention can realize the composite in which the extra fine short fiber is dispersed in the resin composition because the extra fine short fiber comprises an organic resin that has been insolubilized, even when producing the composite using the organic resin constituting the extra fine short fiber before insolubilization and a resin that is soluble in a same solvent. The composite of the present invention is the composite having the excellent mechanical strength because the extra fine short fiber according to the present invention is dispersed in the resin composition.SELECTED DRAWING: None

Description

本発明は、不溶化処理を施してなる有機樹脂で構成されている極細短繊維、および前記極細短繊維が樹脂組成物中に分散してなる複合体に関する。   The present invention relates to an ultrafine short fiber composed of an organic resin subjected to insolubilization treatment, and a composite in which the ultrafine short fiber is dispersed in a resin composition.

従来、細く、短い極細短繊維はフィルタ材料や、ファンデーションなどの化粧品への添加、樹脂組成物への添加など、広い用途で使われている。特に、機械的強度が向上した樹脂組成物を提供するため、樹脂組成物に極細短繊維を添加して複合体を製造することが行われている。   Conventionally, thin and short extra-fine short fibers have been used in a wide range of applications such as filter materials, addition to cosmetics such as foundations, and addition to resin compositions. In particular, in order to provide a resin composition with improved mechanical strength, it has been practiced to produce a composite by adding ultrafine short fibers to the resin composition.

このような極細短繊維として、例えば、特開2009−114560号公報(特許文献1)には、静電紡糸法により製造された、平均繊維径1000nm以下、かつ、平均繊維長が20μm以下であり、繊維長のCV値が55%以下であることを特徴とする樹脂製極細短繊維が開示されている。なお、特許文献1には実施例として、アスペクト比が200の樹脂製極細短繊維が開示されており、またこれらの樹脂製極細短繊維をフィルムへ添加することで、フィルムの性能を向上できることが開示されている。また、本願出願人は、静電紡糸法により平均繊維径が3μm以下と細い繊維が製造できる知見を得ている。   As such ultrafine short fibers, for example, in JP 2009-114560 A (Patent Document 1), an average fiber diameter of 1000 nm or less and an average fiber length of 20 μm or less manufactured by an electrostatic spinning method are used. Further, a resin-made ultrafine short fiber having a CV value of fiber length of 55% or less is disclosed. Patent Document 1 discloses resin-made ultrafine short fibers having an aspect ratio of 200 as examples, and the performance of the film can be improved by adding these resin-made ultrafine short fibers to the film. It is disclosed. In addition, the applicant of the present application has obtained knowledge that thin fibers having an average fiber diameter of 3 μm or less can be produced by an electrospinning method.

特許文献1と静電紡糸法におけるこれまでの知見に基づき、本願出願人は平均繊維径3μm以下、かつアスペクト比が200以下の樹脂製極細短繊維を用いて、樹脂組成物と樹脂製極細短繊維の複合体の調製を試みたところ、次の問題が発生しうるものであった。例えば樹脂組成物と樹脂製極細短繊維を構成する樹脂が同じ溶媒に可溶な場合、該溶媒に溶かした樹脂組成物に樹脂製極細短繊維を添加することで複合体を製造しようとすると、樹脂製極細短繊維も該溶媒に溶けてしまうことがあった。そのため、樹脂組成物に樹脂製極細短繊維が分散してなる複合体を実現できない、あるいは樹脂製極細短繊維の一部が溶けることで樹脂製極細短繊維の形状が崩れ、機械的強度が向上した複合体を提供できないという問題があった。   Based on the conventional knowledge in Patent Document 1 and the electrospinning method, the present applicant uses a resin ultrafine fiber having an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less, and a resin composition and a resin ultrafine fiber. Attempts were made to prepare a fiber composite, which could cause the following problems. For example, when the resin constituting the resin composition and the resin constituting the ultrafine short fiber made of resin is soluble in the same solvent, an attempt to produce a composite by adding the ultrafine short fiber made of resin to the resin composition dissolved in the solvent, Resin-made ultrafine short fibers may also dissolve in the solvent. Therefore, it is not possible to realize a composite in which resin ultrafine fibers are dispersed in the resin composition, or the shape of the resin ultrafine fibers is broken by melting a part of the resin ultrafine fibers and the mechanical strength is improved. There was a problem that the complex could not be provided.

特開2009−114560号公報JP 2009-114560 A

本発明は、このような事情に鑑みてなされたものであり、従来技術では実現できない複合体を実現可能であると共に機械的強度に優れた複合体を提供し得る極細短繊維、及び該極細短繊維が樹脂組成物に分散してなる機械的強度に優れた複合体の提供を目的とする。   The present invention has been made in view of such circumstances, and is capable of providing a composite that cannot be realized by the prior art, and that can provide a composite having excellent mechanical strength, and the ultrafine short fiber. It aims at providing the composite_body | complex excellent in the mechanical strength formed by disperse | distributing a fiber to a resin composition.

本発明の請求項1に係る発明は「平均繊維径が3μm以下、かつ、アスペクト比が200以下であり、不溶化処理を施してなる有機樹脂で構成されていることを特徴とする、極細短繊維。」である。   The invention according to claim 1 of the present invention is “an ultrafine short fiber characterized by comprising an organic resin having an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less and subjected to insolubilization treatment” . "

本発明の請求項2に係る発明は「請求項1に記載の極細短繊維が樹脂組成物中に分散してなることを特徴とする、複合体。」である。   The invention according to claim 2 of the present invention is a “composite characterized in that the ultrafine short fibers according to claim 1 are dispersed in a resin composition”.

本発明の請求項1に係る極細短繊維は、平均繊維径が3μm以下、かつ、アスペクト比が200以下と平均繊維径、平均繊維長がともに小さいものであるため、樹脂組成物に添加して複合体を調製するのに適したものである。   The ultrafine short fiber according to claim 1 of the present invention has an average fiber diameter of 3 μm or less, an aspect ratio of 200 or less, an average fiber diameter, and an average fiber length that are both small. It is suitable for preparing a complex.

また、本発明に係る極細短繊維は不溶化処理を施してなる有機樹脂で構成されている。そのため、樹脂組成物と不溶化処理前の極細短繊維を構成する有機樹脂をともに可溶な溶媒を用いて複合体を作製する場合であっても、本発明に係る極細短繊維は不溶化処理を施してなる有機樹脂で構成されているため、前記溶媒に不溶である。つまり、前記極細短繊維が前記溶媒に溶けること、また前記極細短繊維の形状が崩れることを防止できるため、極細短繊維が樹脂組成物に分散してなる複合体を実現できる。
そのため、本発明に係る極細短繊維によって、従来技術では実現できない複合体を実現できる。
In addition, the ultrafine short fiber according to the present invention is composed of an organic resin that is insolubilized. Therefore, even if the resin composition and the organic resin constituting the ultrafine short fiber before insolubilization treatment are both made using a soluble solvent, the ultrafine short fiber according to the present invention is subjected to insolubilization treatment. Insoluble in the solvent. That is, since it is possible to prevent the ultrafine short fiber from being dissolved in the solvent and the shape of the ultrafine short fiber from collapsing, it is possible to realize a composite in which the ultrafine short fiber is dispersed in the resin composition.
Therefore, the ultrafine fiber according to the present invention can realize a composite that cannot be realized by the prior art.

本発明の請求項2に係る複合体は、本発明に係る極細短繊維が樹脂組成物中に分散してなるため、機械的強度に優れる複合体である。   The composite according to claim 2 of the present invention is a composite excellent in mechanical strength since the ultrafine short fibers according to the present invention are dispersed in the resin composition.

本発明の不溶化処理を施してなる有機樹脂で構成された極細短繊維は、フィルムなどの樹脂組成物に添加して補強するフィラーとして使用する際に、極細短繊維同士が凝集しにくいように、平均繊維径が3μm以下、かつ、アスペクト比が200以下である。   When used as a filler to reinforce and add to the resin composition such as a film, the ultrafine short fibers composed of the organic resin subjected to the insolubilization treatment of the present invention, so that the ultrafine short fibers are less likely to aggregate. The average fiber diameter is 3 μm or less and the aspect ratio is 200 or less.

上記極細短繊維の平均繊維径は3μm以下であればよいが、平均繊維径が小さければ小さいほど、樹脂組成物中での分散性に優れるため、2μm以下がより好ましく、1μm以下が更に好ましい。平均繊維径の下限は適宜選択できるが、極細短繊維の強度に優れるように、0.05μm以上が適当である。   The average fiber diameter of the ultrafine short fibers may be 3 μm or less. However, the smaller the average fiber diameter, the better the dispersibility in the resin composition, so 2 μm or less is more preferable, and 1 μm or less is even more preferable. The lower limit of the average fiber diameter can be appropriately selected, but 0.05 μm or more is suitable so that the strength of the ultrafine short fiber is excellent.

なお、本発明における「平均繊維径」は、50本の極細短繊維における各繊維径の算術平均値をいい、「繊維径」は、極細短繊維を撮影した5000倍の電子顕微鏡写真をもとに測定した、極細短繊維の長軸方向に対して直交する方向における円の直径をいう。極細短繊維の断面が円形でない異形断面の場合は、異形断面の断面積を計測し、その断面積を有する円の直径を繊維径とみなす。   The “average fiber diameter” in the present invention refers to the arithmetic average value of the fiber diameters of 50 ultrafine short fibers, and the “fiber diameter” is based on a 5000 × electron micrograph of the ultrashort fibers. The diameter of the circle in the direction orthogonal to the major axis direction of the ultrafine short fiber measured in the above. When the cross section of the ultrafine short fiber is a non-circular cross section, the cross sectional area of the cross section is measured, and the diameter of the circle having the cross section is regarded as the fiber diameter.

上記極細短繊維のアスペクト比は、極細短繊維が樹脂組成物中で凝集しにくく、分散性に優れるように200以下である。極細短繊維のアスペクト比が小さくなるほど、より極細短繊維が樹脂組成物中で凝集しにくく分散性に優れることから、アスペクト比は150以下がより好ましく、120以下が更に好ましい。アスペクト比の下限については、極細短繊維が樹脂組成物中に分散してなる複合体の機械的強度が優れるように、5以上が適当である。   The aspect ratio of the ultrafine short fiber is 200 or less so that the ultrafine short fiber hardly aggregates in the resin composition and is excellent in dispersibility. The aspect ratio is more preferably 150 or less, and even more preferably 120 or less, because as the aspect ratio of the ultrafine short fibers becomes smaller, the ultrafine short fibers are less likely to aggregate in the resin composition and have excellent dispersibility. The lower limit of the aspect ratio is suitably 5 or more so that the composite formed by dispersing ultrafine short fibers in the resin composition has excellent mechanical strength.

なお、本発明における「アスペクト比」は、極細短繊維の平均繊維長(μm)を平均繊維径(μm)で除した値である。   The “aspect ratio” in the present invention is a value obtained by dividing the average fiber length (μm) of the ultrafine short fibers by the average fiber diameter (μm).

上記極細短繊維の平均繊維長は、前記アスペクト比を満たす限り、特に限定するものではない。本発明における「平均繊維長」は、50本の極細短繊維における各繊維長の算術平均値をいい、「繊維長」は、極細短繊維を撮影した50〜5000倍の電子顕微鏡写真をもとに測定した、極細短繊維の長軸方向における長さをいう。   The average fiber length of the ultrafine short fibers is not particularly limited as long as the aspect ratio is satisfied. The “average fiber length” in the present invention refers to the arithmetic average value of each fiber length in 50 ultrafine short fibers, and the “fiber length” is based on an electron micrograph of 50 to 5000 times taken of the ultrashort fibers. The length in the major axis direction of the ultrafine short fiber measured in the above.

上記極細短繊維の繊維長のCV値は特に限定するものではないが、CV値が小さければ小さいほど、繊維長が揃っていることを意味し、繊維長が揃っていることによって樹脂組成物中で極細短繊維が凝集しにくく、分散性に優れるため、0.5以下が好ましく、0.4以下がより好ましく、0.3以下が更に好ましく、理想としては0である。この繊維長のCV値は、繊維長の標準偏差を平均繊維長で除した値、つまり、(繊維長の標準偏差/平均繊維長)である。なお、「繊維長の標準偏差」は平均繊維長測定時に選択した50本の極細短繊維の各繊維長から算出した値である。   Although the CV value of the fiber length of the ultrafine short fiber is not particularly limited, it means that the smaller the CV value is, the more uniform the fiber length is. Therefore, 0.5 or less is preferable, 0.4 or less is more preferable, 0.3 or less is more preferable, and 0 is ideal. The CV value of the fiber length is a value obtained by dividing the standard deviation of the fiber length by the average fiber length, that is, (standard deviation of fiber length / average fiber length). The “standard deviation of the fiber length” is a value calculated from the fiber lengths of the 50 ultrafine short fibers selected at the time of measuring the average fiber length.

本発明の極細短繊維を構成する有機樹脂の種類は、後述の不溶化処理を施すことができる有機樹脂であれば特に限定されるものではなく、例えば、ポリアクリロニトリル樹脂、ポリビニルアルコール系樹脂、マレイン酸系共重合体樹脂(スチレン‐無水マレイン酸共重合体、メチルビニルエーテル‐無水マレイン酸共重合体など)、アクリル系樹脂、ポリベンゾイミダゾール樹脂、ポリエーテル系樹脂(ポリエーテルエーテルケトン、ポリアセタール、変性ポリフェニレンエーテル、芳香族ポリエーテルケトンなど)、ポリスルホン系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリアリレート、ポリ乳酸、全芳香族ポリエステル樹脂など)、ニトリル基を有する樹脂(例えば、ポリアクリロニトリルなど)、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシアルカンなど)、セルロース系樹脂、熱可塑性ポリイミド系樹脂、ポリエーテル系樹脂(フェノール系樹脂、メラミン系樹脂、ユリア系樹脂、エポキシ系樹脂)、ポリエステル系樹脂(不飽和ポリエステル樹脂など)、ウレタン系樹脂、熱硬化性ポリイミド系樹脂などが挙げられる。なお、極細短繊維を構成する有機樹脂は1種類である必要はなく、2種類以上含有して構成していてもよい。   The type of the organic resin constituting the ultrafine short fiber of the present invention is not particularly limited as long as it is an organic resin that can be insolubilized as described below. For example, polyacrylonitrile resin, polyvinyl alcohol resin, maleic acid Copolymer resins (styrene-maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer, etc.), acrylic resins, polybenzimidazole resins, polyether resins (polyetheretherketone, polyacetal, modified polyphenylene) Ether, aromatic polyether ketone, etc.), polysulfone resin, polyester resin (polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycarbonate, polyethylene Arylates, polylactic acid, wholly aromatic polyester resins, etc.), resins having a nitrile group (eg, polyacrylonitrile, etc.), fluororesins (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxyalkanes, etc.), cellulose Resins, thermoplastic polyimide resins, polyether resins (phenolic resins, melamine resins, urea resins, epoxy resins), polyester resins (such as unsaturated polyester resins), urethane resins, thermosetting polyimides Based resins and the like. In addition, the organic resin which comprises an ultrafine short fiber does not need to be 1 type, and may contain and comprise 2 or more types.

前記極細短繊維を構成する有機樹脂は、直鎖状ポリマーまたは分岐状ポリマーのいずれからなるものでも構わず、またポリマーがブロック共重合体やランダム共重合体でも構わず、またポリマーの立体構造や結晶性の有無がいかなるものでも、特に限定されるものではない。そして、これらの極細短繊維は例示以外の有機樹脂を含んでいてもよい。前記極細短繊維を構成する有機樹脂の分子量は、使用する樹脂によって適切な分子量が異なるため、特に限定するものではなく、適宜選択できる。   The organic resin constituting the ultrafine short fiber may be either a linear polymer or a branched polymer, and the polymer may be a block copolymer or a random copolymer. The presence or absence of crystallinity is not particularly limited. And these ultrafine short fibers may contain organic resin other than the illustration. The molecular weight of the organic resin constituting the ultrafine short fiber is not particularly limited and can be appropriately selected because an appropriate molecular weight varies depending on the resin used.

本発明において、「不溶化処理を施してなる有機樹脂」とは、不溶化処理前の有機樹脂を「可溶」な溶媒に対して、不溶化処理後の有機樹脂を「不溶」になるように処理を施した有機樹脂である。   In the present invention, the “organic resin formed by insolubilization treatment” means that the organic resin before insolubilization treatment is treated with “soluble” solvent so that the organic resin after insolubilization treatment becomes “insoluble”. The applied organic resin.

本発明において有機樹脂が溶媒に「可溶」あるいは「不溶」であるかは、以下の<不溶
化試験>に測定対象物を供することで判断できる。
In the present invention, whether an organic resin is “soluble” or “insoluble” in a solvent can be determined by subjecting the measurement object to the following <insolubilization test>.

<不溶化試験>
(1)極細短繊維を用意し、測定対象となる極細短繊維を構成する有機樹脂が判明している場合は、前記有機樹脂を完全に溶かすことのできることが知られている溶媒を選択し、試験溶媒とする。測定対象となる極細短繊維を構成する有機樹脂が判明していない場合は、極細短繊維をIR、DSC、NMR、MS、ラマン分光、元素分析、燃焼試験など公知の分析方法へ供することで極細短繊維を構成する有機樹脂を特定する。そして、前記有機樹脂を完全に溶かすことのできることが知られている溶媒を選択し、試験溶媒とする。
(2)前記極細短繊維を3g用意し、前記有機樹脂を完全に溶解可能な、300gの試験溶媒を用意する。そして、前記極細短繊維を前記試験溶媒に入れ、混合液を作製する。
(3)前記混合液に攪拌子を入れ、以下の条件で混合液を攪拌する。
混合液の温度:25℃
攪拌子の回転数:100rpm
時間:30分
(4)(3)の処理を施した後の混合液を濾過する。濾別した極細短繊維を乾燥させて試験溶媒を除去し、その後本処理を施した極細短繊維の重量を測定する。
(5)以下の式により、(4)の処理を施した後の極細短繊維の重量変化率を求める。
[重量変化率]
t=|(3−m)/3|×100
t:重量変化率(%)
m:(4)の処理を施した後の、極細短繊維の重量(g)
<Insolubilization test>
(1) Prepare an ultrafine short fiber, and when an organic resin constituting the ultrafine short fiber to be measured is known, select a solvent known to be able to completely dissolve the organic resin, Use as test solvent. If the organic resin constituting the ultrafine short fiber to be measured is not known, the ultrafine fiber is subjected to a well-known analysis method such as IR, DSC, NMR, MS, Raman spectroscopy, elemental analysis, combustion test, etc. The organic resin constituting the short fiber is specified. A solvent known to be able to completely dissolve the organic resin is selected as a test solvent.
(2) Prepare 3 g of the ultrafine short fiber and prepare 300 g of a test solvent capable of completely dissolving the organic resin. And the said ultra-short fiber is put into the said test solvent, and a liquid mixture is produced.
(3) A stirrer is placed in the mixed solution, and the mixed solution is stirred under the following conditions.
Mixture temperature: 25 ° C
Stirrer rotation speed: 100 rpm
Time: 30 minutes (4) The mixture after the treatment of (3) is filtered. The ultrafine short fibers separated by filtration are dried to remove the test solvent, and then the weight of the ultrafine short fibers subjected to the treatment is measured.
(5) The weight change rate of the ultrafine short fiber after the processing of (4) is obtained by the following formula.
[Weight change rate]
t = | (3-m) / 3 | × 100
t: Weight change rate (%)
m: Weight of the ultrafine short fiber after the treatment of (4) (g)

重量変化率が5%以下であるとき、測定対象となった極細短繊維は、前記試験溶媒に「不溶」であり、不溶化処理を施してなる有機樹脂で構成された極細短繊維であると判断する。また、重量変化率が5%を超えるとき、測定対象となった極細短繊維は、前記試験溶媒に「可溶」であると判断する。なお、極細短繊維が前記試験溶媒に完全に溶解した場合、又は混合液を濾別した際に極細短繊維が残らなかった場合、極細短繊維の重量変化率は100%とする。   When the rate of weight change is 5% or less, the ultrafine short fiber that was the object of measurement was determined to be “insoluble” in the test solvent, and to be an ultrafine short fiber composed of an organic resin that was insolubilized. To do. Further, when the weight change rate exceeds 5%, it is determined that the ultrafine short fiber to be measured is “soluble” in the test solvent. In addition, when the ultrafine short fiber is completely dissolved in the test solvent or when the ultrafine short fiber does not remain when the mixed solution is filtered, the weight change rate of the ultrafine short fiber is set to 100%.

なお、不溶化試験に使用できる試験溶媒の例としては、極細短繊維を構成する有機樹脂の種類がポリアクリロニトリル樹脂、ポリスルホン系樹脂、ポリエーテル系樹脂、フッ素系樹脂、熱可塑性ポリイミド系樹脂、ポリベンゾイミダゾール系樹脂の場合はN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、メチルエチルケトンを用いることができ、極細短繊維を構成する有機樹脂の種類がポリビニルアルコール系樹脂、マレイン酸系共重合体樹脂の場合は水、アルコール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドを用いることができる。   Examples of test solvents that can be used for the insolubilization test include organic resins constituting ultrafine short fibers such as polyacrylonitrile resin, polysulfone resin, polyether resin, fluorine resin, thermoplastic polyimide resin, polybenzo In the case of an imidazole resin, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, methyl ethyl ketone can be used, and the type of organic resin constituting the ultrafine fiber is polyvinyl alcohol resin, maleic acid In the case of a copolymer resin, water, alcohol, N, N-dimethylformamide, or N, N-dimethylacetamide can be used.

本発明の極細短繊維を構成するすべての有機樹脂は、樹脂組成物と不溶化処理前の極細短繊維を構成する有機樹脂をともに可溶な溶媒を用いて複合体を作製した場合であっても、極細短繊維が樹脂組成物に分散してなる複合体が実現できるように、不溶化処理を施してなる有機樹脂である必要がある。   Even if all the organic resins constituting the ultrashort fibers of the present invention are composites prepared using a soluble solvent together with the resin composition and the organic resin constituting the ultrafine fibers before insolubilization treatment. The organic resin is required to be insolubilized so that a composite formed by dispersing ultrafine short fibers in the resin composition can be realized.

本発明において「不溶化処理を施してなる有機樹脂」を調製する方法として、不溶化処理前の有機樹脂を上述した「可溶」な溶媒に対して、不溶化処理後の有機樹脂を上述した「不溶」になるように、不溶化処理前の有機樹脂に熱処理などの処理を施す方法を採用できる。具体的には適宜選択できるものであるが、熱処理、電子線照射、ガンマ線照射、有機樹脂を架橋する架橋剤の添加などを挙げることができ、製造上簡便である熱処理が好適である。熱処理における処理温度は適宜調整するが、120〜450℃で熱処理できる。具体的には、ポリアクリロニトリル樹脂の場合は210〜270℃、ポリビニルアルコール系樹脂の場合は120〜210℃、ポリベンゾイミダゾール系樹脂の場合は350〜450℃で熱処理することにより不溶化できる。   In the present invention, as a method of preparing the “organic resin formed by insolubilization treatment”, the organic resin after the insolubilization treatment is described above with respect to the “soluble” solvent before the insolubilization treatment. Thus, a method of subjecting the organic resin before the insolubilization treatment to a treatment such as a heat treatment can be employed. Specifically, although it can be appropriately selected, heat treatment, electron beam irradiation, gamma ray irradiation, addition of a crosslinking agent that crosslinks an organic resin, and the like can be given, and heat treatment that is simple in production is preferable. The treatment temperature in the heat treatment is appropriately adjusted, but the heat treatment can be performed at 120 to 450 ° C. Specifically, it can be insolubilized by heat treatment at 210 to 270 ° C. in the case of polyacrylonitrile resin, 120 to 210 ° C. in the case of polyvinyl alcohol resin, and 350 to 450 ° C. in the case of polybenzimidazole resin.

本発明に係る極細短繊維を構成する有機樹脂が、不溶化処理に供することで不溶化される理由は、不溶化処理へ供することで架橋による構造変化、官能基の置換などが起こり、溶媒に対する溶解性が変化していると考えられる。   The reason why the organic resin constituting the ultra-short fiber according to the present invention is insolubilized by subjecting it to insolubilization treatment is that it undergoes structural change due to cross-linking, functional group substitution, etc. due to subjecting it to insolubilization treatment, and is soluble in solvents. It seems to have changed.

なお、本発明の極細短繊維は、上述の有機樹脂のみから構成されていてもよいが、極細短繊維を溶媒に入れた際に添加物が溶媒に溶け極細短繊維の形状が崩れることで、前記極細短繊維が樹脂組成物中に分散してなる複合体に意図しない強度低下が発生しない範囲で、従来公知の添加物を添加して各種特性を付与してもよい。添加物の具体例としては、例えば、酸化防止剤、安定剤、無機粒子、顔料、染料などが挙げられる。   The ultra-short fiber of the present invention may be composed only of the above-mentioned organic resin, but when the ultra-short fiber is put in a solvent, the additive dissolves in the solvent and the shape of the ultra-short fiber collapses. Various known properties may be imparted by adding conventionally known additives to the extent that unintentional strength reduction does not occur in the composite in which the ultrafine short fibers are dispersed in the resin composition. Specific examples of the additive include an antioxidant, a stabilizer, inorganic particles, a pigment, and a dye.

上述の通り、本発明の極細短繊維は樹脂組成物中に分散してなり、樹脂組成物を補強するのに適したものである。そのため、樹脂組成物と極細短繊維の複合体は極細短繊維によって補強され、機械的強度に優れるものである。   As described above, the ultrafine short fibers of the present invention are dispersed in the resin composition and are suitable for reinforcing the resin composition. Therefore, the composite of the resin composition and the ultrafine short fibers is reinforced by the ultrafine short fibers and has excellent mechanical strength.

本発明の極細短繊維は、例えば、次のようにして製造することができる。   The ultrafine short fiber of the present invention can be produced, for example, as follows.

まず、不溶化処理前の極細短繊維を構成する有機樹脂と、前記有機樹脂を溶解できる溶媒を用意する。この溶媒は前記有機樹脂の種類によって異なるため特に限定するものではなく、適宜選択できる。   First, an organic resin constituting the ultrafine short fiber before insolubilization treatment and a solvent capable of dissolving the organic resin are prepared. The solvent is not particularly limited because it varies depending on the type of the organic resin, and can be appropriately selected.

次いで、溶媒に前記有機樹脂を溶解することで紡糸液を作製する。紡糸液における前記有機樹脂の固形分濃度は、有機樹脂が溶解できる濃度であればよく、また、使用する有機樹脂によって最適な値が異なるため特に限定するものではなく、適宜調整できる。また、紡糸液の粘度についても使用する有機樹脂によって最適な値が異なるため、適宜調整できる。本発明における「粘度」とは、粘度測定装置(Thermo Scientific製)を用い、シェアレート100s−1の時の値をいう。 Next, a spinning solution is prepared by dissolving the organic resin in a solvent. The solid content concentration of the organic resin in the spinning solution is not particularly limited as long as the organic resin can be dissolved, and the optimum value varies depending on the organic resin used, and can be adjusted as appropriate. Also, the viscosity of the spinning solution varies depending on the organic resin used, and can be adjusted as appropriate. The “viscosity” in the present invention refers to a value at a shear rate of 100 s −1 using a viscosity measuring device (manufactured by Thermo Scientific).

次に、前記紡糸液を紡糸して繊維を形成し、この繊維を集積することで繊維集合体を形成する。この紡糸方法として、従来公知の紡糸方法を採用することができる。例えば、湿式紡糸法、乾式紡糸法、フラッシュ紡糸法、遠心紡糸法、静電紡糸法、特開2009−287138号公報に開示されているような、ガスの剪断作用により紡糸する方法、あるいは特開2011−32593号公報に開示されているような、電界の作用に加えてガスの剪断力を作用させて紡糸する方法などによって紡糸し、紡糸した繊維を直接ドラムやネット上に集積して、繊維集合体を形成することが出来る。これらの中でも静電紡糸法によれば、繊維径の小さい繊維を紡糸しやすいため好適である。   Next, the spinning solution is spun to form fibers, and the fibers are accumulated to form a fiber assembly. As this spinning method, a conventionally known spinning method can be employed. For example, a wet spinning method, a dry spinning method, a flash spinning method, a centrifugal spinning method, an electrostatic spinning method, a method of spinning by gas shearing action as disclosed in JP 2009-287138 A, or JP Spinning is performed by a method of spinning by applying a shearing force of a gas in addition to the action of an electric field, as disclosed in 2011-32593, and the spun fibers are directly accumulated on a drum or a net to obtain fibers. Aggregates can be formed. Among these, the electrospinning method is preferable because it is easy to spin a fiber having a small fiber diameter.

なお、静電紡糸法により紡糸する場合、紡糸液の導電性が不十分であると、紡糸性に劣り、繊維化するのが困難な場合があるため、このような場合には、紡糸液に塩を適量添加して、導電性を調節することもできる。   In addition, when spinning by an electrostatic spinning method, if the spinning solution is insufficiently conductive, the spinning property may be inferior and fiberization may be difficult. An appropriate amount of salt can be added to adjust the conductivity.

その後、形成した繊維集合体を不溶化処理へ供する。不溶化処理の方法については、熱処理、電子線照射、ガンマ線照射、架橋剤添加などを挙げることができ、製造上簡便である熱処理が好適である。熱処理における処理温度は適宜調整するが、上述の処理温度で熱処理することが好ましい。   Thereafter, the formed fiber assembly is subjected to insolubilization treatment. Examples of the insolubilization method include heat treatment, electron beam irradiation, gamma ray irradiation, addition of a crosslinking agent, and the like, and heat treatment that is simple in production is preferable. The treatment temperature in the heat treatment is adjusted as appropriate, but the heat treatment is preferably performed at the above treatment temperature.

さらに、繊維集合体を粉砕することで、アスペクト比が200以下である極細短繊維を得ることができる。粉砕方法としては、特に限定するものではないが、例えば石臼やピンミルを使用する方法が挙げられる。また、不溶化処理前の繊維集合体を粉砕して極細短繊維を得て、得られた繊維を不溶化処理へ供し本発明に係る極細短繊維を製造しても良い。得られた極細短繊維は、フィルムなどの樹脂組成物に添加するフィラーやファンデーションなどの化粧品に添加するフィラー、フィルタ材料などに広く用いることができる。   Furthermore, by pulverizing the fiber assembly, ultrafine short fibers having an aspect ratio of 200 or less can be obtained. Although it does not specifically limit as a grinding | pulverization method, For example, the method of using a stone mill and a pin mill is mentioned. Further, the fiber aggregate before insolubilization treatment may be pulverized to obtain ultrafine short fibers, and the obtained fibers may be subjected to insolubilization treatment to produce the ultrafine short fibers according to the present invention. The obtained ultrafine short fibers can be widely used for fillers added to resin compositions such as films, fillers added to cosmetics such as foundations, filter materials, and the like.

本発明の複合体は常法により製造することができる。例えば、樹脂組成物を溶解させた溶解液に、極細短繊維を添加し、極細短繊維分散液を調製した後、極細短繊維分散液を塗工し、乾燥して分散媒を除去し、複合体を製造することができる。   The complex of the present invention can be produced by a conventional method. For example, after adding an ultrafine short fiber to a solution obtained by dissolving a resin composition to prepare an ultrafine short fiber dispersion, the ultrafine short fiber dispersion is applied, dried to remove the dispersion medium, and the composite The body can be manufactured.

本発明における樹脂組成物を構成する樹脂の種類は特に限定されるものではなく、適宜選択できる。特に、樹脂組成物と不溶化処理前の極細短繊維を構成する有機樹脂が同じ樹脂を採用してなる複合体であると、複合体中で樹脂組成物と極細短繊維の界面が分離しにくいことから、例えば強度と伸度に優れるなど、機械的強度に優れた複合体を提供でき好ましい。さらに、複合体中における樹脂組成物及び極細短繊維の含有量、その比率は用途によって異なるため、特に限定するものではなく、適宜調整できる。   The kind of resin which comprises the resin composition in this invention is not specifically limited, It can select suitably. In particular, when the resin composition and the organic resin constituting the ultrafine fiber before insolubilization treatment are a composite made of the same resin, the interface between the resin composition and the ultrafine short fiber is difficult to separate in the composite. Therefore, it is preferable to provide a composite having excellent mechanical strength such as excellent strength and elongation. Furthermore, since the content of the resin composition and the ultrashort fiber in the composite and the ratio thereof vary depending on the application, they are not particularly limited and can be adjusted as appropriate.

複合体の形態は用途によって異なり、特に限定するものではないが、例えば、シート状や、直方体、円柱、角柱、角錐などであることが出来る。   The form of the composite differs depending on the application and is not particularly limited. For example, the composite can be a sheet, a rectangular parallelepiped, a cylinder, a prism, a pyramid, or the like.

以下、具体例によって本発明を説明するが、本発明はこれら具体例に限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these specific examples.

(繊維集合体aの作製方法)
ポリアクリロニトリル(重量平均分子量37万、以下PAN)を、N,N−ジメチルホルムアミドに溶解して、濃度が13.0wt%の紡糸溶液を作製した。この紡糸溶液の粘度は、1000mPa・s(23℃)であった。
(Production method of fiber assembly a)
Polyacrylonitrile (weight average molecular weight 370,000, hereinafter PAN) was dissolved in N, N-dimethylformamide to prepare a spinning solution having a concentration of 13.0 wt%. The spinning solution had a viscosity of 1000 mPa · s (23 ° C.).

次に、前記紡糸溶液を用い、次の静電紡糸条件で紡糸して、ステンレスドラム捕集体に集積させることでシート状の繊維集合体a(平均繊維径:0.30μm)を作製した。   Next, using the spinning solution, spinning was performed under the following electrostatic spinning conditions, and the sheet-like fiber aggregate a (average fiber diameter: 0.30 μm) was produced by accumulating on a stainless drum collector.

<紡糸条件>
・電極:金属製ノズル(内径:0.33mm)
・捕集体:アースしたステンレスドラム
・ノズルからの吐出量:1g/時間
・ノズル先端とステンレスドラム捕集体との距離:9cm
・紡糸容器内の温湿度:25℃/18%RH
・ノズルへの印加電圧:20kV
<Spinning conditions>
・ Electrode: Metal nozzle (inner diameter: 0.33 mm)
・ Collector: grounded stainless steel drum ・ Discharge rate from nozzle: 1 g / hour ・ Distance between nozzle tip and stainless steel drum collector: 9 cm
・ Temperature and humidity in spinning container: 25 ℃ / 18% RH
・ Applied voltage to the nozzle: 20 kV

(実施例1)
繊維集合体aに対し常圧下で、265℃で2分間の熱処理を行った。
次に、熱処理を行った繊維集合体aを、その重量に対して3倍量の水中へ混合して、混合液を作製した。そして、混合液を粉砕装置(マスコロイダー(登録商標)、増幸産業株式会社製)へ供し、熱処理を行った繊維集合体aを次の粉砕条件で粉砕した。
Example 1
The fiber assembly a was heat-treated at 265 ° C. for 2 minutes under normal pressure.
Next, the fiber assembly a subjected to the heat treatment was mixed with 3 times the amount of water with respect to its weight to prepare a mixed solution. Then, the mixed solution was supplied to a pulverizer (Mass Colloidal (registered trademark), manufactured by Masuko Sangyo Co., Ltd.), and the heat-treated fiber assembly a was pulverized under the following pulverization conditions.

<粉砕条件>
・クリアランス:−200μm
・回転数:1500rpm
・処理時間:30秒
その後、粉砕物を濾別し、110℃で30分乾燥させることで水を除去して、極細短繊維Aを作製した。
<Crushing conditions>
・ Clearance: -200μm
・ Rotation speed: 1500rpm
Treatment time: 30 seconds Thereafter, the pulverized product was filtered off and dried at 110 ° C. for 30 minutes to remove water to produce ultrafine short fibers A.

(比較例1)
熱処理の条件を常圧下、170℃、30分間に変更したことを除いては、実施例1と同様の方法で極細短繊維Bを作製した。
(Comparative Example 1)
An ultrafine short fiber B was produced in the same manner as in Example 1 except that the heat treatment conditions were changed to 170 ° C. and 30 minutes under normal pressure.

(比較例2)
熱処理の条件を常圧下、200℃、30分間に変更したことを除いては、実施例1と同様の方法で極細短繊維Cを作製した。
(Comparative Example 2)
Ultrafine short fibers C were produced in the same manner as in Example 1 except that the heat treatment conditions were changed to 200 ° C. and 30 minutes under normal pressure.

(比較例3)
繊維集合体aに対し熱処理を行わなかったことを除いては、実施例1と同様の方法で極細短繊維Dを作製した。
(Comparative Example 3)
Ultrafine short fibers D were produced in the same manner as in Example 1 except that no heat treatment was performed on the fiber aggregate a.

(繊維集合体bの作製方法)
ポリビニルアルコール(重量平均分子量4.5万、以下PVA)と架橋剤(メチルビニルエーテル‐無水マレイン酸共重合体)を4:1の質量比で水に溶解して、濃度が12.5wt%の紡糸溶液を作製した。この紡糸溶液の粘度は、500mPa・s(23℃)であった。
(Method for producing fiber assembly b)
Polyvinyl alcohol (weight average molecular weight 45,000, hereinafter referred to as PVA) and a crosslinking agent (methyl vinyl ether-maleic anhydride copolymer) are dissolved in water at a mass ratio of 4: 1, and the concentration is 12.5 wt%. A solution was made. The spinning solution had a viscosity of 500 mPa · s (23 ° C.).

次に、前記紡糸溶液を用い、次の静電紡糸条件で紡糸して、ステンレスドラム捕集体に集積させることでシート状の繊維集合体b(平均繊維径:0.20μm)を作製した。   Next, using the above spinning solution, spinning was performed under the following electrostatic spinning conditions, and the sheet-like fiber aggregate b (average fiber diameter: 0.20 μm) was produced by accumulating it on a stainless drum collector.

<紡糸条件>
・電極:金属製ノズル(内径:0.33mm)
・捕集体:アースしたステンレスドラム
・ノズルからの吐出量:1g/時間
・ノズル先端とステンレスドラム捕集体との距離:10cm
・紡糸容器内の温湿度:25℃/40%RH
・ノズルへの印加電圧:20kV
<Spinning conditions>
・ Electrode: Metal nozzle (inner diameter: 0.33 mm)
・ Collector: Grounded stainless steel drum ・ Discharge rate from nozzle: 1 g / hour ・ Distance between nozzle tip and stainless steel drum collector: 10 cm
・ Temperature and humidity in spinning container: 25 ℃ / 40% RH
・ Applied voltage to the nozzle: 20 kV

(実施例2)
繊維集合体bに対し常圧下で、160℃で3分間の熱処理を行った。
次に、熱処理を行った繊維集合体bを、その重量に対して3倍量のN,N−ジメチルホルムアミド中へ混合して、混合液を作製した。そして、混合液を粉砕装置(マスコロイダー(登録商標)、増幸産業株式会社製)へ供し、熱処理を行った繊維集合体bを実施例1と同様の方法で粉砕し、粉砕物を濾別して160℃で60分乾燥させることでN,N−ジメチルホルムアミドを除去して、極細短繊維Eを作製した。
(Example 2)
The fiber assembly b was heat-treated at 160 ° C. for 3 minutes under normal pressure.
Next, the heat-treated fiber assembly b was mixed into N, N-dimethylformamide in an amount 3 times the weight to prepare a mixed solution. Then, the mixed solution is supplied to a pulverizer (Mass Colloider (registered trademark), manufactured by Masuko Sangyo Co., Ltd.), the heat-treated fiber assembly b is pulverized in the same manner as in Example 1, and the pulverized product is filtered to 160. N, N-dimethylformamide was removed by drying at 60 ° C. for 60 minutes to produce ultrafine short fibers E.

(比較例4)
繊維集合体bに対し熱処理を行わなかったことを除いては、実施例2と同様の方法で極細短繊維Fを作製した。
(Comparative Example 4)
An ultra-short fiber F was produced in the same manner as in Example 2 except that the fiber aggregate b was not heat-treated.

(繊維集合体cの作製方法)
ポリベンゾイミダゾール(重量平均分子量26万、以下PBI)をN,N−ジメチルアセトアミドに溶解して、濃度が18.0wt%の紡糸溶液を作製した。この紡糸溶液の粘度は、7000mPa・s(23℃)であった。
(Production method of fiber assembly c)
Polybenzimidazole (weight average molecular weight 260,000, hereinafter PBI) was dissolved in N, N-dimethylacetamide to prepare a spinning solution having a concentration of 18.0 wt%. The spinning solution had a viscosity of 7000 mPa · s (23 ° C.).

次に、前記紡糸溶液を用い、次の静電紡糸条件で紡糸して、ステンレスドラム捕集体に集積させることでシート状の繊維集合体c(平均繊維径:0.25μm)を作製した。   Next, using the spinning solution, spinning was performed under the following electrostatic spinning conditions, and the sheet-like fiber aggregate c (average fiber diameter: 0.25 μm) was produced by accumulating it on a stainless drum collector.

<紡糸条件>
・電極:金属製ノズル(内径:0.33mm)
・捕集体:アースしたステンレスドラム
・ノズルからの吐出量:1g/時間
・ノズル先端とステンレスドラム捕集体との距離:8cm
・紡糸容器内の温湿度:25℃/40%RH
・ノズルへの印加電圧:15kV
<Spinning conditions>
・ Electrode: Metal nozzle (inner diameter: 0.33 mm)
・ Collector: grounded stainless steel drum ・ Discharge rate from nozzle: 1 g / hour ・ Distance between nozzle tip and stainless steel drum collector: 8 cm
・ Temperature and humidity in spinning container: 25 ℃ / 40% RH
・ Applied voltage to the nozzle: 15 kV

(実施例3)
繊維集合体cに対し常圧下で、400℃で30分間の熱処理を行った。
次に、熱処理を行った繊維集合体cを実施例1と同様の方法で粉砕し、粉砕物を濾別して110℃で60分乾燥させることで水を除去して、極細短繊維Gを作製した。
(Example 3)
The fiber assembly c was heat-treated at 400 ° C. for 30 minutes under normal pressure.
Next, the heat-treated fiber aggregate c was pulverized in the same manner as in Example 1, and the pulverized product was filtered off and dried at 110 ° C. for 60 minutes to remove water, thereby producing ultrafine short fibers G. .

作製した実施例1〜3、比較例1〜4の極細短繊維の平均繊維径、平均繊維長、アスペクト比、繊維長のCV値を測定し、表1にまとめた。   The average fiber diameters, average fiber lengths, aspect ratios, and CV values of the fiber lengths of the produced ultrafine short fibers of Examples 1 to 3 and Comparative Examples 1 to 4 were measured and summarized in Table 1.

Figure 2019194369
Figure 2019194369

作製した実施例1〜3、比較例1〜4の極細短繊維を、上述の<不溶化試験>により評価した。なお、実施例1と比較例1〜3はN,N−ジメチルホルムアミド、実施例2と比較例4は水、実施例3はN,N−ジメチルアセトアミドを不溶化試験の試験溶媒として使用した。また、混合液を濾過し取り出した後、濾別した極細短繊維を乾燥させる条件は、実施例1、3及び比較例1〜3は160℃、60分とし、実施例2及び比較例4は110℃、60分とした。   The produced ultrafine short fibers of Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated by the above-described <insolubilization test>. Example 1 and Comparative Examples 1 to 3 used N, N-dimethylformamide, Example 2 and Comparative Example 4 used water, and Example 3 used N, N-dimethylacetamide as a test solvent for the insolubilization test. Moreover, after filtering and taking out the liquid mixture, the conditions for drying the filtered ultrafine short fibers are 160 ° C. and 60 minutes in Examples 1 and 3 and Comparative Examples 1 to 3, and Example 2 and Comparative Example 4 are The temperature was 110 ° C. for 60 minutes.

以下の不溶化試験の評価基準により、極細短繊維が不溶化したか否かを評価した。
[不溶化試験の評価基準]
○:極細短繊維の重量変化率が5%以下であったため、不溶化していた。
×:極細短繊維の重量変化率が5%より大きかったため、もしくは極細短繊維が試験溶媒に完全に溶解したため、不溶化していなかった。
It was evaluated whether or not the ultrafine short fibers were insolubilized according to the evaluation criteria of the following insolubilization test.
[Evaluation criteria for insolubilization tests]
○: The weight change rate of the ultra-fine short fibers was 5% or less, and thus was insolubilized.
X: The weight change rate of the ultrafine short fibers was greater than 5%, or the ultrafine short fibers were completely dissolved in the test solvent, and thus were not insolubilized.

実施例1〜3、比較例1〜4の不溶化処理方法、不溶化試験の結果をまとめたものを、表2に示す。   Table 2 summarizes the results of insolubilization treatment methods and insolubilization tests in Examples 1 to 3 and Comparative Examples 1 to 4.

Figure 2019194369
Figure 2019194369

実施例1〜3と比較例1〜4の比較から、平均繊維径が3μm以下、かつ、アスペクト比が200以下であり、不溶化処理を施してなる有機樹脂で構成されている極細短繊維を作製できた。   From comparison between Examples 1 to 3 and Comparative Examples 1 to 4, an ultrafine short fiber made of an organic resin having an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less and subjected to insolubilization treatment is produced. did it.

<複合フィルム又はフィルムの作製>
(実施例4)
樹脂組成物としてPANを採用し極細短繊維Aが分散してなる複合フィルムとしたときの、固形分重量比がPAN:極細短繊維A=95:5となるように、PAN溶液(溶媒:N,N−ジメチルホルムアミド、固形分濃度:10.0wt%、シグマ・アルドリッチ社製)と極細短繊維Aを混合し、2000rpmの回転数で10分間攪拌して混合液を作製した。作製した混合液をバーコーターでガラス上にコーティングし、180℃で30分間乾燥させてN,N−ジメチルホルムアミドを除去した後、ガラスから剥離することで厚さ100μmの複合フィルムを作製した。
<Production of composite film or film>
Example 4
PAN solution (solvent: N) so that the solid content weight ratio when PAN is adopted as the resin composition to form a composite film in which ultrafine short fibers A are dispersed is PAN: extra fine fibers A = 95: 5 , N-dimethylformamide, solid content concentration: 10.0 wt%, manufactured by Sigma-Aldrich) and ultra-short fiber A were mixed and stirred at 2000 rpm for 10 minutes to prepare a mixed solution. The prepared mixed solution was coated on glass with a bar coater, dried at 180 ° C. for 30 minutes to remove N, N-dimethylformamide, and then peeled off from the glass to prepare a composite film having a thickness of 100 μm.

(比較例5)
極細短繊維Aの代わりに極細短繊維Bを用いたことを除いては、実施例4と同様にして厚さ100μmの複合フィルムを作製した。
(Comparative Example 5)
A composite film having a thickness of 100 μm was produced in the same manner as in Example 4 except that the ultrafine fiber B was used instead of the ultrafine fiber A.

(比較例6)
極細短繊維Aの代わりに極細短繊維Cを用いたことを除いては、実施例4と同様にして厚さ100μmの複合フィルムを作製した。
(Comparative Example 6)
A composite film having a thickness of 100 μm was prepared in the same manner as in Example 4 except that the ultrafine fiber C was used instead of the ultrafine fiber A.

(比較例7)
PAN溶液(溶媒:N,N−ジメチルホルムアミド、固形分濃度:10.0wt%、シグマ・アルドリッチ社製)をバーコーターでガラス上にコーティングし、180℃で30分間乾燥させてN,N−ジメチルホルムアミドを除去した後、ガラスから剥離することで厚さ100μmのフィルムを作製した。
(Comparative Example 7)
A PAN solution (solvent: N, N-dimethylformamide, solid content concentration: 10.0 wt%, manufactured by Sigma-Aldrich) was coated on a glass with a bar coater, dried at 180 ° C. for 30 minutes, and N, N-dimethyl After removing formamide, a film having a thickness of 100 μm was prepared by peeling from the glass.

(実施例5)
樹脂組成物としてPBIを採用し極細短繊維Eが分散してなる複合フィルムとしたときの、固形分重量比がPBI:極細短繊維E=70:30となるように、PBI溶液(溶媒:N,N−ジメチルアセトアミド、固形分濃度:20.0wt%)と極細短繊維Eを混合し、2000rpmの回転数で10分間攪拌して混合液を作製した。作製した混合液をバーコーターでガラス上にコーティングし、180℃で30分間乾燥させてN,N−ジメチルアセトアミドを除去した後、ガラスから剥離し、400℃で30分間熱処理(不溶化処理)を施すことで厚さ100μmの複合フィルムを作製した。
(Example 5)
PBI solution (solvent: N) so that the solid content weight ratio when PBI is adopted as the resin composition and a composite film in which ultrafine short fibers E are dispersed is PBI: extra fine fibers E = 70: 30. , N-dimethylacetamide, solid content concentration: 20.0 wt%) and ultrafine fiber E were mixed and stirred for 10 minutes at a rotational speed of 2000 rpm to prepare a mixed solution. The prepared mixed solution is coated on glass with a bar coater, dried at 180 ° C. for 30 minutes to remove N, N-dimethylacetamide, then peeled off from the glass, and subjected to heat treatment (insolubilization treatment) at 400 ° C. for 30 minutes. Thus, a composite film having a thickness of 100 μm was produced.

(実施例6)
樹脂組成物としてPBIを採用し極細短繊維Eが分散してなる複合フィルムとしたときの、固形分重量比がPBI:極細短繊維E=80:20となるように、変更したことを除いては、実施例5と同様にして厚さ100μmの複合フィルムを作製した。
(Example 6)
Except for having changed so that solid content weight ratio may be set to PBI: extra fine short fiber E = 80: 20 when it was set as the composite film which employ | adopted PBI as a resin composition and disperse | distributed extra fine short fiber E Produced a 100 μm-thick composite film in the same manner as in Example 5.

(実施例7)
樹脂組成物としてPBIを採用し極細短繊維Eが分散してなる複合フィルムとしたときの、固形分重量比がPBI:極細短繊維E=90:10となるように、変更したことを除いては、実施例5と同様にして厚さ100μmの複合フィルムを作製した。
(Example 7)
Except for having changed so that solid content weight ratio may be set to PBI: extra-fine short fiber E = 90: 10 when it is set as the composite film which employ | adopts PBI as a resin composition and disperse | distributes the extra-short fiber E Produced a 100 μm-thick composite film in the same manner as in Example 5.

(比較例8)
PBI溶液(溶媒:N,N−ジメチルアセトアミド、固形分濃度:20.0wt%)をバーコーターでガラス上にコーティングし、180℃で30分間乾燥させてN,N−ジメチルアセトアミドを除去した後、ガラスから剥離し、400℃で30分間熱処理(不溶化処理)を施すことで厚さ100μmのフィルムを作製した。
(Comparative Example 8)
A PBI solution (solvent: N, N-dimethylacetamide, solid content concentration: 20.0 wt%) was coated on glass with a bar coater and dried at 180 ° C. for 30 minutes to remove N, N-dimethylacetamide. The film was peeled from the glass and heat treated (insolubilized) at 400 ° C. for 30 minutes to produce a film having a thickness of 100 μm.

<引張試験>
(1)複合フィルム又はフィルムから長方形の試料(幅:5mm、長さ:70mm)を採取した。なお、複合フィルム又はフィルムの縦方向(バーコーターによる塗布方向)の強度と伸度を測定する場合には、複合フィルム又はフィルムの横方向(バーコーターによる塗布方向と直交する方向)の長さが5mm、縦方向の長さが70mmの試料(縦試料)を採取し、複合フィルム又はフィルムの横方向の強度と伸度を測定する場合には、縦方向の長さが5mm、横方向の長さが70mmの試料(横試料)を採取した。
(2)その後、定速伸長型引張試験機(オリエンテック製、品番:UCT−100)を用いて、次の測定条件により、試料が破断するまでに測定された最大荷重と破断した時のチャック間距離を測定した。
[測定条件]
チャック間距離:50mm
引張り速度:50mm/分
<Tensile test>
(1) A rectangular sample (width: 5 mm, length: 70 mm) was taken from the composite film or film. When measuring the strength and elongation of the composite film or film in the longitudinal direction (application direction by a bar coater), the length of the composite film or film in the horizontal direction (direction perpendicular to the application direction by a bar coater) is When a sample (longitudinal sample) having a length of 5 mm and a length of 70 mm is taken and the strength and elongation in the transverse direction of the composite film or film are measured, the length in the longitudinal direction is 5 mm and the length in the transverse direction. A sample (lateral sample) having a length of 70 mm was collected.
(2) After that, using a constant speed extension type tensile tester (Orientec, product number: UCT-100), the chuck when the sample was ruptured and the maximum load measured until the sample was broken under the following measurement conditions The distance was measured.
[Measurement condition]
Distance between chucks: 50mm
Tensile speed: 50 mm / min

そして、縦試料と横試料それぞれ5枚ずつを上記測定に供し、これら5枚ずつの縦試料と横試料それぞれの最大荷重の算術平均値を強度(N/μm厚)とした。
また、これら5枚ずつの縦試料と横試料それぞれが破断した時の、チャック間距離の算術平均値を以下の式に代入し、縦試料及び横試料それぞれの伸度(%)を求めた。
Then, 5 samples each of the vertical sample and the horizontal sample were subjected to the above measurement, and the arithmetic average value of the maximum load of each of the 5 vertical samples and the horizontal sample was defined as the strength (N / μm thickness).
In addition, the arithmetic average value of the distance between chucks when each of the five vertical samples and the horizontal sample broke was substituted into the following formula to determine the elongation (%) of each of the vertical sample and the horizontal sample.

[伸度]
s={(x−x)/x}×100
s:伸度(%)
:チャック間距離(50mm)
:引張試験において試料が破断した時のチャック間距離(5枚の試料の算術平均値)(mm)
[Elongation]
s = {(x 2 −x 1 ) / x 1 } × 100
s: elongation (%)
x 1 : Distance between chucks (50 mm)
x 2 : Distance between chucks when the sample broke in the tensile test (arithmetic average value of five samples) (mm)

実施例4〜7、比較例5〜6の複合フィルムと比較例7〜8のフィルムの物性を、以下の表3に示す。   The physical properties of the composite films of Examples 4 to 7 and Comparative Examples 5 to 6 and the films of Comparative Examples 7 to 8 are shown in Table 3 below.

Figure 2019194369
Figure 2019194369

実施例4の複合フィルムと、比較例5〜6の複合フィルムを比較した結果、実施例4の複合フィルムは比較例5〜6の複合フィルムに比べて強度と伸度が向上していた。この理由として、不溶化処理を施してなる有機樹脂で構成されている極細短繊維は、複合フィルムの製造過程で溶媒に溶けず、フィルムを効果的に補強するためだと考えられた。   As a result of comparing the composite film of Example 4 and the composite films of Comparative Examples 5-6, the composite film of Example 4 was improved in strength and elongation as compared with the composite films of Comparative Examples 5-6. The reason for this was thought to be that the ultra-short fibers composed of the organic resin formed by the insolubilization treatment did not dissolve in the solvent during the production process of the composite film and effectively reinforce the film.

また、実施例4の複合フィルムと、極細短繊維を含有しない比較例7のフィルムを比較した結果、さらに、実施例5〜7の複合フィルムと、極細短繊維を含有しない比較例8のフィルムを比較した結果から、極細短繊維が樹脂組成物中に分散してなることで強度と伸度が向上した複合体を提供できることがわかった。   Moreover, as a result of comparing the composite film of Example 4 and the film of Comparative Example 7 not containing ultrafine short fibers, the composite film of Examples 5 to 7 and the film of Comparative Example 8 not containing ultrafine short fibers were also compared. From the comparison results, it was found that a composite with improved strength and elongation can be provided by dispersing ultrafine short fibers in the resin composition.

以上から、本発明の構成を有する極細短繊維は、強度や伸度といった機械的強度に優れる複合体を実現できるものであった。そして、本発明の極細短繊維が樹脂組成物に分散してなる複合体は、強度や伸度といった機械的強度に優れていることがわかった。   As described above, the ultrafine short fiber having the configuration of the present invention can realize a composite having excellent mechanical strength such as strength and elongation. And it turned out that the composite_body | complex which the ultra-short fiber of this invention disperse | distributes to a resin composition is excellent in mechanical strength, such as intensity | strength and elongation.

本発明の極細短繊維は、例えばフィルムなどの樹脂組成物に添加するフィラーやファンデーションなどの化粧品に添加するフィラー、フィルタ材料などに好適に用いることができる。また、本発明の複合体は、引張強度や伸度といった機械的強度に優れているため、様々な産業用途に好適に用いることができる。   The ultra-short fibers of the present invention can be suitably used for fillers added to resin compositions such as films, fillers added to cosmetics such as foundations, filter materials, and the like. Moreover, since the composite of this invention is excellent in mechanical strength, such as tensile strength and elongation, it can be used suitably for various industrial uses.

Claims (2)

平均繊維径が3μm以下、かつ、アスペクト比が200以下であり、不溶化処理を施してなる有機樹脂で構成されていることを特徴とする、極細短繊維。 An ultra-fine short fiber characterized by comprising an organic resin having an average fiber diameter of 3 μm or less and an aspect ratio of 200 or less and subjected to insolubilization treatment. 請求項1に記載の極細短繊維が樹脂組成物中に分散してなることを特徴とする、複合体。 A composite comprising the ultrafine short fiber according to claim 1 dispersed in a resin composition.
JP2018087923A 2018-04-30 2018-04-30 Ultrafine short fibers and a composite in which said ultrafine short fibers are dispersed in a resin composition Active JP7154816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018087923A JP7154816B2 (en) 2018-04-30 2018-04-30 Ultrafine short fibers and a composite in which said ultrafine short fibers are dispersed in a resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087923A JP7154816B2 (en) 2018-04-30 2018-04-30 Ultrafine short fibers and a composite in which said ultrafine short fibers are dispersed in a resin composition

Publications (2)

Publication Number Publication Date
JP2019194369A true JP2019194369A (en) 2019-11-07
JP7154816B2 JP7154816B2 (en) 2022-10-18

Family

ID=68468927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087923A Active JP7154816B2 (en) 2018-04-30 2018-04-30 Ultrafine short fibers and a composite in which said ultrafine short fibers are dispersed in a resin composition

Country Status (1)

Country Link
JP (1) JP7154816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196987A (en) * 2019-05-31 2020-12-10 花王株式会社 Ultrafine short fiber
KR20220002692A (en) * 2019-05-31 2022-01-06 카오카부시키가이샤 Film-forming composition and microfine short fibers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114560A (en) * 2007-11-02 2009-05-28 Nisshinbo Ind Inc Ultra-fine staple fiber made of resin and method for producing the same
JP2016030862A (en) * 2014-07-28 2016-03-07 株式会社クラレ Fibrillated fiber and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114560A (en) * 2007-11-02 2009-05-28 Nisshinbo Ind Inc Ultra-fine staple fiber made of resin and method for producing the same
JP2016030862A (en) * 2014-07-28 2016-03-07 株式会社クラレ Fibrillated fiber and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196987A (en) * 2019-05-31 2020-12-10 花王株式会社 Ultrafine short fiber
KR20220002692A (en) * 2019-05-31 2022-01-06 카오카부시키가이샤 Film-forming composition and microfine short fibers
KR102407900B1 (en) 2019-05-31 2022-06-10 카오카부시키가이샤 Film-forming composition and microfine short fibers

Also Published As

Publication number Publication date
JP7154816B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
Zhang et al. Preparation of cellulose nanofiber from softwood pulp by ball milling
EP2190917B1 (en) Cellulose suspension and method for the production thereof
Yang et al. Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning
Ding et al. Manipulated electrospun PVA nanofibers with inexpensive salts
CN107675288B (en) Polyimide ultrashort fiber and preparation method thereof
EP2266786B1 (en) Manufacturing composite materials from nano-composites
KR101849790B1 (en) Process for the manufacture of cellulose-based fibers and the fibers thus obtained
Qi et al. Electrospinning of cellulose‐based fibers from NaOH/urea aqueous system
EP2625138A1 (en) Production of dispersions containing carbon nanotubes
Weng et al. The production of carbon nanotube reinforced poly (vinyl) butyral nanofibers by the Forcespinning® method
Cozza et al. Electrospinning: A novel method to incorporate POSS into a polymer matrix
Wang et al. Self‐assembly‐driven electrospinning: the transition from fibers to intact beaded morphologies
JP6225760B2 (en) Method for producing fine fibrous cellulose composite sheet
CA2924489C (en) High carbon nanotube content fluids
Al Faruque et al. Impact of the wet spinning parameters on the alpaca‐based polyacrylonitrile composite fibers: Morphology and enhanced mechanical properties study
Yagoub et al. Complex membrane of cellulose and chitin nanocrystals with cationic guar gum for oil/water separation
JP4883312B2 (en) Resin-made ultrafine short fiber and method for producing the same
JP2019194369A (en) Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition
Rezaei et al. Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers
Wu et al. Integrated and sustainable preparation of functional nanocellulose via formic acid/choline chloride solvents pretreatment
CN109679260B (en) Composite water-based conductive emulsion, preparation method thereof and water-based conductive ink
Going et al. Cellulose nanocrystals: dispersion in co-solvent systems and effects on electrospun polyvinylpyrrolidone fiber mats
Kalantari et al. Effects of interfacial interactions and interpenetrating brushes on the electrospinning of cellulose nanocrystals-polystyrene fibers
Dobrovolskaya et al. Electrospinning of composite nanofibers based on chitosan, poly (ethylene oxide), and chitin nanofibrils
Yamane et al. Dissolution of cellulose nanofibers in aqueous sodium hydroxide solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7154816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150