JP2017127173A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2017127173A
JP2017127173A JP2016017517A JP2016017517A JP2017127173A JP 2017127173 A JP2017127173 A JP 2017127173A JP 2016017517 A JP2016017517 A JP 2016017517A JP 2016017517 A JP2016017517 A JP 2016017517A JP 2017127173 A JP2017127173 A JP 2017127173A
Authority
JP
Japan
Prior art keywords
battery
power
storage device
power storage
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016017517A
Other languages
Japanese (ja)
Inventor
章洋 鈴木
Akihiro Suzuki
章洋 鈴木
宏人 亀卦川
Hiroto Kikegawa
宏人 亀卦川
高橋 和雄
Kazuo Takahashi
和雄 高橋
篤 板垣
Atsushi Itagaki
篤 板垣
白方 雅人
Masato Shirakata
雅人 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYOWA DENSHI KK
Original Assignee
RYOWA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYOWA DENSHI KK filed Critical RYOWA DENSHI KK
Priority to JP2016017517A priority Critical patent/JP2017127173A/en
Publication of JP2017127173A publication Critical patent/JP2017127173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To provide a compact, reliable device such as a photovoltaic power generator, which converts a natural energy into electricity and stores it, and which is used for an illuminating device such as a street light.SOLUTION: A power storage device comprises: a photovoltaic power generator; a DC-DC converter; and lithium ion secondary batteries. The DC-DC converter includes: a step-down and -up chopper and a CPU. The control of the photovoltaic power generator, and the charge/discharge control of the lithium ion secondary batteries can be performed by switching under the control of the CPU. Further, in the lithium ion secondary batteries, an active material having at least either a spinel type structure or an olivine type structure is used as a positive electrode material. Use of the lithium ion secondary batteries which are connected in parallel increases the reliability.SELECTED DRAWING: Figure 1

Description

本発明は、自然エネルギーの蓄電装置に関するもので、特に太陽光発電で得られる電力を、蓄電池に蓄えて街路灯などの電気機器に電力を供給する、電力双方向変換の蓄電装置に関するものである。  The present invention relates to a natural energy storage device, and more particularly to a power bidirectional storage device that stores power obtained by solar power generation in a storage battery and supplies it to an electric device such as a street light. .

太陽光発電や風力発電などの、再生可能エネルギーをエネルギー源とした電源設備では、自然現象で左右される不安定な出力電力を補うために蓄電池を併用している。図2は従来の一般的な蓄電システムの一例を示すブロック図である。  In power supply facilities using renewable energy as an energy source, such as solar power generation and wind power generation, a storage battery is used together to compensate for unstable output power that is influenced by natural phenomena. FIG. 2 is a block diagram showing an example of a conventional general power storage system.

ここに示した例では、直流系統には直流電源や直流負荷を接続する。太陽光発電装置や整流した風力発電装置が直流電源として接続され、直流負荷としてLED照明装置が接続される場合、直流系統には100〜400Vの高電圧が求められる。  In the example shown here, a DC power supply or a DC load is connected to the DC system. When a solar power generation device or a rectified wind power generation device is connected as a DC power source and an LED lighting device is connected as a DC load, a high voltage of 100 to 400 V is required for the DC system.

なお、図2には、太陽光発電装置を用いた例を示していて、この場合は、MPPT(Maximum Power Point Tracking)方式、つまり、最大電力点追従方式の発電制御装置が必要となる。また、一般的に蓄電システムを構成するDC/DCコンバータの電力変換効率は、入出力電圧比が大きいとき悪化するため、蓄電池の電圧として高いものが使用されている。このため、ここに示した例のように、高電圧を得るため、所要数の電池のセルを直列接続したモジュールを構成して電源としている。  FIG. 2 shows an example using a solar power generation apparatus. In this case, a power generation control apparatus of an MPPT (Maximum Power Point Tracking) system, that is, a maximum power point tracking system is required. Moreover, since the power conversion efficiency of the DC / DC converter which generally comprises an electrical storage system deteriorates when the input / output voltage ratio is large, a high storage battery voltage is used. Therefore, as in the example shown here, in order to obtain a high voltage, a module in which a required number of battery cells are connected in series is configured as a power source.

しかし、直列モジュールは、1つのセルのみの故障であっても、モジュール全体から電力を供給できなくなるため、信頼性低下の要因になる課題を有していた。また、電池の容量を増加させるために、直列接続したモジュールを並列接続する構成、つまり、直並列接続と称される構成とする場合があるが、電池制御システム(Battery Management Sytem;以下BMSと記す)、安全装置が各モジュール毎に必要になり回路が複雑になり、コスト上昇、信頼性の低下につながる。  However, since the series module cannot supply power from the entire module even if only one cell fails, there is a problem that causes a decrease in reliability. Further, in order to increase the capacity of the battery, a configuration in which modules connected in series are connected in parallel, that is, a configuration referred to as a series-parallel connection, is sometimes referred to as a battery management system (hereinafter referred to as BMS). ), A safety device is required for each module, and the circuit becomes complicated, leading to an increase in cost and a decrease in reliability.

このような例として、特許文献1には、複数箇の二次電池を並列に接続して一つの電池グループとし、この電池グループを複数グループ直列に接続し、さらに電池グループとして並列に接続される二次電池は、単電池を複数箇直列に接続することも可能とすることにより、過充電を防ぎ、保護回路を減少し得ることが開示されている。しかし、ここでも充電状態を監視するための電圧センサを、電池グループ毎に設けることを必要な要件としているため、前記のコスト抑制と信頼性の向上を同時に確保するという課題に、必ずしも十分に対応しているとは言い難い。  As such an example, in Patent Document 1, a plurality of secondary batteries are connected in parallel to form one battery group, the battery groups are connected in series, and further connected in parallel as a battery group. It is disclosed that the secondary battery can also connect a plurality of single cells in series, thereby preventing overcharge and reducing the protection circuit. However, since it is necessary to provide a voltage sensor for monitoring the state of charge for each battery group, the problem of ensuring cost reduction and improved reliability is not always sufficient. It ’s hard to say.

現用の二次電池の中で最もエネルギー密度が高く、一般的に用いられているリチウムイオン二次電池の電圧は、最大4.2V程度であり、実際に使用する場合は、直列に接続して数10〜数100Vの電圧で使用している。ただし、リチウムイオン電池は、過放電、過電圧によって重大な故障を引き起こすため、個々のセルには、BMSという安全回路を搭載して、電池をセル毎に監視している。また、安全回路が作動した場合は、電池を開放するように動作する。  The highest energy density among the currently used secondary batteries, the voltage of the commonly used lithium ion secondary battery is about 4.2V, and in actual use, connect in series It is used at a voltage of several tens to several hundreds volts. However, since a lithium ion battery causes a serious failure due to overdischarge and overvoltage, a safety circuit called BMS is mounted on each cell, and the battery is monitored for each cell. When the safety circuit is activated, the battery is opened.

充電の際は、単セルの最大電圧である4.2Vを見て制御しているが、直列の場合、使われているセルのうち1セルでも4.2Vになれば、電流を制御するので、すべての電池を均一に満充電することはできない。また、放電の際は、たとえば3.0Vの過放電電圧を見て制御するが、1セルでも過放電電圧になった場合は回路が放電を止めるので、他のセルは容量が残った状態となる。  When charging, it is controlled by looking at the maximum voltage of a single cell of 4.2V. However, in the case of series connection, even if one of the used cells becomes 4.2V, the current is controlled. , Not all batteries can be fully charged uniformly. When discharging, for example, control is performed by looking at an overdischarge voltage of 3.0 V. However, even if one cell becomes an overdischarge voltage, the circuit stops discharging, so that other cells have a capacity remaining. Become.

そして、直列接続の場合、構成するセルが1セルでも故障した場合、電流が流せないため、電力の供給が止まってしまうのが現状であった。また、並列接続に関しても、個々のセルのうち一つでも内部短絡が起こると、熱暴走によって発煙発火が起き、さらにその熱により他のセルが同様に発熱、発火する危険性があり、安全性の確保にコストを要するものであった。  In the case of series connection, if even one cell fails, current cannot flow, so the supply of power stops. Also, with regard to parallel connection, if any one of the individual cells is short-circuited, there is a risk of fuming and ignition due to thermal runaway, and there is a risk that other cells will similarly generate heat and ignite due to the heat. It was costly to secure.

これに対して、正極材料に、スピネル型構造またはオリビン型構造を有する活物質を用いたリチウムイオン二次電池は、過電圧、過電流状態でも熱暴走を起こさない特徴を有し、単セルが短絡状態になったとしても、短絡状態の単セルを回路的に切り離すだけで、安全を保ったまま、問題なく動作する。そして、前記の特許文献1にも、この種の二次電池が用いられることが開示されている。  In contrast, lithium ion secondary batteries that use an active material with a spinel structure or olivine structure as the positive electrode material have the characteristic of not causing thermal runaway even in an overvoltage or overcurrent state, and the single cell is short-circuited. Even if it becomes a state, it can operate without problems while maintaining safety by simply disconnecting the short-circuited single cell in a circuit. Patent Document 1 also discloses that this type of secondary battery is used.

特開2004−111132号公報  JP 2004-111132 A

しかしながら、太陽光発電装置により充電した電池を、電源として用いる照明装置においては、昼間と夜間で、電池の充放電を切り替えるなどの操作が必要であり、それらの制御回路などの付設を考慮すると、単にスピネル型構造またはオリビン型構造を有する活物質を用いたリチウムイオン二次電池を用いるだけでは、運用上の課題が残る。  However, in an illuminating device that uses a battery charged by a solar power generation device as a power source, it is necessary to perform operations such as switching between charging and discharging of the battery between daytime and nighttime, and considering the attachment of such control circuits, Simply using a lithium ion secondary battery using an active material having a spinel structure or an olivine structure leaves operational problems.

本発明は、前記の問題に着目してなされたものであり、自然エネルギーを蓄電池に蓄えて、照明などの電気機器に電力を供給する電力双方向の蓄電システムにおいて、電力損失削減、信頼性改善を目的としている。  The present invention has been made paying attention to the above-mentioned problems, and in a power bidirectional storage system that stores natural energy in a storage battery and supplies power to an electrical device such as a lighting device, power loss is reduced and reliability is improved. It is an object.

本発明によれば、太陽光発電装置と、DC−DCコンバータと、リチウムイオン電池を有する蓄電装置において、前記DC−DCコンバータは、昇降圧チョッパとCPUを備え、前記太陽光発電装置の制御、前記リチウムイオン電池の充電制御及び放電制御を、前記CPU制御の切替により、行うことを特徴とする、蓄電装置が得られる。  According to the present invention, in a power storage device including a solar power generation device, a DC-DC converter, and a lithium ion battery, the DC-DC converter includes a step-up / step-down chopper and a CPU, and controls the solar power generation device. A power storage device is obtained, wherein charge control and discharge control of the lithium ion battery are performed by switching the CPU control.

また、本発明によれば、前記リチウムイオン電池が、正極材料に、スピネル型構造またはオリビン型構造の少なくともいずれかを有する活物質を使用した、単セルリチウムイオン二次電池を、複数箇並列に接続してなることを特徴とする、前記の蓄電装置が得られる。  Further, according to the present invention, the lithium ion battery is connected in parallel to a plurality of single cell lithium ion secondary batteries using an active material having at least one of a spinel structure or an olivine structure as a positive electrode material. Thus, the above power storage device can be obtained.

また、本発明によれば、前記リチウム電池が、複数箇並列に接続してなる前記単セルリチウム二次電池のいずれかが不具合を起こした場合、不具合を起こした前記単セルリチウムイオン二次電池のみを、切り離して連続動作し続ける構造を有することを特徴とする、前記の蓄電装置が得られる。  In addition, according to the present invention, when any one of the single cell lithium secondary batteries formed by connecting a plurality of the lithium batteries in parallel is defective, only the single cell lithium ion secondary battery that has failed Thus, the above-described power storage device can be obtained.

また、本発明によれば、前記蓄電装置の直流系統が、前記太陽光発電装置請求の出力または直流負荷のいずれかに接続することが可能で、接続状態は、スイッチにより切り替えることが可能であることを特徴とする、前記の蓄電装置が得られる。  Further, according to the present invention, the DC system of the power storage device can be connected to either the output of the solar power generation device claim or the DC load, and the connection state can be switched by a switch. The power storage device described above is obtained.

前記の課題を解決するため、第1の発明では、直流系統を介して直流電源や直流負荷と直流電力を双方向に融通させる蓄電システムであって、直流系統と電池の間に直流電力を双方向に制御可能なDC/DCコンバータを有し、電池はマンガン系リチウムイオン二次電池であり、電池の構成単位であるセルを並列に接続した特徴をもつ蓄電システムを提案している。  In order to solve the above-mentioned problem, in the first invention, there is provided a power storage system in which a DC power source and a DC load and DC power are bidirectionally exchanged via a DC system, and both DC power is supplied between the DC system and the battery. The battery is a manganese-based lithium ion secondary battery, and has proposed a power storage system characterized by connecting cells, which are constituent units of the battery, in parallel.

また、第2の発明では、第1の発明の蓄電システムにおいて、電池が短絡故障を起しても当該、故障セルを切り離して故障していないセルを用いて連続動作可能な構造を持つことを特徴とする蓄電システムを提案する。これより、システムの信頼性を改善できると同時に、電力容量の増減も容易にできる特徴を提案している。  In addition, in the second invention, in the power storage system of the first invention, the battery has a structure capable of continuous operation using a cell that is not broken by separating the failed cell even if the battery causes a short circuit failure. We propose a power storage system with features. From this, the feature which can improve the reliability of a system and at the same time easily increase or decrease the power capacity is proposed.

また、第3の発明では、第1の発明の低損失な蓄電システムを、太陽光発電システムに付与することを提案する。これにより、太陽光の発電電力を効率よく電池に充電できると同時に、効率よくかつ信頼性も高く負荷に直流電力を供給できる。  Moreover, in 3rd invention, providing the low-power-storage system of 1st invention to a solar power generation system is proposed. As a result, it is possible to efficiently charge the battery with the generated power of sunlight, and to supply DC power to the load efficiently and with high reliability.

また、第4の発明では、第2の発明の高信頼性で低損失な蓄電システムを、太陽光発電システムに付与することを提案する。これにより、太陽光の発電電力を信頼性が高くかつ効率よく電池に充電できる。同時に、効率よくかつ信頼性も高く負荷に直流電力を供給できる。  Moreover, in 4th invention, providing the highly reliable and low-loss electrical storage system of 2nd invention to a solar power generation system is proposed. Thereby, the generated power of sunlight can be charged to the battery with high reliability and efficiency. At the same time, DC power can be supplied to the load efficiently and with high reliability.

本発明の特徴により、次のような効果が得られる。並列接続した二次電池の運転により、並列接続された単セルリチウム二次電池の一つが故障しても、電力供給が止まらないので、並列接続した単セルリチウム二次電池のバランスを取る必要がなく、BMS回路が不要となる他、常に充放電することが可能になり、電池の容量を最大限に利用可能となることから使用時間を延長できる。  The following effects can be obtained by the features of the present invention. Even if one of the parallel-connected single cell lithium secondary batteries fails due to the operation of the secondary battery connected in parallel, the power supply will not stop, so it is necessary to balance the single-cell lithium secondary batteries connected in parallel. In addition to the need for a BMS circuit, the battery can be charged and discharged at all times, and the battery capacity can be utilized to the maximum, so that the usage time can be extended.

BMS回路が不要となることから、コストダウン、小型・軽量、回路消費電力削減となる。並列接続により、電池電圧が単セルの電圧で統一できるため、回路の変更なしで電池容量増加が可能となり、回路の標準化が可能となる。  Since the BMS circuit is unnecessary, the cost is reduced, the size and weight are reduced, and the circuit power consumption is reduced. By connecting in parallel, the battery voltage can be unified with the voltage of a single cell, so that the battery capacity can be increased without changing the circuit, and the circuit can be standardized.

次に本発明の実施の形態について説明する。図1は本発明に係る、蓄電装置を用いた太陽光発電装置を電源に用いた照明装置の一例を示すブロック図である。この照明装置は、太陽電池による発電電力をDC−DCコンバータにより定電流に変換して、マンガン系リチウム二次電池に蓄えて、その電力をLED夜間照明に利用する。  Next, an embodiment of the present invention will be described. FIG. 1 is a block diagram illustrating an example of a lighting device using a photovoltaic power generation device using a power storage device as a power source according to the present invention. This lighting device converts power generated by a solar cell into a constant current by a DC-DC converter, stores it in a manganese-based lithium secondary battery, and uses the power for LED night illumination.

ここでは、電池としてマンガン系リチウムイオン二次電池を用い、セルは並列接続する。DC/DCコンバータは電気的に絶縁あるいは非絶縁の回路構成で、VとVの比は図2に示す従来の蓄電システムに比較すると大きい。Here, a manganese-based lithium ion secondary battery is used as the battery, and the cells are connected in parallel. The DC / DC converter has an electrically insulated or non-insulated circuit configuration, and the ratio of V 1 and V 2 is larger than that of the conventional power storage system shown in FIG.

しかし、DC/DCコンバータを構成する低損失な電力用半導体スイッチ(Si−MOSFET、SiC−MOFFET、GaN‐FETなど)を高周波で動作するため電圧比が高くてもDC/DCコンバータの損失増加の影響は少ない。また、並列接続では電池電圧はセル単体の電圧であり、直列接続よりも低い電圧で、よりオン抵抗の低いFETを選択出来るため低損失が望める。  However, since the low loss power semiconductor switches (Si-MOSFET, SiC-MOFFET, GaN-FET, etc.) constituting the DC / DC converter operate at high frequency, the loss of the DC / DC converter increases even if the voltage ratio is high. The impact is small. In parallel connection, the battery voltage is the voltage of a single cell, and it is possible to select a FET with lower voltage and lower on-resistance than in series connection, so low loss can be expected.

したがって、電池とDC/DCコンバータの損失合計は、図2に比べて図1のほうが同等以下に少なくでき、BMS、保護回路削減も影響して蓄電システムの小型軽量化、低コスト化が可能になる。電池セルを並列して使用するため信頼性を改善でき、無停電電源などの高信頼性を必要とするシステムや装置への適用も有効となる。  Therefore, the total loss of the battery and the DC / DC converter can be reduced to the same or lower level in FIG. 1 than in FIG. 2, and the storage system can be reduced in size and weight and cost can be reduced by reducing BMS and protection circuit. Become. Since the battery cells are used in parallel, the reliability can be improved, and the application to systems and devices that require high reliability such as an uninterruptible power supply is also effective.

以上に説明したように、本発明によれば、コンパクトで信頼性の高い、自然エネルギーを電気に変換して蓄電する装置を提供でき、太陽光発電などの利用を促進できる。なお、本発明は、前期実施の形態に限定されるものではなく、本発明の分野における通常の知識を有するものであれば想到し得る、各種変形、修正を含む、本発明の要旨を逸脱しない範囲の設計変更であっても、本発明に含まれることは無論である。  As described above, according to the present invention, a compact and highly reliable device for storing natural energy by converting it into electricity can be provided, and the use of solar power generation or the like can be promoted. It should be noted that the present invention is not limited to the previous embodiment, and does not depart from the gist of the present invention, including various modifications and corrections that can be conceived as long as they have ordinary knowledge in the field of the present invention. Needless to say, even a design change in the range is included in the present invention.

本発明は、自然エネルギーの蓄電装置に関するもので、特に太陽光発電で得られる電力を、蓄電池に蓄えて街路灯などの電気機器に電力を供給する、電力双方向変換の蓄電装置に関するものである。  The present invention relates to a natural energy storage device, and more particularly to a power bidirectional storage device that stores power obtained by solar power generation in a storage battery and supplies it to an electric device such as a street light. .

太陽光発電や風力発電などの、再生可能エネルギーをエネルギー源とした電源設備では、自然現象で左右される不安定な出力電力を補うために蓄電池を併用している。図2は従来の一般的な蓄電システムの一例を示すブロック図である。  In power supply facilities using renewable energy as an energy source, such as solar power generation and wind power generation, a storage battery is used together to compensate for unstable output power that is influenced by natural phenomena. FIG. 2 is a block diagram showing an example of a conventional general power storage system.

ここに示した例では、直流系統には直流電源や直流負荷を接続する。太陽光発電装置や整流した風力発電装置が直流電源として接続され、直流負荷としてLED照明装置が接続される場合、直流系統には100〜400Vの高電圧が求められる。  In the example shown here, a DC power supply or a DC load is connected to the DC system. When a solar power generation device or a rectified wind power generation device is connected as a DC power source and an LED lighting device is connected as a DC load, a high voltage of 100 to 400 V is required for the DC system.

なお、図2には、太陽光発電装置を用いた例を示していて、この場合は、MPPT(Maximum Power Point Tracking)方式、つまり、最大電力点追従方式の発電制御装置が必要となる。また、一般的に蓄電システムを構成するDC/DCコンバータの電力変換効率は、入出力電圧比が大きいとき悪化するため、蓄電池の電圧として高いものが使用されている。このため、ここに示した例のように、高電圧を得るため、所要数の電池のセルを直列接続したモジュールを構成して電源としている。  FIG. 2 shows an example using a solar power generation apparatus. In this case, a power generation control apparatus of an MPPT (Maximum Power Point Tracking) system, that is, a maximum power point tracking system is required. Moreover, since the power conversion efficiency of the DC / DC converter which generally comprises an electrical storage system deteriorates when the input / output voltage ratio is large, a high storage battery voltage is used. Therefore, as in the example shown here, in order to obtain a high voltage, a module in which a required number of battery cells are connected in series is configured as a power source.

しかし、直列モジュールは、1つのセルのみの故障であっても、モジュール全体から電力を供給できなくなるため、信頼性低下の要因になる課題を有していた。また、電池の容量を増加させるために、直列接続したモジュールを並列接続する構成、つまり、直並列接続と称される構成とする場合があるが、電池制御システム(Battery Management Sytem;以下BMSと記す)、安全装置が各モジュール毎に必要になり回路が複雑になり、コスト上昇、信頼性の低下につながる。  However, since the series module cannot supply power from the entire module even if only one cell fails, there is a problem that causes a decrease in reliability. Further, in order to increase the capacity of the battery, a configuration in which modules connected in series are connected in parallel, that is, a configuration referred to as a series-parallel connection, is sometimes referred to as a battery management system (hereinafter referred to as BMS). ), A safety device is required for each module, and the circuit becomes complicated, leading to an increase in cost and a decrease in reliability.

このような例として、特許文献1には、複数箇の二次電池を並列に接続して一つの電池グループとし、この電池グループを複数グループ直列に接続し、さらに電池グループとして並列に接続される二次電池は、単電池を複数箇直列に接続することも可能とすることにより、過充電を防ぎ、保護回路を減少し得ることが開示されている。しかし、ここでも充電状態を監視するための電圧センサを、電池グループ毎に設けることを必要な要件としているため、前記のコスト抑制と信頼性の向上を同時に確保するという課題に、必ずしも十分に対応しているとは言い難い。  As such an example, in Patent Document 1, a plurality of secondary batteries are connected in parallel to form one battery group, the battery groups are connected in series, and further connected in parallel as a battery group. It is disclosed that the secondary battery can also connect a plurality of single cells in series, thereby preventing overcharge and reducing the protection circuit. However, since it is necessary to provide a voltage sensor for monitoring the state of charge for each battery group, the problem of ensuring cost reduction and improved reliability is not always sufficient. It ’s hard to say.

現用の二次電池の中で最もエネルギー密度が高く、一般的に用いられているリチウムイオン二次電池の電圧は、最大4.2V程度であり、実際に使用する場合は、直列に接続して数10〜数100Vの電圧で使用している。ただし、リチウムイオン電池は、過放電、過電圧によって重大な故障を引き起こすため、個々のセルには、BMSという安全回路を搭載して、電池をセル毎に監視している。また、安全回路が作動した場合は、電池を開放するように動作する。  The highest energy density among the currently used secondary batteries, the voltage of the commonly used lithium ion secondary battery is about 4.2V, and in actual use, connect in series It is used at a voltage of several tens to several hundreds volts. However, since a lithium ion battery causes a serious failure due to overdischarge and overvoltage, a safety circuit called BMS is mounted on each cell, and the battery is monitored for each cell. When the safety circuit is activated, the battery is opened.

充電の際は、単セルの最大電圧である4.2Vを見て制御しているが、直列の場合、使われているセルのうち1セルでも4.2Vになれば、電流を制御するので、すべての電池を均一に満充電することはできない。また、放電の際は、たとえば3.0Vの過放電電圧を見て制御するが、1セルでも過放電電圧になった場合は回路が放電を止めるので、他のセルは容量が残った状態となる。  When charging, it is controlled by looking at the maximum voltage of a single cell of 4.2V. However, in the case of series connection, even if one of the used cells becomes 4.2V, the current is controlled. , Not all batteries can be fully charged uniformly. When discharging, for example, control is performed by looking at an overdischarge voltage of 3.0 V. However, even if one cell becomes an overdischarge voltage, the circuit stops discharging, so that other cells have a capacity remaining. Become.

そして、直列接続の場合、構成するセルが1セルでも故障した場合、電流が流せないため、電力の供給が止まってしまうのが現状であった。また、並列接続に関しても、個々のセルのうち一つでも内部短絡が起こると、熱暴走によって発煙発火が起き、さらにその熱により他のセルが同様に発熱、発火する危険性があり、安全性の確保にコストを要するものであった。  In the case of series connection, if even one cell fails, current cannot flow, so the supply of power stops. Also, with regard to parallel connection, if any one of the individual cells is short-circuited, there is a risk of fuming and ignition due to thermal runaway, and there is a risk that other cells will similarly generate heat and ignite due to the heat. It was costly to secure.

これに対して、正極材料に、スピネル型構造またはオリビン型構造を有する活物質を用いたリチウムイオン二次電池は、過電圧、過電流状態でも熱暴走を起こさない特徴を有し、単セルが短絡状態になったとしても、短絡状態の単セルを回路的に切り離すだけで、安全を保ったまま、問題なく動作する。そして、前記の特許文献1にも、この種の二次電池が用いられることが開示されている。  In contrast, lithium ion secondary batteries that use an active material with a spinel structure or olivine structure as the positive electrode material have the characteristic of not causing thermal runaway even in an overvoltage or overcurrent state, and the single cell is short-circuited. Even if it becomes a state, it can operate without problems while maintaining safety by simply disconnecting the short-circuited single cell in a circuit. Patent Document 1 also discloses that this type of secondary battery is used.

特開2004−111132号公報  JP 2004-111132 A

しかしながら、太陽光発電装置により充電した電池を、電源として用いる照明装置においては、昼間と夜間で、電池の充放電を切り替えるなどの操作が必要であり、それらの制御回路などの付設を考慮すると、単にスピネル型構造またはオリビン型構造を有する活物質を用いたリチウムイオン二次電池を用いるだけでは、運用上の課題が残る。  However, in an illuminating device that uses a battery charged by a solar power generation device as a power source, it is necessary to perform operations such as switching between charging and discharging of the battery between daytime and nighttime, and considering the attachment of such control circuits, Simply using a lithium ion secondary battery using an active material having a spinel structure or an olivine structure leaves operational problems.

本発明は、前記の問題に着目してなされたものであり、自然エネルギーを蓄電池に蓄えて、照明などの電気機器に電力を供給する電力双方向の蓄電システムにおいて、電力損失削減、信頼性改善を目的としている。  The present invention has been made paying attention to the above-mentioned problems, and in a power bidirectional storage system that stores natural energy in a storage battery and supplies power to an electrical device such as a lighting device, power loss is reduced and reliability is improved. It is an object.

本発明によれば、太陽光発電装置と、DC−DCコンバータと、リチウムイオン電池を有する蓄電装置において、前記DC−DCコンバータは、昇降圧チョッパとCPUを備え、前記太陽光発電装置の制御、前記リチウムイオン電池の充電制御及び放電制御を、前記CPU制御の切替により、行うことを特徴とする、蓄電装置が得られる。  According to the present invention, in a power storage device including a solar power generation device, a DC-DC converter, and a lithium ion battery, the DC-DC converter includes a step-up / step-down chopper and a CPU, and controls the solar power generation device. A power storage device is obtained, wherein charge control and discharge control of the lithium ion battery are performed by switching the CPU control.

また、本発明によれば、前記リチウムイオン電池が、正極材料に、スピネル型構造またはオリビン型構造の少なくともいずれかを有する活物質を使用した、単セルリチウムイオン二次電池を、複数箇並列に接続してなることを特徴とする、前記の蓄電装置が得られる。  Further, according to the present invention, the lithium ion battery is connected in parallel to a plurality of single cell lithium ion secondary batteries using an active material having at least one of a spinel structure or an olivine structure as a positive electrode material. Thus, the above power storage device can be obtained.

また、本発明によれば、前記リチウム電池が、複数箇並列に接続してなる前記単セルリチウム二次電池のいずれかが不具合を起こした場合、不具合を起こした前記単セルリチウムイオン二次電池のみを、切り離して連続動作し続ける構造を有することを特徴とする、前記の蓄電装置が得られる。  In addition, according to the present invention, when any one of the single cell lithium secondary batteries formed by connecting a plurality of the lithium batteries in parallel is defective, only the single cell lithium ion secondary battery that has failed Thus, the above-described power storage device can be obtained.

また、本発明によれば、前記蓄電装置の直流系統が、前記太陽光発電装置請求の出力または直流負荷のいずれかに接続することが可能で、接続状態は、スイッチにより切り替えることが可能であることを特徴とする、前記の蓄電装置が得られる。  Further, according to the present invention, the DC system of the power storage device can be connected to either the output of the solar power generation device claim or the DC load, and the connection state can be switched by a switch. The power storage device described above is obtained.

前記の課題を解決するため、第1の発明では、直流系統を介して直流電源や直流負荷と直流電力を双方向に融通させる蓄電システムであって、直流系統と電池の間に直流電力を双方向に制御可能なDC/DCコンバータを有し、電池はマンガン系リチウムイオン二次電池であり、電池の構成単位であるセルを並列に接続した特徴をもつ蓄電システムを提案している。  In order to solve the above-mentioned problem, in the first invention, there is provided a power storage system in which a DC power source and a DC load and DC power are bidirectionally exchanged via a DC system, and both DC power is supplied between the DC system and the battery. The battery is a manganese-based lithium ion secondary battery, and has proposed a power storage system characterized by connecting cells, which are constituent units of the battery, in parallel.

また、第2の発明では、第1の発明の蓄電システムにおいて、電池が短絡故障を起しても当該、故障セルを切り離して故障していないセルを用いて連続動作可能な構造を持つことを特徴とする蓄電システムを提案する。これより、システムの信頼性を改善できると同時に、電力容量の増減も容易にできる特徴を提案している。  In addition, in the second invention, in the power storage system of the first invention, the battery has a structure capable of continuous operation using a cell that is not broken by separating the failed cell even if the battery causes a short circuit failure. We propose a power storage system with features. From this, the feature which can improve the reliability of a system and at the same time easily increase or decrease the power capacity is proposed.

また、第3の発明では、第1の発明の低損失な蓄電システムを、太陽光発電システムに付与することを提案する。これにより、太陽光の発電電力を効率よく電池に充電できると同時に、効率よくかつ信頼性も高く負荷に直流電力を供給できる。  Moreover, in 3rd invention, providing the low-power-storage system of 1st invention to a solar power generation system is proposed. As a result, it is possible to efficiently charge the battery with the generated power of sunlight, and to supply DC power to the load efficiently and with high reliability.

また、第4の発明では、第2の発明の高信頼性で低損失な蓄電システムを、太陽光発電システムに付与することを提案する。これにより、太陽光の発電電力を信頼性が高くかつ効率よく電池に充電できる。同時に、効率よくかつ信頼性も高く負荷に直流電力を供給できる。  Moreover, in 4th invention, providing the highly reliable and low-loss electrical storage system of 2nd invention to a solar power generation system is proposed. Thereby, the generated power of sunlight can be charged to the battery with high reliability and efficiency. At the same time, DC power can be supplied to the load efficiently and with high reliability.

本発明の特徴により、次のような効果が得られる。並列接続した二次電池の運転により、並列接続された単セルリチウム二次電池の一つが故障しても、電力供給が止まらないので、並列接続した単セルリチウム二次電池のバランスを取る必要がなく、BMS回路が不要となる他、常に充放電することが可能になり、電池の容量を最大限に利用可能となることから使用時間を延長できる。  The following effects can be obtained by the features of the present invention. Even if one of the parallel-connected single cell lithium secondary batteries fails due to the operation of the secondary battery connected in parallel, the power supply will not stop, so it is necessary to balance the single-cell lithium secondary batteries connected in parallel. In addition to the need for a BMS circuit, the battery can be charged and discharged at all times, and the battery capacity can be utilized to the maximum, so that the usage time can be extended.

BMS回路が不要となることから、コストダウン、小型・軽量、回路消費電力削減となる。並列接続により、電池電圧が単セルの電圧で統一できるため、回路の変更なしで電池容量増加が可能となり、回路の標準化が可能となる。  Since the BMS circuit is unnecessary, the cost is reduced, the size and weight are reduced, and the circuit power consumption is reduced. By connecting in parallel, the battery voltage can be unified with the voltage of a single cell, so that the battery capacity can be increased without changing the circuit, and the circuit can be standardized.

次に本発明の実施の形態について説明する。図1は本発明に係る、蓄電装置を用いた太陽光発電装置を電源に用いた照明装置の一例を示すブロック図である。この照明装置は、太陽電池による発電電力をDC−DCコンバータにより定電流に変換して、マンガン系リチウム二次電池に蓄えて、その電力をLED夜間照明に利用する。  Next, an embodiment of the present invention will be described. FIG. 1 is a block diagram illustrating an example of a lighting device using a photovoltaic power generation device using a power storage device as a power source according to the present invention. This lighting device converts power generated by a solar cell into a constant current by a DC-DC converter, stores it in a manganese-based lithium secondary battery, and uses the power for LED night illumination.

ここでは、電池としてマンガン系リチウムイオン二次電池を用い、セルは並列接続する。DC/DCコンバータは電気的に絶縁あるいは非絶縁の回路構成で、VとVの比は図2に示す従来の蓄電システムに比較すると大きい。Here, a manganese-based lithium ion secondary battery is used as the battery, and the cells are connected in parallel. The DC / DC converter has an electrically insulated or non-insulated circuit configuration, and the ratio of V 1 and V 2 is larger than that of the conventional power storage system shown in FIG.

しかし、DC/DCコンバータを構成する低損失な電力用半導体スイッチ(Si−MOSFET、SiC−MOFFET、GaN‐FETなど)を高周波で動作するため電王比が高くてもDC/DCコンバータの損失増加の影響は少ない。また、並列接続では電池電圧はセル単体の電圧であり、直列接続よりも低い電圧で、よりオン抵抗の低いFETを選択出来るため低損失が望める。  However, the low loss power semiconductor switches (Si-MOSFET, SiC-MOFFET, GaN-FET, etc.) constituting the DC / DC converter operate at a high frequency, so that the loss of the DC / DC converter increases even if the power ratio is high. The impact is small. In parallel connection, the battery voltage is the voltage of a single cell, and it is possible to select a FET with lower voltage and lower on-resistance than in series connection, so low loss can be expected.

したがって、電池とDC/DCコンバータの損失合計は、図2に比べて図1のほうが同等以下に少なくでき、BMS、保護回路削減も影響して蓄電システムの小型軽量化、低コスト化が可能になる。電池セルを並列して使用するため信頼性を改善でき、無停電電源などの高信頼性を必要とするシステムや装置への適用も有効となる。  Therefore, the total loss of the battery and the DC / DC converter can be reduced to the same or lower level in FIG. 1 than in FIG. 2, and the storage system can be reduced in size and weight and cost can be reduced by reducing BMS and protection circuit. Become. Since the battery cells are used in parallel, the reliability can be improved, and the application to systems and devices that require high reliability such as an uninterruptible power supply is also effective.

以上に説明したように、本発明によれば、コンパクトで信頼性の高い、自然エネルギーを電気に変換して蓄電する装置を提供でき、太陽光発電などの利用を促進できる。なお、本発明は、前期実施の形態に限定されるものではなく、本発明の分野における通常の知識を有するものであれば想到し得る、各種変形、修正を含む、本発明の要旨を逸脱しない範囲の設計変更であっても、本発明に含まれることは無論である。  As described above, according to the present invention, a compact and highly reliable device for storing natural energy by converting it into electricity can be provided, and the use of solar power generation or the like can be promoted. It should be noted that the present invention is not limited to the previous embodiment, and does not depart from the gist of the present invention, including various modifications and corrections that can be conceived as long as they have ordinary knowledge in the field of the present invention. Needless to say, even a design change in the range is included in the present invention.

蓄電装置を用いた太陽光発電装置を電源に用いた照明装置の一例を示す図である。It is a figure which shows an example of the illuminating device using the solar power generation device using an electrical storage apparatus as a power supply. 従来の蓄電システムの図である。It is a figure of the conventional electrical storage system.

Claims (4)

太陽光発電装置と、DC−DCコンバータと、リチウムイオン電池を有する蓄電装置において、前記DC−DCコンバータは、昇降圧チョッパとCPUを備え、前記太陽光発電装置の制御、前記リチウムイオン電池の充電制御及び放電制御を、前記CPU制御の切替により、行うことを特徴とする、蓄電装置。  In a power storage device including a solar power generation device, a DC-DC converter, and a lithium ion battery, the DC-DC converter includes a step-up / step-down chopper and a CPU, controls the solar power generation device, and charges the lithium ion battery. A power storage device that performs control and discharge control by switching the CPU control. 前記リチウムイオン電池は、正極材料に、スピネル型構造またはオリビン型構造の少なくともいずれかを有する活物質を使用した、単セルリチウムイオン二次電池を、複数箇並列に接続してなることを特徴とする、請求項1に記載の蓄電装置。  The lithium ion battery is characterized in that a plurality of single cell lithium ion secondary batteries using an active material having at least one of a spinel structure or an olivine structure as a positive electrode material are connected in parallel. The power storage device according to claim 1. 前記リチウム電池は、複数箇並列に接続してなる前記単セルリチウム二次電池のいずれかが不具合を起こした場合、不具合を起こした前記単セルリチウム二次電池のみを、切り離して連続動作し続ける構造を有することを特徴とする、請求項1または請求項2に記載の蓄電装置。  If any of the single-cell lithium secondary batteries connected in parallel is defective, only the single-cell lithium secondary battery that has failed is disconnected and continuously operated. The power storage device according to claim 1, wherein the power storage device has a structure. 前記蓄電装置のDC−DCコンバータ高圧側の直流系統は、前記太陽光発電装置の出力または直流負荷のいずれかに接続することが可能で、接続状態は、スイッチにより切り替えることが可能であることを特徴とする、請求項1ないし請求項3のいずれかに記載の蓄電装置。  The DC system on the high voltage side of the DC-DC converter of the power storage device can be connected to either the output of the photovoltaic power generation device or a DC load, and the connection state can be switched by a switch. The power storage device according to any one of claims 1 to 3, wherein the power storage device is characterized.
JP2016017517A 2016-01-14 2016-01-14 Power storage device Pending JP2017127173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017517A JP2017127173A (en) 2016-01-14 2016-01-14 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017517A JP2017127173A (en) 2016-01-14 2016-01-14 Power storage device

Publications (1)

Publication Number Publication Date
JP2017127173A true JP2017127173A (en) 2017-07-20

Family

ID=59365327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017517A Pending JP2017127173A (en) 2016-01-14 2016-01-14 Power storage device

Country Status (1)

Country Link
JP (1) JP2017127173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890169B1 (en) * 2018-01-08 2018-08-21 셀라이텍코리아(주) Power-Supply of Solar Cell-LED Street Lamp with Battery-Rejuvenator
CN110165768A (en) * 2019-06-21 2019-08-23 国核电力规划设计研究院重庆有限公司 A kind of accumulator capacity configuration system and method based on light storage intelligent micro-grid
CN112423444A (en) * 2020-09-10 2021-02-26 高邮市新世纪灯具城经营管理有限公司 Solar street lamp control system based on singlechip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049915A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
WO2012049963A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power system comprising storage batteries
JP2014108052A (en) * 2012-11-29 2014-06-09 Samsung Sdi Co Ltd Battery management device and energy storage system
WO2014111999A1 (en) * 2013-01-17 2014-07-24 ソニー株式会社 Electrical storage apparatus and startup method
JP2015037013A (en) * 2013-08-12 2015-02-23 住友電気工業株式会社 Self-heating apparatus for storage battery, self-heating method therefor, and power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049915A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
WO2012049963A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power system comprising storage batteries
JP2014108052A (en) * 2012-11-29 2014-06-09 Samsung Sdi Co Ltd Battery management device and energy storage system
WO2014111999A1 (en) * 2013-01-17 2014-07-24 ソニー株式会社 Electrical storage apparatus and startup method
JP2015037013A (en) * 2013-08-12 2015-02-23 住友電気工業株式会社 Self-heating apparatus for storage battery, self-heating method therefor, and power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890169B1 (en) * 2018-01-08 2018-08-21 셀라이텍코리아(주) Power-Supply of Solar Cell-LED Street Lamp with Battery-Rejuvenator
CN110165768A (en) * 2019-06-21 2019-08-23 国核电力规划设计研究院重庆有限公司 A kind of accumulator capacity configuration system and method based on light storage intelligent micro-grid
CN112423444A (en) * 2020-09-10 2021-02-26 高邮市新世纪灯具城经营管理有限公司 Solar street lamp control system based on singlechip

Similar Documents

Publication Publication Date Title
JP5279147B2 (en) Grid-connected power storage system and control method of power storage system
KR101097260B1 (en) Grid-connected energy storage system and method for controlling grid-connected energy storage system
US9865901B2 (en) Battery system and method for connecting a battery to the battery system
US8482155B2 (en) Power converting device for renewable energy storage system
KR101074785B1 (en) A battery management system and control method thereof, and energy storage system including the battery management system
US9082897B2 (en) Solar power storage module, and solar power storage system and solar power supply system having same
US20110181245A1 (en) Unitized charging and discharging battery management system and programmable battery management module thereof
JP5660130B2 (en) Storage unit, method for correcting capacity value of storage battery, and storage system
US9269989B2 (en) Electric power supply system
US20160241057A1 (en) Multiple parallel energy storage system and controlling method of the same
US20140152100A1 (en) Power storage system and driving method thereof
EP4068564B1 (en) Energy storage system
US8957545B2 (en) Prioritization circuit and electric power supply system
CN102780240A (en) Hybrid electric storage device used for storing solar energy
JP2017127173A (en) Power storage device
US20090284217A1 (en) Solar power charging device with self-protection function
WO2012133186A1 (en) Switch circuit control unit, and charging and discharging system
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
KR101572923B1 (en) Battery system
WO2013005804A1 (en) Switching device
EP2120311A1 (en) Solar power charging device with self-protection function
JP5694012B2 (en) Power storage system
CN217427757U (en) Inverter and power supply circuit thereof
TWI755107B (en) energy storage system
JP2016086597A (en) Charge/discharge power generation panel and charge-discharge power generation system including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109