JP2018174660A - Three-phase inverter device - Google Patents

Three-phase inverter device Download PDF

Info

Publication number
JP2018174660A
JP2018174660A JP2017071690A JP2017071690A JP2018174660A JP 2018174660 A JP2018174660 A JP 2018174660A JP 2017071690 A JP2017071690 A JP 2017071690A JP 2017071690 A JP2017071690 A JP 2017071690A JP 2018174660 A JP2018174660 A JP 2018174660A
Authority
JP
Japan
Prior art keywords
voltage
phase
current
correction
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017071690A
Other languages
Japanese (ja)
Inventor
林 康一
Koichi Hayashi
康一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2017071690A priority Critical patent/JP2018174660A/en
Publication of JP2018174660A publication Critical patent/JP2018174660A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a three-phase inverter device in which current characteristics in response to a voltage command is improved so as not to have discontinuity positions due to a dead time.SOLUTION: A correction voltage generator 10 outputs correction voltages Zu, Zv, and Zw that is changed and repeated in three patterns in order of +Vc, -Vc, and 0 in each period Ts which is a half of the carrier signal period in synchronism with a signal of a triangular wave signal Wt from a carrier signal generating device 4. The correction voltages Zu, Zv, and Zw output a correction voltage value different in the period Ts at the same timing. The correction voltages Zu, Zv, and Zw are added to command voltages Vu, Vv, and Vw output from a current control part 3 in each of adders 11, 12, and 13, and are corrected to command voltages Vuc, Vvc, and Vwc. Thus, in a PWM converter 5, an on-off time of a PWM signal is corrected for the command voltages Vu, Vv, and Vw by a correction voltage repair.SELECTED DRAWING: Figure 1

Description

本発明は、電動機の三相の電流制御を行う三相インバータ装置に関する。   The present invention relates to a three-phase inverter device that performs three-phase current control of an electric motor.

図7は、従来の電動機用の三相インバータ装置の一部を示すブロック図である。同図で、インバータ部2は、スイッチング素子Q1とQ2,Q3とQ4,Q5とQ6が其々ブリッジ接続された3つの組のスイッチング素子から構成されている。各組のスイッチング素子は、其々U相,V相,W相の三相電流を電動機1へ出力する。電流検出器14,15は、それぞれU相とV相の電流Iu,Ivを検出し、検出した電流Iu,Ivは電流制御部3に入力される。電流制御部3の内部では、前段からの直交座標系の電流指令値Id,Iqから3相の指令電流Iuc,Ivc,Iwcに変換する。また、電流制御部3の内部では、IuとIvを加算して符号を変えた値をW相の検出電流Iwとし、指令電流Iuc,Ivc,Iwcから其々検出電流Iu,Iv,Iwを減算することで、電流偏差Iud,Ivd,Iwdを演算している。また、電流制御部3の内部では、電流偏差Iud,Ivd,Iwdを各相のPID制御器を介して指令電圧Vu,Vv,Vwに変換して出力する。指令電圧Vu,Vv,Vwは、PWM変換器5へ入力され、キャリア周波数fの三角波を発生するキャリア信号発生器4からの三角波信号Wtと指令電圧Vu,Vv,Vwの値を比較して、スイッチング素子のオンオフ幅を変えるためのPWM信号である指令電圧Up,Un,Vp,Vn,Wp,Wnを生成する。PWM信号である指令電圧Up,Un,Vp,Vn,Wp,Wnはインバータ部2に入力され、其々スイッチング素子Q1,Q2,Q3,Q4,Q5,Q6をオンオフ制御する。これにより、図7の三相インバータ装置は、指令電流Iuc,Ivc,Iwcに従ったU相,V相,W相の三相電流を電動機1へ出力する。なお、PWM変換器5では、指令電圧Vu,Vv,Vwを三角波信号Wtと比較し、Vu,Vv,Vwが三角波信号Wtよりも大きいとき、其々Up,Vp,Wpをオンとし、Un,Vn,Wnをオフとしている。また、Vu,Vv,Vwが三角波信号Wtよりも小さいときは、其々Up,Vp,Wpをオフとし,Un,Vn,Wnをオンとしている。ただし、このままだとブリッジ接続された上下のスイッチング素子がオン又はオフするまでの応答時間に遅れがあるため、各組の上下のスイッチング素子が同時にオンするタイミングが発生し、スイッチング素子が上下短絡して破壊する問題がある。そのため、PWM変換器5では、ブリッジ接続された上下のスイッチング素子が同時オンしないようにスイッチング素子の一方がオフに変化した直後は一定時間他方がオンしないようにするデッドタイムTdを設けて、PWM信号であるUp,Un,Vp,Vn,Wp,Wnを出力する。デッドタイムの期間中は、ブリッジ接続された上下のスイッチング素子は両方ともオフ状態となる。しかし、誘導負荷である巻線を持つ電動機では、流れている電流がデッドタイム期間中でも流れようとする。そのため、プラス方向に電流が流れている場合は、デッドタイム期間中も下のスイッチング素子に並列接続されたダイオードを通して電流が流れ、下のスイッチング素子がオン状態と同じになる。また、マイナス方向に電流が流れている場合は、デッドタイム期間中も上のスイッチング素子に並列接続されたダイオードを通して電流が流れ、上のスイッチング素子がオン状態と同じになる。このことから、流れる電流の向きが変わることにより、上下のスイッチング素子のオンする時間幅が急激に変化することになる。   FIG. 7 is a block diagram showing a part of a conventional three-phase inverter device for an electric motor. In the figure, the inverter unit 2 is composed of three sets of switching elements in which switching elements Q1, Q2, Q3, Q4, Q5, and Q6 are bridge-connected. Each set of switching elements outputs a three-phase current of U phase, V phase, and W phase to the motor 1. The current detectors 14 and 15 detect U-phase and V-phase currents Iu and Iv, respectively, and the detected currents Iu and Iv are input to the current control unit 3. Inside the current control unit 3, the current command values Id, Iq in the orthogonal coordinate system from the previous stage are converted into three-phase command currents Iuc, Ivc, Iwc. Further, in the current control unit 3, a value obtained by adding Iu and Iv and changing the sign is set as a W-phase detection current Iw, and the detection currents Iu, Iv, and Iw are subtracted from the command currents Iuc, Ivc, and Iwc, respectively. Thus, current deviations Iud, Ivd, and Iwd are calculated. In the current control unit 3, the current deviations Iud, Ivd, and Iwd are converted into command voltages Vu, Vv, and Vw through the PID controllers of the respective phases and output. The command voltages Vu, Vv, and Vw are input to the PWM converter 5, and the triangular wave signal Wt from the carrier signal generator 4 that generates a triangular wave with the carrier frequency f is compared with the values of the command voltages Vu, Vv, and Vw. Command voltages Up, Un, Vp, Vn, Wp, Wn, which are PWM signals for changing the on / off width of the switching element, are generated. The command voltages Up, Un, Vp, Vn, Wp, Wn, which are PWM signals, are input to the inverter unit 2, and the switching elements Q1, Q2, Q3, Q4, Q5, Q6 are on / off controlled, respectively. Accordingly, the three-phase inverter device of FIG. 7 outputs a three-phase current of U phase, V phase, and W phase according to the command currents Iuc, Ivc, and Iwc to the electric motor 1. The PWM converter 5 compares the command voltages Vu, Vv, and Vw with the triangular wave signal Wt, and when Vu, Vv, and Vw are larger than the triangular wave signal Wt, the Up, Vp, and Wp are turned on, and Un, Vn and Wn are turned off. When Vu, Vv, and Vw are smaller than the triangular wave signal Wt, Up, Vp, and Wp are turned off, and Un, Vn, and Wn are turned on. However, since there is a delay in the response time until the upper and lower switching elements that are bridge-connected are turned on or off, there is a timing when the upper and lower switching elements of each set are simultaneously turned on, and the switching elements are short-circuited vertically. Problem to destroy. Therefore, the PWM converter 5 is provided with a dead time Td that prevents the other switching element from being turned on for a certain period of time immediately after one of the switching elements is turned off so that the bridge-connected upper and lower switching elements are not simultaneously turned on. The signals Up, Un, Vp, Vn, Wp, and Wn are output. During the dead time, both the upper and lower switching elements that are bridge-connected are turned off. However, in an electric motor having a winding that is an inductive load, the flowing current tends to flow even during the dead time period. Therefore, when a current flows in the positive direction, a current flows through a diode connected in parallel to the lower switching element even during the dead time period, and the lower switching element becomes the same as the ON state. Further, when a current flows in the negative direction, the current flows through a diode connected in parallel to the upper switching element even during the dead time period, and the upper switching element becomes the same as the ON state. For this reason, when the direction of the flowing current changes, the time width during which the upper and lower switching elements are turned on changes abruptly.

ここで、図5には、図5(a)に示す指令電圧によってスイッチング素子をオンオフした場合の波形図を示してある。破線が従来技術、実線が実施形態の波形を示す。   Here, FIG. 5 shows a waveform diagram when the switching element is turned on and off by the command voltage shown in FIG. A broken line indicates the waveform of the conventional technique, and a solid line indicates the waveform of the embodiment.

上述のように、スイッチング素子のオンする時間幅が急激に変化すると、図5(b)の破線のように電流の流れる方向が切り替わるタイミングでU相,V相,W相の電圧が不連続に変化し、電流波形も図5(c)の破線のように歪んだ波形となってしまう。このままでは、指令値通りに電動機の電流を忠実に制御できないため、電動機の回転トルクや回転速度又は回転位置を高精度に制御できないという問題がある。   As described above, when the time width during which the switching element is turned on suddenly changes, the U-phase, V-phase, and W-phase voltages become discontinuous at the timing when the current flow direction is switched as shown by the broken line in FIG. As a result, the current waveform also becomes a distorted waveform as shown by the broken line in FIG. In this state, since the current of the motor cannot be faithfully controlled according to the command value, there is a problem that the rotational torque, rotational speed, or rotational position of the motor cannot be controlled with high accuracy.

図8は、図7の三相インバータ装置にデッドタイム補償器を付加した三相インバータ装置の一例を示すブロック図である。デッドタイム補償器6は、電流制御部3からの指令電流Iuc,Ivc,Iwcのそれぞれの極性を検出し、デッドタイム補償電圧Du,Dv,Dwを出力する。ここで、デッドタイムによりU相,V相,W相の電圧が不連続に急激に変化する電圧変化の半分に相当する電圧をVdとすると、デッドタイム補償電圧Du,Dv,Dwは、対応する指令電流の極性が正だと+Vdとし、指令電流の極性が負だと−Vdとして対応する相の補償電圧を出力する。加算器7,8,9では、指令電圧Vu,Vv,Vwに対してそれぞれデッドタイム補償電圧Du,Dv,Dwを加算し、デッドタイム補償された指令電圧Vu‘,Vv’,Vw‘をPWM変換器5へ出力する。このようにデッドタイム補償することで、図8の三相インバータ装置では、U相,V相,W相の電圧と電流を図5(b)と図5(c)の実線で示すような正常な波形に補正することができる。   FIG. 8 is a block diagram showing an example of a three-phase inverter device in which a dead time compensator is added to the three-phase inverter device of FIG. The dead time compensator 6 detects the polarities of the command currents Iuc, Ivc, Iwc from the current control unit 3 and outputs dead time compensation voltages Du, Dv, Dw. Here, assuming that a voltage corresponding to half of the voltage change in which the U-phase, V-phase, and W-phase voltages change discontinuously and rapidly due to dead time is Vd, the dead time compensation voltages Du, Dv, and Dw correspond to each other. When the polarity of the command current is positive, it is + Vd, and when the polarity of the command current is negative, the corresponding phase compensation voltage is output as -Vd. In the adders 7, 8, and 9, the dead time compensation voltages Du, Dv, and Dw are added to the command voltages Vu, Vv, and Vw, respectively, and the dead time compensated command voltages Vu ′, Vv ′, and Vw ′ are PWMed. Output to the converter 5. By compensating for the dead time in this way, in the three-phase inverter device of FIG. 8, the U-phase, V-phase, and W-phase voltages and currents are normal as shown by the solid lines in FIGS. 5 (b) and 5 (c). Can be corrected to a simple waveform.

特開平09−084385号公報JP 09-084385 A

前述した図7の三相インバータ装置で、抵抗負荷を想定してUV相間に電流を流した場合、指令電圧Vu,Vvに対するU相,V相電流平均電流は、図4のグラフの破線のような特性となる。このようにデッドタイムがあるため、3相が0電圧付近では、6個のスイッチング素子の上側と下側が同時にオンするタイミングがなくなり、全相の電流が全く流れない不感帯ができる。このような特性は、誘導性負荷でも微小電圧かつ微小電流の時は、デッドタイム期間の途中で、ダイオードを流れる電流が0となるため、類似した特性となっていた。また、電動機は回転速度が高いほど電流が多少歪んでいたとしても慣性力が作用し、デッドタイムによる電流歪が大きくてもそれによる運動性能への影響は少なかった。しかし、回転速度が低い場合は、慣性力が働かないうえに、電動機の巻線に印加する電圧も小さくなるため、デッドタイムの影響による運動性能の悪化は大きかった。   In the above-described three-phase inverter device of FIG. 7, when a current is passed between the UV phases assuming a resistance load, the U-phase and V-phase current average currents with respect to the command voltages Vu and Vv are as shown by the broken lines in the graph of FIG. Characteristics. Since there is such a dead time, when the three phases are close to 0 voltage, there is no timing when the upper and lower sides of the six switching elements are simultaneously turned on, and a dead zone where no current flows in all phases is generated. Such characteristics are similar to those of the inductive load when the voltage and current are very small because the current flowing through the diode becomes 0 during the dead time period. Moreover, even if the electric current was somewhat distorted as the rotational speed of the electric motor increased, the inertial force acted, and even if the current distortion due to the dead time was large, the influence on the exercise performance was small. However, when the rotational speed is low, the inertial force does not work and the voltage applied to the windings of the motor is also small, so the performance of the motor is greatly deteriorated due to the dead time.

ただし、図8のデッドタイム補償器を付加した三相インバータ装置では、0電圧付近でもデッドタイム補償電圧により、上のスイッチング素子と下のスイッチング素子のタイミングが重なる付近まで瞬時に指令電圧が補正されるため、理論上はこのような問題はない。しかし、スイッチング素子は、オフからオン又はオンからオフへの変化は、急激に変化するものではなく、徐々に変化して切り替わるため、図8に示すようなデッドタイム補償器6では、デッドタイムによる影響を完全に除去できなかった。また、スイッチング素子のオン又はオフするまでの応答時間は、素子バラツキや温度等の影響も受けるため、デッドタイムの時間は常に一定ではなく、最適なデッドタイムの補償電圧の値は経時変化する。そのため、デッドタイム補償電圧が小さすぎれば、図5(c)の破線のように0電流付近で、電流が殆ど変化しない不連続的な特性が現れる。また、デッドタイム補償電圧が大き過ぎれば、図5(d)の破線のように、電流が急激に変化する不連続に近い箇所が発生する。単調増加性のある素直な電圧電流特性であれば、電流制御部のフィードバックにより、電流歪を除去できる。しかし、図5(c)(d)の破線部のように不連続な箇所ができるとフィードバックだけでは、電流の歪を小さくすることが難しかった。なお、デッドタイムが変化する問題に対しては、デッドタイムを直接測定してリアルタイムに補償する方法もあるが、回路素子が増加する上、ノイズ等の影響による誤検出の問題もあった。   However, in the three-phase inverter device to which the dead time compensator of FIG. 8 is added, the command voltage is instantaneously corrected to near the timing where the upper switching element and the lower switching element overlap with the dead time compensation voltage even near zero voltage. Therefore, there is no such problem in theory. However, since the switching element from OFF to ON or from ON to OFF does not change abruptly but changes gradually and switches, the dead time compensator 6 as shown in FIG. The effect could not be completely removed. In addition, since the response time until the switching element is turned on or off is also affected by element variation, temperature, and the like, the dead time is not always constant, and the optimum dead time compensation voltage value changes with time. Therefore, if the dead time compensation voltage is too small, a discontinuous characteristic in which the current hardly changes appears near the zero current as shown by the broken line in FIG. Further, if the dead time compensation voltage is too large, a portion near a discontinuity in which the current changes abruptly occurs as shown by a broken line in FIG. If it is a simple voltage-current characteristic with monotonous increase, current distortion can be removed by feedback from the current control unit. However, when discontinuous portions are formed as shown by broken lines in FIGS. 5C and 5D, it is difficult to reduce current distortion only by feedback. For the problem of changing the dead time, there is a method in which the dead time is directly measured and compensated in real time. However, the number of circuit elements increases and there is a problem of false detection due to the influence of noise and the like.

本発明は,上述のような事情から成されたものであり,本発明の目的は電圧指令に対する電流の特性をデッドタイムによる不連続箇所のない特性に改善し、電流制御特性の良い三相インバータ装置を提供することにある。   The present invention has been made under the circumstances as described above, and an object of the present invention is to improve a current characteristic with respect to a voltage command so that there is no discontinuous part due to dead time, and a three-phase inverter having a good current control characteristic. To provide an apparatus.

本発明は、ブリッジ接続された3組のスイッチング素子を、キャリア周波数のPWM信号によりオンオフさせ、三相電流を出力する三相インバータ装置において、一定電圧をVcとして、キャリア周波数の半周期の整数倍の周期TsごとにPWM信号の電圧を+Vc,−Vc,0の3つの値の何れかの補正電圧で補正し、かつ各相の前記補正電圧の総和は、周期Tsの3の整数倍の周期で0となり、かつ前記3組のスイッチング素子をオンオフさせるPWM信号の電圧の補正量は、同じタイミングの周期Ts内で少なくとも2組は、+Vcと−Vcである三相インバータ装置である。   The present invention relates to a three-phase inverter device that outputs three-phase current by turning on and off three sets of bridge-connected switching elements by a PWM signal having a carrier frequency, and is an integral multiple of a half cycle of the carrier frequency with a constant voltage Vc. The voltage of the PWM signal is corrected with a correction voltage of any of three values of + Vc, −Vc, 0 every period Ts, and the sum of the correction voltages of each phase is a period that is an integral multiple of 3 of the period Ts. In the three-phase inverter device, the correction amount of the voltage of the PWM signal for turning on and off the three sets of switching elements is + Vc and −Vc in at least two sets within the same timing period Ts.

本発明では、一定電圧Vcで、周期Ts内のPWMによる出力電圧を+Vc,−Vc,0の3つのパターンの何れかの電圧で補正するようにPWM信号によるオンオフ時間を修正し、同じタイミングの周期Ts内で少なくとも2組の補正電圧は+Vcと−Vcとなる。このため、一定電圧|Vc|が図8で説明した最適なデッドタイム補償電圧Vdよりも大きい場合は、三相の指令電圧が全て0の場合でも、上のスイッチング素子と下のスイッチング素子がオンして電動機側に電流が流れるタイミングが必ず存在し、デッドタイムによる電流の不感帯を無くすことができる。しかも各相の補正電圧の総和は、周期Tsの3の整数倍の周期で0となるため、印加される平均電圧や電流は、3・Tsの整数倍の周期で0となる。また、周期Tsがキャリア周期の半分の場合で、+Vc→−Vc→0の繰り返す条件では、補正電圧により印加される周波数成分は、キャリア周波数の2/3倍と非常に高い周波数となるため、補正電圧が電動機に与える悪影響を無視することができる。また、出力電圧を+Vcと−Vcを繰り返すことによるディザー的な効果により、デッドタイムによる不連続な電流特性を改善できる。   In the present invention, the on / off time by the PWM signal is corrected so as to correct the output voltage by the PWM within the cycle Ts with the voltage of any of the three patterns of + Vc, −Vc, 0 at the constant voltage Vc, and the same timing is obtained. Within the cycle Ts, at least two sets of correction voltages are + Vc and -Vc. For this reason, when the constant voltage | Vc | is larger than the optimum dead time compensation voltage Vd described with reference to FIG. 8, the upper switching element and the lower switching element are turned on even when the three-phase command voltages are all zero. Thus, there is always a timing for the current to flow on the motor side, and the dead zone of the current due to the dead time can be eliminated. In addition, since the sum of the correction voltages for each phase becomes 0 in a cycle that is an integral multiple of 3 of the cycle Ts, the applied average voltage or current becomes 0 in a cycle that is an integral multiple of 3 · Ts. In addition, when the cycle Ts is half of the carrier cycle and the condition of repeating + Vc → −Vc → 0, the frequency component applied by the correction voltage is a very high frequency of 2/3 times the carrier frequency. The adverse effect of the correction voltage on the motor can be ignored. Further, the discontinuous current characteristic due to the dead time can be improved by the dither effect by repeating the output voltage + Vc and −Vc.

また、本発明をデッドタイム補償器のある三相インバータ装置に適用した場合は、デッドタイム補償量を最適量よりも小さくしてもディザー的な効果により、デッドタイムによる不連続な電流特性を改善できる。このため、デッドタイム補償による電流特性の線形特性を改善した上で、補償量の過小分による不連続部を解消できる。これにより、スイッチング素子特性が温度や素子バラツキで変動しても電流特性への影響を小さく抑えることができる。このため、コストアップとなるデッドタイム測定回路等がなくても高精度な電流制御が可能である。   In addition, when the present invention is applied to a three-phase inverter device having a dead time compensator, even if the dead time compensation amount is made smaller than the optimum amount, the discontinuous current characteristic due to the dead time is improved by a dither effect. it can. For this reason, it is possible to eliminate the discontinuous portion due to the excessive amount of compensation while improving the linear characteristic of the current characteristic by dead time compensation. As a result, even if the switching element characteristics fluctuate due to temperature and element variations, the influence on the current characteristics can be suppressed to a small level. For this reason, highly accurate current control is possible even without a dead time measuring circuit or the like that increases costs.

本発明の三相インバータ装置の実施例を示すブロック図である。It is a block diagram which shows the Example of the three-phase inverter apparatus of this invention. 本発明の三相インバータ装置の別の実施例を示すブロック図である。It is a block diagram which shows another Example of the three-phase inverter apparatus of this invention. 本発明の三相インバータ装置の動作説明用波形図である。It is a wave form diagram for operation | movement description of the three-phase inverter apparatus of this invention. 従来と本発明の三相インバータ装置の動作説明用波形図である。It is a waveform diagram for explaining the operation of the conventional and three-phase inverter device of the present invention. 従来と本発明の三相インバータ装置の動作説明用波形図である。It is a waveform diagram for explaining the operation of the conventional and three-phase inverter device of the present invention. 本発明の三相インバータ装置の補正電圧のパターン例を示す表である。It is a table | surface which shows the example of a pattern of the correction voltage of the three-phase inverter apparatus of this invention. 従来の三相インバータ装置を示すブロック図である。It is a block diagram which shows the conventional three-phase inverter apparatus. デッドタイム補償器付加した従来の三相インバータ装置を示すブロック図である。It is a block diagram which shows the conventional three-phase inverter apparatus which added the dead time compensator.

以下、本発明の実施形態について、図面に基づいて説明する。図1で、図7と機能及び動作が同じものは同符号を付し、その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1, the same functions and operations as those in FIG. 7 are denoted by the same reference numerals, and the description thereof is omitted.

このように、本実施形態では、図7の構成にはない、補正電圧発生器10と加算器11,12,13を有している。   As described above, this embodiment includes the correction voltage generator 10 and the adders 11, 12, and 13 that are not included in the configuration of FIG. 7.

補正電圧発生器10は、U,V,W相についての補正電圧Zu,Zv,Zwを出力し、これが加算器11,12,13供給され、ここでU,V,W相の指令電圧Vu,Vv,Vwに加算される。   The correction voltage generator 10 outputs correction voltages Zu, Zv, and Zw for the U, V, and W phases, which are supplied to adders 11, 12, and 13, where the U, V, and W phase command voltages Vu, It is added to Vv and Vw.

ここで、図3に基づいて、指令電圧Vu,Vv,Vwの補正について説明する。電流制御部3においては、キャリア周波数の三角波信号Wtと指令電圧Vu,Vv,Vwの値を比較して、スイッチング素子Q1〜Q6のオンオフ幅を変えるためのPWM信号である指令電圧Up,Un,Vp,Vn,Wp,Wnを生成し、加算器11,12,13に供給している。   Here, correction of the command voltages Vu, Vv, and Vw will be described with reference to FIG. In the current control unit 3, the triangular wave signal Wt of the carrier frequency is compared with the values of the command voltages Vu, Vv, Vw, and the command voltages Up, Un, which are PWM signals for changing the on / off width of the switching elements Q1 to Q6. Vp, Vn, Wp and Wn are generated and supplied to the adders 11, 12 and 13.

補正電圧発生器10は、キャリア信号発生器4からの三角波信号Wtの信号に同期して、キャリア信号周期の半分となる周期Tsごとに、+Vc,−Vc,0の順に3パターンで変化し繰り返す補正電圧Zu,Zv,Zwを出力する。すなわち、補正電圧Zuは指令電圧Up,Unが、補正電圧Zvは指令電圧Vp,Vnが、補正電圧Zwは指令電圧Wp,Wnが、オンからオフまたはオフからオンの切り替わるタイミングにおいて、+Vc,−Vc,0の状態を順に繰り返す。このため、周期Tsの3倍の周期内での各補正電圧の総和は0となる。また、図3に示すように補正電圧Zu,Zv,Zwは、同じタイミングの周期Ts内で異なる補正電圧値を出力する。このため、同じタイミング周期Ts内では、必ず補正電圧が+Vcと−Vcとなる2組の相が存在する。補正電圧Zu,Zv,Zwは、其々加算器11,12,13で、電流制御部3が出力した指令電圧Vu,Vv,Vwが加算され、電圧指令Vuc,Vvc,Vwcに補正される。これにより、PWM変換器5では、指令電圧Vu,Vv,Vwに対してPWM信号のオンオフ時間を補正電圧修分だけ修正することになる。   The correction voltage generator 10 changes and repeats in three patterns in the order of + Vc, -Vc, 0 every period Ts that is half the carrier signal period in synchronization with the triangular wave signal Wt from the carrier signal generator 4. Correction voltages Zu, Zv, and Zw are output. That is, the correction voltage Zu is the command voltage Up, Un, the correction voltage Zv is the command voltage Vp, Vn, the correction voltage Zw is the command voltage Wp, Wn at the timing when the command voltage Wp, Wn is switched from on to off or off to on. The state of Vc, 0 is repeated in order. For this reason, the total sum of the correction voltages within a period three times the period Ts is zero. As shown in FIG. 3, the correction voltages Zu, Zv, and Zw output different correction voltage values within the same timing period Ts. For this reason, within the same timing period Ts, there are always two sets of phases in which the correction voltages are + Vc and -Vc. The correction voltages Zu, Zv, and Zw are added by the adders 11, 12, and 13, respectively, and the command voltages Vu, Vv, and Vw output from the current control unit 3 are added to be corrected to voltage commands Vuc, Vvc, and Vwc. As a result, the PWM converter 5 corrects the on / off time of the PWM signal by the correction voltage amount with respect to the command voltages Vu, Vv, and Vw.

このように、本実施形態では、スイッチ素子の3回の切り換えタイミングにおいて、+Vcまたは−Vcが補正電圧として加えられる。従って、一定電圧|Vc|が図8で説明した最適なデッドタイム補償電圧Vdよりも大きい場合は、三相の指令電圧が全て0の場合でも、上のスイッチング素子と下のスイッチング素子がオンして電動機側に電流が流れるタイミングが必ず存在する。これによって、デッドタイムによる電流の不感帯を無くすことができる。しかも各相の補正電圧の総和は、周期Tsの3の整数倍の周期で0となるため、印加される平均電圧や電流についての悪影響はない。   Thus, in the present embodiment, + Vc or −Vc is added as a correction voltage at the switching timing of the switch element three times. Therefore, when the constant voltage | Vc | is larger than the optimum dead time compensation voltage Vd described in FIG. 8, the upper switching element and the lower switching element are turned on even when the three-phase command voltages are all zero. Therefore, there is always a timing for current to flow to the motor side. Thereby, the dead zone of the current due to the dead time can be eliminated. In addition, since the sum of the correction voltages of each phase becomes 0 in a cycle that is an integral multiple of 3 of the cycle Ts, there is no adverse effect on the applied average voltage or current.

図1の三相インバータ装置で、抵抗負荷を想定してUV相間に電流を流した場合、指令電圧Vu,Vvに対するU相,V相電流の平均電流の特性は、図4のグラフの実線のような特性となり、デッドタイムによる0V付近での不連続な特性を改善できる。また、電動機の巻線に印加される電圧は図5(e)の破線のようになり、電流も図5(f)の破線のように、共にデッドタイムによる不連続箇所が無くなる。ただし、破線部の特性は、電流制御部のフィードバックループゲインが低い場合の波形で、フィードバックループゲインが高い場合は、図5(e)(f)の実線のような波形となる。   In the three-phase inverter device of FIG. 1, when a current is passed between the UV phases assuming a resistance load, the characteristics of the average current of the U-phase and V-phase currents with respect to the command voltages Vu and Vv are indicated by the solid line in the graph of FIG. Thus, discontinuous characteristics near 0V due to dead time can be improved. Further, the voltage applied to the winding of the motor is as shown by the broken line in FIG. 5E, and the current is also free from discontinuous portions due to dead time as shown by the broken line in FIG. 5F. However, the characteristic of the broken line portion is a waveform when the feedback loop gain of the current control unit is low, and when the feedback loop gain is high, the waveform is a waveform as shown by the solid lines in FIGS.

また、図2のように、図1の本発明の三相インバータ装置に図8に示されるデッドタイム補償器6を付加しても良い。この場合は、デッドタイム補償器6による補償電圧Vdは最適なデッドタイム補償量以下に設定し、|Vc|+|Vd|が、最適なデッドタイム補償量以上の値とすれば、電流制御部のフィードバックループゲインを高くしなくとも図5(e)(f)の破線のような波形歪を改善できる上、デッドタイム補償量が多少ずれていたとしても電圧や電流が不連続とならないため、電流制御部のフィードバックによって指令に忠実な電流波形を実現できる。   Further, as shown in FIG. 2, the dead time compensator 6 shown in FIG. 8 may be added to the three-phase inverter device of the present invention shown in FIG. In this case, if the compensation voltage Vd by the dead time compensator 6 is set below the optimum dead time compensation amount, and if | Vc | + | Vd | In addition to improving the waveform distortion as shown by the broken lines in FIGS. 5 (e) and 5 (f) without increasing the feedback loop gain, the voltage and current do not become discontinuous even if the dead time compensation amount is slightly deviated. A current waveform faithful to the command can be realized by feedback of the current control unit.

なお、図1では、キャリア周波数の半周期を周期Tsとし、補正電圧Zu,Zv,Zwが3Tsで繰り返すパターンを示した。他の補正電圧のパターンとしては、図6の表に示すようなものも考えられる。補正電圧のパターンとしては、補正電圧が+Vc,−Vc,0の3つの値の何れかとし、かつ各相の補正電圧の総和が周期Tsの3の整数倍の周期で0であり、さらには3組のスイッチング素子の補正電圧は、同じタイミングの周期Ts内で少なくとも2組は、+Vcと−Vcであるパターンであれば、本発明を実現できる。   FIG. 1 shows a pattern in which the half cycle of the carrier frequency is a period Ts and the correction voltages Zu, Zv, and Zw repeat at 3Ts. Other correction voltage patterns as shown in the table of FIG. 6 are also conceivable. As a pattern of the correction voltage, the correction voltage is one of three values of + Vc, −Vc, 0, and the sum of the correction voltages of each phase is 0 in a cycle that is an integral multiple of 3 of the cycle Ts. The present invention can be realized if the correction voltages of the three sets of switching elements are patterns in which at least two sets are + Vc and −Vc within the period Ts of the same timing.

1 電動機、 2 インバータ部、 3 電流制御部、 4 キャリア信号発生器、 5 PWM変換器, 6 デッドタイム補償器、 7,8,9,11,12,13 加算器、 10 補正電圧発生器、 14,15 電流検出器。   DESCRIPTION OF SYMBOLS 1 Electric motor, 2 Inverter part, 3 Current control part, 4 Carrier signal generator, 5 PWM converter, 6 Dead time compensator, 7, 8, 9, 11, 12, 13 Adder, 10 Correction voltage generator, 14 , 15 Current detector.

Claims (2)

ブリッジ接続された3組のスイッチング素子を、キャリア周波数のPWM信号によりオンオフさせ、三相電流を出力する三相インバータ装置において、
一定電圧をVcとして、キャリア周波数の半周期の整数倍の周期TsごとにPWM信号の電圧を+Vc,−Vc,0の3つの値の何れかの補正電圧で補正し、かつ各相の前記補正電圧の総和は、周期Tsの3の整数倍の周期で0となり、かつ前記3組のスイッチング素子をオンオフさせるPWM信号の電圧の補正量は、同じタイミングの周期Ts内で少なくとも2組は、+Vcと−Vcであることを特徴とする三相インバータ装置。
In a three-phase inverter device that turns on and off three sets of switching elements connected in a bridge by a PWM signal of a carrier frequency and outputs a three-phase current,
The constant voltage is Vc, the voltage of the PWM signal is corrected with a correction voltage of any one of three values of + Vc, −Vc, and 0 every period Ts that is an integral multiple of a half cycle of the carrier frequency, and the correction of each phase The sum of the voltages becomes 0 in a cycle that is an integral multiple of 3 of the cycle Ts, and the correction amount of the voltage of the PWM signal that turns on and off the three sets of switching elements is + Vc in at least two sets within the cycle Ts of the same timing. And a three-phase inverter device characterized by being -Vc.
三相電流の各相の指令電流又は検出電流の極性によって、その相に対応するPWM信号の電圧を−Vd又は+Vdだけ補償するデッドタイム補償器を有し、補償電圧Vdは最適なデッドタイム補償量以下に設定し、前記|Vc|+|Vd|は、最適なデッドタイム補償量以上の値であることを特徴とする請求項1記載の三相インバータ装置。   It has a dead time compensator that compensates the voltage of the PWM signal corresponding to the phase by −Vd or + Vd according to the polarity of the command current or the detection current of each phase of the three-phase current, and the compensation voltage Vd is the optimum dead time compensation. The three-phase inverter device according to claim 1, wherein the three-phase inverter device is set to be equal to or less than an amount, and the | Vc | + | Vd | is equal to or greater than an optimum dead time compensation amount.
JP2017071690A 2017-03-31 2017-03-31 Three-phase inverter device Pending JP2018174660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071690A JP2018174660A (en) 2017-03-31 2017-03-31 Three-phase inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071690A JP2018174660A (en) 2017-03-31 2017-03-31 Three-phase inverter device

Publications (1)

Publication Number Publication Date
JP2018174660A true JP2018174660A (en) 2018-11-08

Family

ID=64108915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071690A Pending JP2018174660A (en) 2017-03-31 2017-03-31 Three-phase inverter device

Country Status (1)

Country Link
JP (1) JP2018174660A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148673A (en) * 1982-02-24 1983-09-03 Yaskawa Electric Mfg Co Ltd Pulse width modulation controlling method for 3-phase bridge inverter
JPH0984385A (en) * 1995-09-11 1997-03-28 Okuma Mach Works Ltd Motor controller
JP2010057242A (en) * 2008-08-27 2010-03-11 Denso Corp Motor driving circuit and electric power steering device
US20100172161A1 (en) * 2009-01-07 2010-07-08 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in ac drives
WO2017029694A1 (en) * 2015-08-14 2017-02-23 三菱電機株式会社 Motor driving device and refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148673A (en) * 1982-02-24 1983-09-03 Yaskawa Electric Mfg Co Ltd Pulse width modulation controlling method for 3-phase bridge inverter
JPH0984385A (en) * 1995-09-11 1997-03-28 Okuma Mach Works Ltd Motor controller
JP2010057242A (en) * 2008-08-27 2010-03-11 Denso Corp Motor driving circuit and electric power steering device
US20100172161A1 (en) * 2009-01-07 2010-07-08 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in ac drives
WO2017029694A1 (en) * 2015-08-14 2017-02-23 三菱電機株式会社 Motor driving device and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5505449B2 (en) Control device for multi-phase rotating machine
US8929111B2 (en) System and method for common-mode elimination in a multi-level converter
JP4942569B2 (en) Power converter
WO2017221339A1 (en) Power conversion device
KR20040098016A (en) Pwm inverter device
JP4135134B2 (en) Motor control device
WO2015133317A1 (en) Inverter controller and inverter apparatus
JP2015050909A (en) Motor controller
WO2014024460A1 (en) Motor control apparatus
US10826411B2 (en) Device for controlling power conversion circuit
JP5790390B2 (en) AC motor control device and control method
EP3379718A1 (en) Inverter apparatus, air conditioner, method of controlling inverter apparatus, and program
US9035592B2 (en) Apparatus and method for controlling speed of motor
JP2019080465A (en) Current detector
JP2010068630A (en) Inverter control circuit, system linkage inverter system having same, program for achieving same, and recording medium recording program
JP6407175B2 (en) Power converter control device
JP6221815B2 (en) Inverter control method and inverter
JP2018174660A (en) Three-phase inverter device
US7161819B2 (en) Zero-crossing correction in sinusoidally commutated motors
JP4664166B2 (en) Multi-relative multi-phase power converter
JP5852544B2 (en) 3-level power converter
US8970153B2 (en) Apparatus and method for controlling speed of motor
JP2006333607A (en) Control device of power converter
JP3781069B2 (en) Inverter control method and apparatus
JP2009213321A (en) Pwm inverter device and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302