JP2017195775A - Individual operation detection device - Google Patents

Individual operation detection device Download PDF

Info

Publication number
JP2017195775A
JP2017195775A JP2017152181A JP2017152181A JP2017195775A JP 2017195775 A JP2017195775 A JP 2017195775A JP 2017152181 A JP2017152181 A JP 2017152181A JP 2017152181 A JP2017152181 A JP 2017152181A JP 2017195775 A JP2017195775 A JP 2017195775A
Authority
JP
Japan
Prior art keywords
distributed power
detection device
operation detection
power source
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017152181A
Other languages
Japanese (ja)
Inventor
誉夫 進士
Yoshio Shinshi
誉夫 進士
塚田 龍也
Tatsuya Tsukada
龍也 塚田
治良 三宅
Haruyoshi Miyake
治良 三宅
真之 田所
masayuki Tadokoro
真之 田所
貴大 八木
Takahiro Yagi
貴大 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2017152181A priority Critical patent/JP2017195775A/en
Publication of JP2017195775A publication Critical patent/JP2017195775A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To detect an individual operation of a dispersion type power source at a high speed, and parallel off a plurality of dispersion type power sources.SOLUTION: A second individual operation detection device 140b comprises: a fluctuation generation part 142 which not include a whole plurality of dispersion type power sources including the dispersion type power source connected to a first individual operation detection device 140a that requires to parallel off a dispersion type power source 130 that is communicated with a commercial power system 110 and is belonged to a predetermined connection range for 0.5 seconds to 1.0 seconds; and a parallel-off processing part 144 that detects fluctuation of a predetermined electric parameter at a system interconnection point, and parallel offs the plurality of dispersion type power sources from a commercial power system by less than 0.5 seconds through a plurality of breakers 150 connecting the plurality of dispersion type power sources with the system interconnection point or outputs an individual operation signal stopping the plurality of dispersion type power source by less than 0.5 seconds when the predetermined electric parameter exceeds a threshold value and is fluctuated applied by the fluctuation generation part.SELECTED DRAWING: Figure 1

Description

本発明は、商用電力系統に連系された分散型電源が単独運転となったことを検出する単独運転検出装置に関する。   The present invention relates to an isolated operation detection device that detects that a distributed power source connected to a commercial power system has been operated independently.

近年、需要家が管理する負荷に太陽光発電設備等の分散型電源を接続し、分散型電源の電力で負荷を賄うとともに、分散型電源と商用電力系統とを連系し、分散型電源において発電した電力が負荷で消費される電力より少ない場合に、不足した電力を商用電力系統から受電する系統連系が行われている。また、系統連系した分散型電源において、発電した電力が負荷で消費される電力より多い場合、分散型電源から商用電力系統に電力を供給(逆潮流)し売電することができる。   In recent years, distributed power sources such as photovoltaic power generation facilities have been connected to loads managed by customers, and the power of the distributed power sources is used to cover the load, and the distributed power source and the commercial power system are linked together. When the generated power is less than the power consumed by the load, grid interconnection is performed to receive the insufficient power from the commercial power system. Further, in a grid-connected distributed power source, when the generated power is larger than the power consumed by the load, power can be supplied (reverse power flow) from the distributed power source to the commercial power system for sale.

このような系統連系の下、商用電力系統側の停電等により商用電力系統側から電力の供給が停止すると、需要家が管理する負荷を含む、分散型電源に接続された全ての負荷の電力を、分散型電源のみで賄う単独運転となる。単独運転では、分散型電源に過負荷がかかってしまうおそれや、分散型電源から商用電力系統側へ逆充電されることにより、感電や需要家機器の破損等のおそれが生じる。このため、単独運転を検出して分散型電源を商用電力系統から解列する単独運転検出装置が設けられることがある。   Under such system interconnection, when the supply of power from the commercial power system side stops due to a power failure or the like on the commercial power system side, the power of all loads connected to the distributed power source, including the load managed by the customer This is a stand-alone operation that is covered only by a distributed power source In isolated operation, there is a risk of overloading the distributed power source, and reverse charging from the distributed power source to the commercial power system may cause electric shock or damage to consumer equipment. For this reason, an isolated operation detection device that detects isolated operation and disconnects the distributed power source from the commercial power system may be provided.

単独運転検出装置が単独運転を検出する方式として、能動的方式が知られている。能動的方式は、分散型電源の出力における電圧や周波数等の電気的パラメータに微小な変動を与え、単独運転時にはこの変動が増大することを利用して単独運転を判断する。能動的方式としては、例えば、周波数シフト方式、有効電力変動方式、無効電力変動方式等の従来型能動的方式が用いられている。そして、例えばマンション等の、複数の分散型電源同士が接続され、その接続された複数の分散型電源の電力を共同して利用する予め定められた範囲(接続範囲)において、従来型能動的方式の1の単独運転検出装置が、複数の分散型電源全ての出力に変動を与える技術が知られている(例えば、特許文献1)。また、従来型能動的方式の1の単独運転検出装置が複数の分散型電源全ての出力に変動を与え、単独運転時に従来型能動的方式の1の単独運転検出装置が複数の分散型電源を解列する技術が知られている(例えば、特許文献2)。   An active method is known as a method in which the single operation detection device detects single operation. In the active method, a small change is given to electrical parameters such as voltage and frequency at the output of the distributed power source, and the single operation is determined by utilizing the increase in the change during the single operation. As the active method, for example, a conventional active method such as a frequency shift method, an active power fluctuation method, a reactive power fluctuation method, or the like is used. In a predetermined range (connection range) in which a plurality of distributed power sources such as an apartment are connected to each other and the power of the connected plurality of distributed power sources is jointly used (conventional active method) There is known a technique in which the single operation detection device of No. 1 gives fluctuations to the outputs of all of the plurality of distributed power sources (for example, Patent Document 1). In addition, the single active operation detection device of the conventional active method gives fluctuations to the outputs of all of the plurality of distributed power sources, and the single active operation detection device of the conventional active method supplies a plurality of distributed power sources during single operation. A technique for disconnecting is known (for example, Patent Document 2).

特許第3408064号公報Japanese Patent No. 3408004 特開2000−236629号公報JP 2000-236629 A

近年では、新型の能動的方式(新型能動的方式)の単独運転検出装置が開発されている。従来型能動的方式では、単独運転発生から分散型電源の解列までの時限は0.5秒〜1.0秒と規定されているが、新型能動的方式では、分散型電源を0.5秒未満で高速に解列することができる。かかる新型能動的方式としては、例えば、ステップ注入付周波数フィードバック方式が挙げられる。   In recent years, a new type active type (new type active type) islanding detection device has been developed. In the conventional active method, the time period from the occurrence of isolated operation to the disconnection of the distributed power source is defined as 0.5 to 1.0 seconds, but in the new active method, the distributed power source is set to 0.5 seconds. It can be disconnected at high speed in less than a second. An example of such a new active method is a frequency feedback method with step injection.

このような新型能動的方式の単独運転検出装置を分散型電源とともに新設する場合、接続範囲において未だ従来型能動的方式の単独運転検出装置が接続されており、新型能動的方式の単独運転検出装置と従来型能動的方式の単独運転検出装置とが混在する場合がある。   When such a new active type islanding detection device is newly installed together with a distributed power source, a conventional active type islanding detection device is still connected in the connection range, and a new active type islanding detection device is used. And a conventional active type isolated operation detector may be mixed.

新型能動的方式では、高速に分散型電源を解列することができるため、従来型能動的方式の単独運転検出装置を用いず、新型能動的方式の単独運転検出装置によって、接続範囲の全ての分散型電源を高速に解列させることが考えられる。しかし、特許文献1および2の技術では、1の単独運転検出装置が複数の分散型電源全てに変動を与えることを前提としているので、接続範囲の全ての分散型電源を解列させるためには、新型能動的方式の単独運転検出装置からの信号によって全ての分散型電源の出力が変動するように、既に設けられていた分散型電源を改造する必要がある。また、特許文献2の技術は同期発電機に限った技術であるため、太陽光発電設備等のパワーコンディショナを利用する分散型電源には応用できなかった。   In the new type active system, the distributed power source can be disconnected at high speed, so that all of the connection range of the new active type is not used by the new type active type islanding detection device. It can be considered that the distributed power supply is disconnected at high speed. However, since the technologies of Patent Documents 1 and 2 are based on the premise that one single operation detection device gives fluctuations to all of the plurality of distributed power sources, in order to disconnect all the distributed power sources in the connection range. Therefore, it is necessary to modify the existing distributed power supply so that the output of all the distributed power supplies fluctuates according to the signal from the new active type isolated operation detection device. Moreover, since the technique of patent document 2 is a technique limited to a synchronous generator, it could not be applied to a distributed power source using a power conditioner such as a solar power generation facility.

そこで、本発明はこのような課題に鑑み、分散型電源の単独運転を高速に検出して、複数の分散型電源を解列することが可能となる単独運転検出装置を提供することを目的としている。   Therefore, in view of such a problem, the present invention has an object to provide an isolated operation detection device that can detect isolated operation of a distributed power supply at high speed and disconnect a plurality of distributed power supplies. Yes.

上記課題を解決するために、本発明の単独運転検出装置は、商用電力系統に連系され、予め定められた接続範囲に属する、分散型電源の解列までに0.5秒〜1.0秒を要する他の単独運転検出装置に接続された分散型電源を含む複数の分散型電源全てを含まない少なくとも1の分散型電源の出力に変動を与える変動生成部と、系統連系点における所定の電気的パラメータの変動を検出し、変動生成部が与える変動によって所定の電気的パラメータが閾値を超えて変動した場合、複数の分散型電源と系統連系点とを結ぶ複数の遮断器を通じて複数の分散型電源を商用電力系統から0.5秒未満で解列するか、または、複数の分散型電源を0.5秒未満で停止する単独運転信号を出力する解列処理部と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the isolated operation detection device of the present invention is connected to a commercial power system and belongs to a predetermined connection range. A variation generator for varying the output of at least one distributed power source that does not include all of the plurality of distributed power sources including the distributed power source connected to another isolated operation detection device that requires seconds, and a predetermined at the grid connection point When a predetermined electrical parameter fluctuates beyond a threshold value due to fluctuation given by the fluctuation generator, a plurality of circuit breakers connecting a plurality of distributed power sources and grid interconnection points are used. A discontinuous processing unit that disconnects the distributed power source from the commercial power system in less than 0.5 seconds or outputs a single operation signal for stopping a plurality of distributed power sources in less than 0.5 seconds. It is characterized by that.

本発明によれば、分散型電源の単独運転を高速に検出して、複数の分散型電源を解列することが可能となる。   According to the present invention, it is possible to detect a single operation of a distributed power source at a high speed and disconnect a plurality of distributed power sources.

商用電力系統に複数台の分散型電源が連系された状態を説明するための図である。It is a figure for demonstrating the state by which the some distributed power source was connected with the commercial power grid. 高低圧混触事故の発生時点から分散型電源を解列するまでの時間の流れを説明するための図である。It is a figure for demonstrating the flow of time from the generation | occurrence | production time of a high-low pressure contact accident until it decouples a distributed power source. ステップ注入付周波数フィードバック方式における、単独運転時の分散型電源の出力の変動を説明するための図である。It is a figure for demonstrating the fluctuation | variation of the output of the distributed power supply at the time of a single operation in the frequency feedback system with step injection. 変形例にかかる単独運転検出システムを説明するための図である。It is a figure for demonstrating the independent operation detection system concerning a modification.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、商用電力系統110に複数台の分散型電源130が連系された状態を説明するための図である。図1に示すように、商用電力系統110は、系統電源112と遮断器114と配電線116とを含んで構成される。系統電源112は例えば電力会社の発電所に相当し、系統電源112が発電した電力は、遮断器114を介し、配電線116により、配電線116と接続した住宅120aおよび住宅120bに供給される。ここでは、住宅120aには分散型電源130が設けられており、住宅120bには分散型電源130が設けられていないとする。したがって、住宅120bの負荷122は、遮断器124を介して供給される系統電源112の電力で賄われる。   FIG. 1 is a diagram for explaining a state in which a plurality of distributed power sources 130 are connected to the commercial power system 110. As shown in FIG. 1, the commercial power system 110 includes a system power source 112, a circuit breaker 114, and a distribution line 116. The system power source 112 corresponds to, for example, a power plant of an electric power company, and the power generated by the system power source 112 is supplied to the house 120a and the house 120b connected to the distribution line 116 by the distribution line 116 via the circuit breaker 114. Here, it is assumed that the distributed power source 130 is provided in the house 120a and the distributed power source 130 is not provided in the house 120b. Therefore, the load 122 of the house 120b is covered by the power of the system power supply 112 supplied via the circuit breaker 124.

単独運転検出システム100は、分散型電源130と、負荷132と、単独運転検出装置140と、遮断器150、160とを含んで構成される。本実施形態において、分散型電源130の電力を共同して利用する予め定められた範囲(接続範囲)は住宅120aである。住宅120aは例えばマンション等の集合住宅であり、マンションの複数(本実施形態では3)の住戸それぞれにおいて分散型電源130が系統連系している。   The islanding operation detection system 100 includes a distributed power source 130, a load 132, an islanding operation detection device 140, and circuit breakers 150 and 160. In the present embodiment, the predetermined range (connection range) in which the power of the distributed power source 130 is shared is the house 120a. The house 120a is, for example, an apartment house such as an apartment, and the distributed power source 130 is interconnected in each of a plurality of apartments (3 in this embodiment).

分散型電源130は、例えば太陽電池、燃料電池、エンジン発電機等で構成され、電力を生成し、生成した電力を負荷132に供給するとともに、系統連系することで、生成した電力を商用電力系統110側に供給(逆潮流)可能となっている。また、分散型電源130は単独運転検出装置140と接続している。ここで、従来型能動的方式の単独運転検出装置(以下、「第1単独運転検出装置」と呼ぶ)140aと接続した分散型電源130を分散型電源130a、新型能動的方式の単独運転検出装置(以下、「第2単独運転検出装置」と呼ぶ)140bと接続した分散型電源130を分散型電源130bとする。   The distributed power source 130 includes, for example, a solar cell, a fuel cell, an engine generator, and the like. The distributed power source 130 generates power, supplies the generated power to the load 132, and connects the generated power to commercial power. Supply (reverse power flow) to the system 110 side is possible. The distributed power supply 130 is connected to the isolated operation detection device 140. Here, the distributed type power supply 130a connected to the conventional active type isolated operation detection device (hereinafter referred to as "first isolated operation detection device") 140a is replaced with the distributed type power supply 130a, and the new active type isolated operation detection device. The distributed power source 130 connected to 140b (hereinafter referred to as “second isolated operation detection device”) is referred to as a distributed power source 130b.

第1単独運転検出装置140aは、従来型能動的方式(例えば、周波数シフト方式、有効電力変動方式、無効電力変動方式等)により、分散型電源130aの出力における電圧や周波数といった電気的パラメータに変動を与え、分散型電源130aの単独運転を検出する。第2単独運転検出装置140bは新型能動的方式(例えば、ステップ注入付周波数フィードバック方式)により分散型電源130bの単独運転を検出する。新型能動的方式は、従来型能動的方式よりも新しく開発された能動的方式であり、従来型能動的方式よりも高速に分散型電源130を解列することができる。なお、分散型電源130を系統連系する場合、単独運転検出装置140の設置が必要となるため、分散型電源130aには第1単独運転検出装置140aが設けられているが、本実施形態にかかる単独運転検出システム100においては、第2単独運転検出装置140bを用いるので、第1単独運転検出装置140aは利用されない。   The first islanding operation detection device 140a varies in electrical parameters such as voltage and frequency at the output of the distributed power source 130a by a conventional active method (eg, frequency shift method, active power fluctuation method, reactive power fluctuation method, etc.). And the isolated operation of the distributed power source 130a is detected. The second isolated operation detection device 140b detects the isolated operation of the distributed power source 130b by a new active method (for example, a frequency feedback method with step injection). The new active system is an active system newly developed compared with the conventional active system, and can distribute the distributed power source 130 at a higher speed than the conventional active system. Note that when the distributed power source 130 is connected to the grid, it is necessary to install the isolated operation detection device 140. Therefore, the distributed power source 130a is provided with the first isolated operation detection device 140a. In such an isolated operation detection system 100, since the second isolated operation detection device 140b is used, the first isolated operation detection device 140a is not used.

次に、第1単独運転検出装置140aおよび第2単独運転検出装置140bにおける、単独運転発生から分散型電源130(130a、130b)の解列までの速度について説明する。   Next, the speed from the occurrence of an isolated operation to the disconnection of the distributed power source 130 (130a, 130b) in the first isolated operation detection device 140a and the second isolated operation detection device 140b will be described.

例えば、分散型電源130の電力容量が50kW未満であって低圧連系する場合、高低圧混触事故の対策として、高低圧混触事故の発生時点から分散型電源130を解列する時点までに要する時間(例えば、1.0秒)が系統連系規程に定められている。   For example, when the power capacity of the distributed power source 130 is less than 50 kW and is connected to a low voltage, the time required from the time of occurrence of the high / low pressure accident to the time of disconnecting the distributed power source 130 as a countermeasure for the high / low pressure accident (For example, 1.0 second) is defined in the grid interconnection regulations.

図2は、高低圧混触事故の発生時点から分散型電源130を解列するまでの時間の流れを説明するための図である。図2に示すように、高低圧混触事故の発生(時点T0)から系統電源112の解列、すなわち、系統電源112側の遮断器114(図1参照)の解放(時点T1)までは一般的に0.5〜0.9秒程度かかる。そして遮断器114が解放された時点T1より、分散型電源130は単独運転となる。したがって、第1単独運転検出装置140aおよび第2単独運転検出装置140bは、単独運転発生(時点T1)後、0〜0.5秒程度で分散型電源130aおよび分散型電源130bを解列、すなわち、遮断器150を解放(時点T2)する必要がある。   FIG. 2 is a diagram for explaining the flow of time from the time of occurrence of a high / low pressure mixed accident until the distributed power supply 130 is disconnected. As shown in FIG. 2, it is general from the occurrence of a high / low pressure contact accident (time T0) to the disconnection of the system power source 112, that is, the release of the circuit breaker 114 (see FIG. 1) on the system power source 112 side (time T1). Takes about 0.5 to 0.9 seconds. Then, from the time T1 when the circuit breaker 114 is released, the distributed power source 130 becomes an independent operation. Therefore, the first islanding operation detection device 140a and the second islanding operation detection device 140b disconnect the distributed power source 130a and the distributed power source 130b in about 0 to 0.5 seconds after the occurrence of the individual operation (time point T1). It is necessary to release the circuit breaker 150 (time T2).

しかし、従来型能動的方式である第1単独運転検出装置140aにおいて、単独運転発生(時点T1)から遮断器150の解放(時点T2)までの時限は0.5〜1.0秒と規定されている。一方で、新型能動的方式である第2単独運転検出装置140bにおいては、単独運転発生(時点T1)から0.5秒未満で第1単独運転検出装置140aよりも高速に遮断器150を解放することができる。このため、第1単独運転検出装置140aでは規定された時間以上の時間を費やしてしまうことが理由で系統連系できなかった場合でも、第2単独運転検出装置140bでは短時間で済むので系統連系することが可能となる。   However, in the first isolated operation detection device 140a that is a conventional active method, the time period from the occurrence of isolated operation (time T1) to the release of the circuit breaker 150 (time T2) is defined as 0.5 to 1.0 seconds. ing. On the other hand, in the second isolated operation detection device 140b which is a new active method, the circuit breaker 150 is released at a higher speed than the first isolated operation detection device 140a in less than 0.5 seconds from the occurrence of the isolated operation (time point T1). be able to. For this reason, even if the first islanding operation detection device 140a cannot connect to the grid because it spends more time than the specified time, the second islanding operation detection device 140b can be connected to the grid in a short time. Can be used.

次に、本実施形態にかかる単独運転検出システム100において、第2単独運転検出装置140bが分散型電源130(130a、130b)を解列させる構成について説明する。   Next, in the islanding operation detection system 100 according to the present embodiment, a configuration in which the second islanding operation detection device 140b disconnects the distributed power sources 130 (130a and 130b) will be described.

図1に戻って説明すると、第2単独運転検出装置140bは、変動生成部142と解列処理部144とを含んで構成される。変動生成部142は、入力線L1を通じ、分散型電源130と配電線116との接続点である系統連系点における電気的パラメータ(ステップ注入付周波数フィードバック方式では、例えば、周波数)を検出する。そして、検出した周波数に応じて、変動生成部142は、周波数の変動を助長させるように分散型電源130bの出力に電気的パラメータ(ステップ注入付周波数フィードバック方式では、例えば、無効電力)を注入する能動信号を出力線Mを通じて常時送信する。解列処理部144は、入力線L2を通じて系統連系点における周波数を検出する。解列処理部144が検出した周波数の変動が、予め定められた閾値を超えたとき、解列処理部144は、出力線N1、N2、N3を通じて遮断器150に単独運転信号を出力し遮断器150を解放させる。これにより、分散型電源130(130a、130b)が解列することとなる。なお、本実施形態においては変動生成部142が入力線L1を通じ、また、解列処理部144が入力線L2を通じてそれぞれが周波数を検出しているが、周波数を検出する構成を共通の構成とすることもできる。   Returning to FIG. 1, the second islanding operation detection device 140 b includes a fluctuation generation unit 142 and a disconnection processing unit 144. The fluctuation generation unit 142 detects an electrical parameter (for example, a frequency in the frequency feedback method with step injection) at the grid connection point that is a connection point between the distributed power source 130 and the distribution line 116 through the input line L1. Then, according to the detected frequency, the fluctuation generation unit 142 injects an electrical parameter (for example, reactive power in the case of the frequency feedback method with step injection) into the output of the distributed power supply 130b so as to promote the fluctuation of the frequency. An active signal is always transmitted through the output line M. The disconnection processing unit 144 detects the frequency at the grid connection point through the input line L2. When the frequency variation detected by the disconnection processing unit 144 exceeds a predetermined threshold, the disconnection processing unit 144 outputs a single operation signal to the circuit breaker 150 through the output lines N1, N2, and N3. 150 is released. As a result, the distributed power source 130 (130a, 130b) is disconnected. In this embodiment, the fluctuation generation unit 142 detects the frequency through the input line L1 and the disconnection processing unit 144 detects the frequency through the input line L2. However, the configuration for detecting the frequency is a common configuration. You can also.

図3は、ステップ注入付周波数フィードバック方式における、単独運転時の分散型電源130bの出力の変動を説明するための図であり、図3(a)は縦軸が分散型電源130bの出力における無効電力Q(var)、横軸が時間t(s)を示した図であり、図3(b)は縦軸が分散型電源130bの出力における周波数f(Hz)、横軸が時間t(s)を示した図である。   FIG. 3 is a diagram for explaining fluctuations in the output of the distributed power supply 130b during single operation in the frequency feedback method with step injection, and FIG. 3A shows the invalidity in the output of the distributed power supply 130b on the vertical axis. FIG. 3 is a diagram showing power Q (var), the horizontal axis indicating time t (s), FIG. 3B is the frequency f (Hz) at the output of the distributed power source 130b, and the horizontal axis is time t (s). ).

上述したように、ステップ注入付周波数フィードバック方式を採用した第2単独運転検出装置140bでは、常時、能動信号を送信し、分散型電源130bの出力に無効電力を注入する。しかしながら、図3(a)に示すように、高低圧混触事故が発生した時点T0から分散型電源130bが単独運転となる時点T1までは分散型電源130bの出力における無効電力の変動は小さい。したがって、図3(b)に示すように、時点T1までは分散型電源130bの出力における周波数の変動も小さくなる。これは、分散型電源130bの出力における無効電力の変動は、系統電源112側に吸収されるためである。   As described above, in the second isolated operation detection device 140b that employs the frequency feedback method with step injection, the active signal is always transmitted and reactive power is injected into the output of the distributed power source 130b. However, as shown in FIG. 3A, the variation in reactive power at the output of the distributed power source 130b is small from the time T0 when the high / low pressure accident occurs until the time T1 when the distributed power source 130b is operated independently. Therefore, as shown in FIG. 3 (b), the variation in frequency at the output of the distributed power supply 130b is also reduced until time T1. This is because reactive power fluctuations at the output of the distributed power supply 130b are absorbed by the system power supply 112 side.

分散型電源130bが単独運転となると(時点T1)、注入された無効電力が系統電源112側に吸収されなくなるため、第2単独運転検出装置140bにより注入される無効電力によって、分散型電源130bの出力における無効電力の変動が増大する(図3(a))。そして分散型電源130bの出力における無効電力の変動に伴い、周波数の変動が増大する(図3(b))。周波数の変動が予め定められた閾値H1に達したとき(時点Th1)、第2単独運転検出装置140bにより、分散型電源130bの出力に、それまでより急峻に無効電力が注入され、周波数の変動が促進される。その結果、周波数の変動が予め定められた閾値H2に達したとき(時点Th2)、第2単独運転検出装置140bは分散型電源130を解列させる(時点T2)。なお、図3では理解を容易にするため、時点Th2と時点T2との間を空けて記載しているが、第2単独運転検出装置140bは、周波数が閾値H2に達した後、瞬時に分散型電源130を解列させるため、時点Th2と時点T2は、ほぼ同時である。   When the distributed power source 130b is in an isolated operation (time point T1), the injected reactive power is not absorbed by the system power source 112, so the reactive power injected by the second isolated operation detection device 140b causes the distributed power source 130b to The reactive power fluctuations at the output increase (FIG. 3A). Then, the fluctuation of the frequency increases with the fluctuation of the reactive power at the output of the distributed power source 130b (FIG. 3B). When the frequency variation reaches a predetermined threshold value H1 (time point Th1), reactive power is injected more rapidly into the output of the distributed power source 130b by the second islanding operation detection device 140b, and the frequency variation. Is promoted. As a result, when the frequency fluctuation reaches a predetermined threshold value H2 (time point Th2), the second islanding operation detection device 140b disconnects the distributed power source 130 (time point T2). In FIG. 3, for ease of understanding, the time Th2 and the time T2 are illustrated with a gap between them, but the second islanding operation detection device 140b instantaneously disperses after the frequency reaches the threshold value H2. In order to disconnect the mold power supply 130, the time point Th2 and the time point T2 are substantially the same.

第2単独運転検出装置140bを分散型電源130bとともに新設する場合、図1に示すように第1単独運転検出装置140aおよび第2単独運転検出装置140bが接続範囲において混在する場合がある。本実施形態にかかる単独運転検出システム100によれば、第1単独運転検出装置140aを改造することなく、分散型電源130aを、第2単独運転検出装置140bにより高速に解列させることが可能となる。   When the second islanding operation detection device 140b is newly installed together with the distributed power supply 130b, the first islanding operation detection device 140a and the second islanding operation detection device 140b may be mixed in the connection range as shown in FIG. According to the islanding operation detection system 100 according to the present embodiment, the distributed power source 130a can be disconnected at high speed by the second islanding operation detection device 140b without modifying the first islanding operation detection device 140a. Become.

また、上述したように、第1単独運転検出装置140aでは定められた時間(例えば、1.0秒)内に分散型電源130aを配電線116から解列することが困難であり、系統連系(低圧連系)できない場合があった。本実施形態にかかる単独運転検出システム100によれば、1の第2単独運転検出装置140bにより高速に複数の分散型電源130(130a、130b)を解列することができるため、第1単独運転検出装置140aでは、単独運転発生から検出までに、規定された時間以上の時間を費やしてしまうことが理由で系統連系(低圧連系)できなかった分散型電源130aでも、新たに第2単独運転検出装置140bを備えることなく系統連系することが可能となる。   Further, as described above, it is difficult for the first isolated operation detection device 140a to disconnect the distributed power source 130a from the distribution line 116 within a predetermined time (for example, 1.0 second), and the grid interconnection (Low-pressure interconnection). According to the isolated operation detection system 100 according to the present embodiment, a plurality of distributed power sources 130 (130a, 130b) can be disconnected at high speed by one second isolated operation detection device 140b. In the detection device 140a, even if the distributed power source 130a that could not be connected to the system (low voltage connection) because it took more than a specified time from the occurrence of the isolated operation to the detection, the second independent It is possible to perform grid interconnection without providing the operation detection device 140b.

さらに、本実施形態にかかる単独運転検出システム100によれば、分散型電源130が同期発電機だけでなく、パワーコンディショナを備えた太陽光発電設備等にも利用することが可能である。   Furthermore, according to the isolated operation detection system 100 according to the present embodiment, the distributed power source 130 can be used not only for a synchronous generator but also for a photovoltaic power generation facility provided with a power conditioner.

また、分散型電源130の電力容量が50kW以上であって高圧連系する場合、地絡事故を検出するために地絡過電圧継電器(OVGR)を設ける必要がある。しかしながら、本実施形態にかかる単独運転検出システム100により単独運転を高速に検出できることで、OVGRが省略可能となり、OVGRにかかるコストを削減することができる。   Moreover, when the power capacity of the distributed power source 130 is 50 kW or higher and a high-voltage connection is made, it is necessary to provide a ground fault overvoltage relay (OVGR) in order to detect a ground fault. However, since the isolated operation detection system 100 according to the present embodiment can detect the isolated operation at a high speed, the OVGR can be omitted, and the cost required for the OVGR can be reduced.

(変形例)
図4は変形例にかかる単独運転検出システム200を説明するための図である。なお、上述した実施形態の構成要素と実質的に機能が等しい構成要素については、同一の符号を付して重複説明を省略する。
(Modification)
FIG. 4 is a diagram for explaining an isolated operation detection system 200 according to a modification. Note that components having substantially the same functions as the components of the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.

単独運転検出システム200は、分散型電源130と、負荷132と、第2単独運転検出装置140bと、遮断器160とを含んで構成される。単独運転検出システム200における第2単独運転検出装置140bの解列処理部144は、出力線N4を通じて単独運転信号を遮断器160に出力し、遮断器160を解放させる。遮断器160は、3の遮断器150よりも上流側(系統電源112側)に位置するため、遮断器160のみを解放することで、接続範囲における全ての分散型電源130が解列されることとなる。   The isolated operation detection system 200 includes a distributed power supply 130, a load 132, a second isolated operation detection device 140b, and a circuit breaker 160. The disconnection processing unit 144 of the second isolated operation detection device 140b in the isolated operation detection system 200 outputs an isolated operation signal to the circuit breaker 160 through the output line N4, and releases the circuit breaker 160. Since the circuit breaker 160 is located upstream of the three circuit breakers 150 (system power supply 112 side), all the distributed power supplies 130 in the connection range are disconnected by releasing only the circuit breaker 160. It becomes.

したがって、変形例にかかる単独運転検出システム200でも、第1単独運転検出装置140aを改造することなく、1の第2単独運転検出装置140bにより、3の分散型電源130を高速に解列することが可能となる。   Therefore, even in the isolated operation detection system 200 according to the modification, the three distributed power sources 130 can be disconnected at high speed by the first isolated operation detection device 140b without modifying the first isolated operation detection device 140a. Is possible.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上述した実施形態および変形例において、第2単独運転検出装置140bは、ステップ注入付周波数フィードバック方式を採用している。しかしながら、第2単独運転検出装置140bは、新型能動的方式であり、かつ、系統電源112の解列から0.5秒未満で分散型電源130を解列することができる単独運転検出装置であればよい。   For example, in the above-described embodiments and modifications, the second islanding operation detection device 140b employs a frequency feedback method with step injection. However, the second islanding operation detection device 140b is a new active system and can be an islanding operation detection device capable of disconnecting the distributed power source 130 in less than 0.5 seconds after the system power source 112 is disconnected. That's fine.

また、上述した実施形態および変形例において、第2単独運転検出装置140bは、遮断器150、160を解放させることで分散型電源130を配電線116から解列するとした。しかしながら、第2単独運転検出装置140bは、分散型電源130がインバータを備える場合、ゲートブロックによってインバータの出力を停止させるとしてもよい。   In the above-described embodiment and modification, the second islanding operation detection device 140b disconnects the distributed power source 130 from the distribution line 116 by releasing the circuit breakers 150 and 160. However, when the distributed power source 130 includes an inverter, the second islanding operation detection device 140b may stop the output of the inverter by the gate block.

本発明は、商用電力系統に連系された分散型電源が単独運転となったことを検出する単独運転検出装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an isolated operation detection device that detects that a distributed power source linked to a commercial power system has been operated independently.

100、200 単独運転検出システム
110 商用電力系統
130 分散型電源
140b 第2単独運転検出装置(単独運転検出装置)
142 変動生成部
144 解列処理部
100, 200 Isolated operation detection system 110 Commercial power system 130 Distributed power source 140b Second isolated operation detection device (single operation detection device)
142 Fluctuation generator 144 Dissolution processor

Claims (1)

商用電力系統に連系され、予め定められた接続範囲に属する、分散型電源の解列までに0.5秒〜1.0秒を要する他の単独運転検出装置に接続された分散型電源を含む複数の分散型電源全てを含まない少なくとも1の分散型電源の出力に変動を与える変動生成部と、
系統連系点における所定の電気的パラメータの変動を検出し、前記変動生成部が与える前記変動によって該所定の電気的パラメータが閾値を超えて変動した場合、前記複数の分散型電源と該系統連系点とを結ぶ複数の遮断器を通じて該複数の分散型電源を前記商用電力系統から0.5秒未満で解列するか、または、該複数の分散型電源を0.5秒未満で停止する単独運転信号を出力する解列処理部と、
を備えることを特徴とする単独運転検出装置。
A distributed power source connected to another isolated operation detection device that is connected to a commercial power system and belongs to a predetermined connection range and requires 0.5 to 1.0 seconds until the distributed power source is disconnected. A fluctuation generating unit that fluctuates the output of at least one distributed power supply that does not include all of the plurality of distributed power supplies including;
When a change in a predetermined electrical parameter at a grid connection point is detected and the predetermined electrical parameter fluctuates beyond a threshold due to the fluctuation given by the fluctuation generation unit, the plurality of distributed power sources and the grid connection are Disconnect the plurality of distributed power sources from the commercial power system in less than 0.5 seconds through a plurality of circuit breakers connecting the system points, or stop the plurality of distributed power sources in less than 0.5 seconds A disconnection processing unit for outputting a single operation signal;
An isolated operation detection device comprising:
JP2017152181A 2013-09-13 2017-08-07 Individual operation detection device Pending JP2017195775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152181A JP2017195775A (en) 2013-09-13 2017-08-07 Individual operation detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013190260A JP2015057000A (en) 2013-09-13 2013-09-13 Individual operation detection device
JP2017152181A JP2017195775A (en) 2013-09-13 2017-08-07 Individual operation detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013190260A Division JP2015057000A (en) 2013-09-13 2013-09-13 Individual operation detection device

Publications (1)

Publication Number Publication Date
JP2017195775A true JP2017195775A (en) 2017-10-26

Family

ID=52820982

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013190260A Pending JP2015057000A (en) 2013-09-13 2013-09-13 Individual operation detection device
JP2017152181A Pending JP2017195775A (en) 2013-09-13 2017-08-07 Individual operation detection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013190260A Pending JP2015057000A (en) 2013-09-13 2013-09-13 Individual operation detection device

Country Status (1)

Country Link
JP (2) JP2015057000A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289748B2 (en) 2019-07-23 2023-06-12 一般財団法人電力中央研究所 Evaluation method for determining the islanding detection limit of a system connected to a PCS that does not use an active system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270482A (en) * 1999-03-16 2000-09-29 Kawasaki Steel Corp System linkage method of natural energy generator
JP2006230115A (en) * 2005-02-17 2006-08-31 Osaka Gas Co Ltd Method and apparatus for detecting individual operation of power generating facility
JP2007215392A (en) * 2006-01-13 2007-08-23 Omron Corp Single operation detection method, single operation detection controller for distributed power supply, single operation detector, and distributed power supply
JP2008079407A (en) * 2006-09-20 2008-04-03 Toshiba Fuel Cell Power Systems Corp Device and method for preventing single operation
JP2010115094A (en) * 2008-11-10 2010-05-20 Toshiba Corp Individual operation detection device of inverter and method of detecting the individual operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270482A (en) * 1999-03-16 2000-09-29 Kawasaki Steel Corp System linkage method of natural energy generator
JP2006230115A (en) * 2005-02-17 2006-08-31 Osaka Gas Co Ltd Method and apparatus for detecting individual operation of power generating facility
JP2007215392A (en) * 2006-01-13 2007-08-23 Omron Corp Single operation detection method, single operation detection controller for distributed power supply, single operation detector, and distributed power supply
JP2008079407A (en) * 2006-09-20 2008-04-03 Toshiba Fuel Cell Power Systems Corp Device and method for preventing single operation
JP2010115094A (en) * 2008-11-10 2010-05-20 Toshiba Corp Individual operation detection device of inverter and method of detecting the individual operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
系統連系規程 JEAC 9701−2010 [2011年 追補版 (その1)], vol. JESC E0019(2010), JPN6018014939, 2011, pages (全頁), ISSN: 0003833520 *

Also Published As

Publication number Publication date
JP2015057000A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
Saleh et al. Impact of clustering microgrids on their stability and resilience during blackouts
Laverty et al. Loss‐of‐mains protection system by application of phasor measurement unit technology with experimentally assessed threshold settings
Karimi et al. Under-frequency load shedding scheme for islanded distribution network connected with mini hydro
Velasco et al. Review of anti-islanding techniques in distributed generators
Chiang et al. Active islanding detection method for inverter-based distribution generation power system
Rani et al. An active islanding detection technique for current controlled inverter
US20200044436A1 (en) Method for locating phase faults in a microgrid
Bayrak et al. A novel anti islanding detection method for grid connected fuel cell power generation systems
CN103091604B (en) A kind of island detection method of grid-connected photovoltaic system and pick-up unit
Bayrak et al. A communication based islanding detection method for photovoltaic distributed generation systems
Lulbadda et al. The additional functions of smart inverters
CN106353614B (en) Island detection method and device for direct current system
US11128128B2 (en) Directional over-current ground relay (DOCGR) using sampled value and method for operating the DOCGR
Deshbhratar et al. Comparative analysis of islanding detection methods for multiple DG based system
Khatua et al. Application of integrated microgrid for strengthening the station blackout power supply in nuclear power plant
JP2017195775A (en) Individual operation detection device
Lissandron et al. Impact of non-simultaneous P/f and Q/V grid code requirements on PV inverters on unintentional islanding operation in distribution network
US20150233982A1 (en) Detection of load-shedding of an inverter
Bayrak et al. A novel Labview based anti islanding detection method for grid connected PV systems
CN103887811A (en) Distributed power supply system and control method with low voltage ride through and anti-islanding protective functions
JPWO2014024731A1 (en) Interconnection system switching device and power control system
Alasali et al. An advanced dual-setting protection scheme for microgrid resilience based on nonstandard tripping characteristics of overcurrent relays
Chatterjee et al. The challenges of protection for Microgrid
Ferreira et al. Plug-in active ROCOF method for islanding detection based on small-signal injection
Van Thong et al. Maximum penetration level of distributed generation with safety criteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180710