JP2017091818A - Electrode material, method for producing electrode material, electrode, and electricity storage device - Google Patents

Electrode material, method for producing electrode material, electrode, and electricity storage device Download PDF

Info

Publication number
JP2017091818A
JP2017091818A JP2015220790A JP2015220790A JP2017091818A JP 2017091818 A JP2017091818 A JP 2017091818A JP 2015220790 A JP2015220790 A JP 2015220790A JP 2015220790 A JP2015220790 A JP 2015220790A JP 2017091818 A JP2017091818 A JP 2017091818A
Authority
JP
Japan
Prior art keywords
carbon material
lithium
lithium vanadate
electrode
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015220790A
Other languages
Japanese (ja)
Other versions
JP6678012B2 (en
Inventor
勝彦 直井
Katsuhiko Naoi
勝彦 直井
和子 直井
Kazuko Naoi
和子 直井
賢次 玉光
Kenji Tamamitsu
賢次 玉光
修一 石本
Shuichi Ishimoto
修一 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Tokyo University of Agriculture and Technology NUC
K and W Ltd
Original Assignee
Nippon Chemi Con Corp
Tokyo University of Agriculture and Technology NUC
K and W Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp, Tokyo University of Agriculture and Technology NUC, K and W Ltd filed Critical Nippon Chemi Con Corp
Priority to JP2015220790A priority Critical patent/JP6678012B2/en
Publication of JP2017091818A publication Critical patent/JP2017091818A/en
Application granted granted Critical
Publication of JP6678012B2 publication Critical patent/JP6678012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material having high charge/discharge capacity, a method for producing an electrode material, an electrode, and an electricity storage device.SOLUTION: A method for producing an electrode material includes: a mixing step of preparing a mixed solution in which a metal particle source including a vanadium source and a lithium source, a conductive carbon material, a complex ligand, and a polymerization agent are mixed; a dispersion step of allowing the metal particle source to adhere to the surface of the carbon material to form a precursor of lithium vanadate; a polymer chain formation step of forming a polymer chain to a precursor of lithium vanadate adhering to the carbon material; a removal step of heating the carbon material to which a precursor of lithium vanadate having a polymer chain formed thereon adheres and removing a polymer chain; and a crystallization step of firing the carbon material to which a precursor of lithium vanadate adheres to obtain a composite material of lithium vanadate and the carbon material.SELECTED DRAWING: Figure 4

Description

本発明は、例えばリチウムイオン電池に用いられる電極材料、電極材料の製造方法、電極、および蓄電デバイスに関する。   The present invention relates to an electrode material used for, for example, a lithium ion battery, an electrode material manufacturing method, an electrode, and an electricity storage device.

従来より、電気化学素子負極用のリチウム吸蔵、放出活物質として、グラファイトやハードカーボン等の炭素材料が負極に使用されている。しかし、これらの炭素材料を用いた負極の電位は、金属リチウムの電位に近い電位でリチウムを吸蔵する。そのため、低温環境下において負極上に金属リチウムが析出し、デンドライト結晶が成長するおそれがある。デンドライト結晶が成長すると、電極間における内部短絡や、電解液の還元等を引き起こすことが懸念されている。   Conventionally, carbon materials such as graphite and hard carbon have been used for negative electrodes as lithium storage and release active materials for electrochemical element negative electrodes. However, the negative electrode using these carbon materials occludes lithium at a potential close to that of metallic lithium. Therefore, there is a possibility that metallic lithium is deposited on the negative electrode in a low temperature environment and dendrite crystals grow. When the dendrite crystal grows, there is a concern that it may cause an internal short circuit between the electrodes, reduction of the electrolyte, or the like.

そこで、近年では、金属リチウムの電位に対して1.5Vでリチウムを吸蔵・放出するチタン酸リチウムが注目されている。このようなチタン酸リチウムは、リチウムの析出や電解液の分解などの副反応が生じにくい。また、チタン酸リチウムは、リチウムイオンの挿入・離脱に伴う体積変化が少なく、容量劣化が起きにくいという特徴がある。ただし、チタン酸リチウムを負極として用いる場合には、電位が高いことからキャパシタを高電圧化するには限界がある。また、チタン酸リチウムの容量は、200mAh/g以下であり、高容量化にも限界がある。   Therefore, in recent years, lithium titanate that absorbs and releases lithium at 1.5 V with respect to the potential of metallic lithium has attracted attention. Such lithium titanate is less susceptible to side reactions such as lithium deposition and electrolyte decomposition. In addition, lithium titanate has a feature that there is little volume change due to insertion / extraction of lithium ions, and capacity deterioration hardly occurs. However, when lithium titanate is used as the negative electrode, there is a limit to increasing the voltage of the capacitor because the potential is high. The capacity of lithium titanate is 200 mAh / g or less, and there is a limit to increasing the capacity.

特開2010−20912号公報JP 2010-20912 A

従って、黒鉛等の炭素材料やチタン酸リチウムより容量が大きな材料であることが好ましい。このような特性を持つ材料が、電極材料として、特に負極に応用されることが望まれていた。   Accordingly, a material having a larger capacity than a carbon material such as graphite or lithium titanate is preferable. It has been desired that a material having such characteristics be applied as an electrode material, particularly to the negative electrode.

本発明は、上記課題を解決するために提案されたものであり、その目的は、高い充放電容量を有する電極材料、電極材料の製造方法、電極、および蓄電デバイスを提供することにある。   The present invention has been proposed to solve the above-described problems, and an object thereof is to provide an electrode material having a high charge / discharge capacity, a method for producing the electrode material, an electrode, and an electricity storage device.

本発明者らは、上記課題を解決すべく種々の検討を重ねた結果、LiVOをはじめとする金属源と、炭素材料とを混合し、金属源にポリマー鎖を形成した後に焼成処理を施すことで、炭素材料上に微細な金属粒子が均一に担持されることを見出した。この金属粒子が担持された炭素材料を用いることにより、比較的高い充放電電位および充放電容量を有する電極材料が得られることを見出し、本発明を完成するに至った。 As a result of various studies to solve the above problems, the present inventors have mixed a metal source such as Li 3 VO 4 and a carbon material, and formed a polymer chain on the metal source, followed by firing treatment. It has been found that fine metal particles are uniformly supported on the carbon material by applying. It has been found that an electrode material having a relatively high charge / discharge potential and charge / discharge capacity can be obtained by using the carbon material carrying the metal particles, and the present invention has been completed.

すなわち、本発明に係る電極材料の製造方法は、バナジウム源とリチウム源を含む金属粒子源と、導電性炭素材料と、錯体配位子と、重合剤とが混合された混合溶液を作製する混合工程と、前記炭素材料の表面に前記金属粒子源を付着させ、バナジン酸リチウムの前駆体を生成する分散工程と、前記炭素材料上に付着したバナジン酸リチウムの前駆体にポリマー鎖を形成するポリマー鎖形成工程と、ポリマー鎖を形成したバナジン酸リチウムの前駆体が付着した前記炭素材料を加熱し、ポリマー鎖を除去する除去工程と、バナジン酸リチウムの前駆体が付着した前記炭素材料を焼成し、バナジン酸リチウムと前記炭素材料の複合材料を得る結晶化工程と、を有する。   That is, the method for producing an electrode material according to the present invention is a method for producing a mixed solution in which a metal particle source including a vanadium source and a lithium source, a conductive carbon material, a complex ligand, and a polymerization agent are mixed. A step of depositing the metal particle source on the surface of the carbon material to produce a lithium vanadate precursor, and a polymer forming a polymer chain on the lithium vanadate precursor deposited on the carbon material Heating the carbon material to which the precursor of lithium vanadate that has formed a polymer chain is attached, removing the polymer chain, and firing the carbon material to which the precursor of lithium vanadate is attached. And a crystallization step of obtaining a composite material of lithium vanadate and the carbon material.

また、本発明に係る電極材料は導電性炭素材料の表面にバナジン酸リチウムが担持され、バナジン酸リチウムの金属粒子の大きさが100nm以下であることを特徴とする。   The electrode material according to the present invention is characterized in that lithium vanadate is supported on the surface of a conductive carbon material, and the size of the metal particles of lithium vanadate is 100 nm or less.

以上のような電極材料を用いて形成された電極、およびその電極を備えた蓄電デバイスも、本発明の一態様である。   An electrode formed using the electrode material as described above and an electricity storage device including the electrode are also one embodiment of the present invention.

本発明によれば、高い充放電容量を有する電極材料、電極材料の製造方法、電極、および蓄電デバイスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode material which has high charging / discharging capacity | capacitance, the manufacturing method of an electrode material, an electrode, and an electrical storage device can be provided.

本発明の電極材料を製造するための電気化学素子反応に用いる反応器の1例である。It is an example of the reactor used for the electrochemical element reaction for manufacturing the electrode material of this invention. 製造工程における炭素材料および金属粒子の状態を説明する模式図であり、(a)は混合工程、(b)はポリマー鎖形成工程、(c)は結晶化工程を示す。It is a schematic diagram explaining the state of the carbon material and metal particle in a manufacturing process, (a) shows a mixing process, (b) shows a polymer chain formation process, (c) shows a crystallization process. 実施例の電極材料の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the electrode material of an Example. 実施例の電極材料のHRTEM像(×30k)である。It is a HRTEM image (x30k) of the electrode material of an Example. 実施例の電極材料のHRTEM像(×500k)である。It is a HRTEM image (x500k) of the electrode material of an Example. 領域1において、粒子の大きさと粒子数を計測した結果を示すHRTEM像である。3 is an HRTEM image showing the result of measuring the size and number of particles in region 1. 領域2において、粒子の大きさと粒子数を計測した結果を示すHRTEM像である。5 is an HRTEM image showing the result of measuring the size and number of particles in region 2. 領域3において、粒子の大きさと粒子数を計測した結果を示すHRTEM像である。4 is an HRTEM image showing the result of measuring the size and number of particles in region 3. 領域1〜3において粒子数を計測した結果を示すグラフである。It is a graph which shows the result of having measured the number of particles in fields 1-3. 実施例および比較例の電極材料を用いて作製したセルの、活物質あたりの充放電容量を示すグラフである。It is a graph which shows the charging / discharging capacity | capacitance per active material of the cell produced using the electrode material of an Example and a comparative example.

[1.構成]
以下、本発明に係る電極材料および電極材料を用いた電極の実施形態について詳細に説明する。
[1. Constitution]
Hereinafter, embodiments of an electrode material and an electrode using the electrode material according to the present invention will be described in detail.

(1)電極材料
電極材料は、金属粒子と導電性炭素材料を含む。電極材料は、炭素材料の表面に微細な金属粒子が均一に担持されている材料である。金属粒子は炭素材料と複合化されており、炭素材料の表面に金属粒子が結合している。結合とは、単に炭素材料と金属粒子が接触している状態ではなく、金属粒子が炭素材料上において結晶化することにより構造を共有化している状態を意味する。
(1) Electrode material The electrode material includes metal particles and a conductive carbon material. The electrode material is a material in which fine metal particles are uniformly supported on the surface of a carbon material. The metal particles are compounded with the carbon material, and the metal particles are bonded to the surface of the carbon material. The bond means not a state where the carbon material and the metal particles are in contact but a state where the metal particles are crystallized on the carbon material to share the structure.

金属粒子は、バナジン酸リチウム(LiVO)である。バナジン酸リチウムは、金属リチウムの電位に対する電位が、例えば黒鉛より高く、チタン酸リチウムより低い材料である。具体的には、電位がLi/Liに対し、約1Vである。また、バナジン酸リチウムは、容量が黒鉛やチタン酸リチウムより大きい材料である。バナジン酸リチウムの理論容量は、約600mAh/gである。 The metal particles are lithium vanadate (Li 3 VO 4 ). Lithium vanadate is a material that has a potential higher than that of, for example, graphite and lower than that of lithium titanate, relative to the potential of metallic lithium. Specifically, the potential is about 1 V with respect to Li / Li + . Further, lithium vanadate is a material having a capacity larger than that of graphite or lithium titanate. The theoretical capacity of lithium vanadate is about 600 mAh / g.

バナジン酸リチウムは微細なナノ粒子であり、炭素材料の表面に分散して、均一に担持されている。バナジン酸リチウムの金属粒子は、凝集体を形成することもあるが、凝集体であっても微細な粒子として存在している。具体的には、金属粒子の凝集体の大きさは100nm以下であり、特に好ましくは50nm以下である。また、金属粒子の約80%以上が、30nm以下の微細なナノ粒子である。このようにナノ粒子化された微細な金属粒子は、粒子内部においても反応が生じやすく、リチウムイオンの拡散経路が短縮される。したがって、活物質の利用率が向上し、発現容量が拡大する。また、バナジン酸リチウムの面積あたりの粒子数は、50〜200個/900nmであることが好ましい。すなわち、バナジン酸リチウムは、炭素材料の表面に高い分散度で分散している。 Lithium vanadate is a fine nanoparticle and is dispersed and uniformly supported on the surface of the carbon material. The metal particles of lithium vanadate may form an aggregate, but even the aggregate exists as fine particles. Specifically, the size of the aggregate of metal particles is 100 nm or less, and particularly preferably 50 nm or less. Further, about 80% or more of the metal particles are fine nanoparticles of 30 nm or less. The fine metal particles that have been made into nanoparticles in this way are likely to react even inside the particles, and the diffusion path of lithium ions is shortened. Therefore, the utilization factor of the active material is improved and the expression capacity is expanded. The number of particles per area of lithium vanadate is preferably 50 to 200/900 nm 2 . That is, lithium vanadate is dispersed with a high degree of dispersion on the surface of the carbon material.

以上のような電極材料では、炭素材料と金属粒子が複合化され、炭素材料により電子パスが構築されるとともに、金属粒子の粒子成長が抑制される。したがって、電気伝導性が向上し、電極に用いた場合に出入力特性が向上される。金属粒子は、金属粒子源と炭素材料を混合し、金属粒子源にポリマー鎖を形成した後に焼成処理を施すことで炭素材料上に担持される。   In the electrode material as described above, the carbon material and the metal particles are combined, an electron path is constructed by the carbon material, and the particle growth of the metal particles is suppressed. Therefore, the electrical conductivity is improved, and the input / output characteristics are improved when used for electrodes. The metal particles are supported on the carbon material by mixing the metal particle source and the carbon material, forming a polymer chain in the metal particle source, and performing a baking treatment.

(金属粒子源)
焼成処理によりバナジン酸リチウムとなる金属粒子源は、バナジウム源とリチウム源を含む。バナジウム源とリチウム源は、モル比でLi:V=3:1となるように混合する。バナジウム源は、金属バナジウムとバナジウム含有化合物を含む。バナジウム含有化合物としては、メタバナジン酸塩(NHVO、NaVO3、KVO等)、酸化バナジウム(V、V、V、V)、バナジウム(III)アセチルアセトナート、バナジウム(IV)オキシアセチルアセトナート、オキシ三塩化バナジウム、四塩化バナジウム、三塩化バナジウム、ポリバナジン酸塩等を用いることができる。リチウム源としては、水酸化リチウム、水酸化リチウム水和物、酢酸リチウム、硝酸リチウム、炭酸リチウム、塩化リチウム、乳酸リチウム等のリチウム含有化合物を用いることができる。
(Metal particle source)
The metal particle source that becomes lithium vanadate by the baking treatment includes a vanadium source and a lithium source. The vanadium source and the lithium source are mixed so that the molar ratio is Li: V = 3: 1. The vanadium source includes metal vanadium and a vanadium-containing compound. Examples of vanadium-containing compounds include metavanadate (NH 4 VO 3 , NaVO 3, KVO 3, etc.), vanadium oxide (V 2 O 5 , V 2 O 4 , V 2 O 3 , V 3 O 4 ), vanadium (III ) Acetylacetonate, vanadium (IV) oxyacetylacetonate, vanadium oxytrichloride, vanadium tetrachloride, vanadium trichloride, polyvanadate and the like can be used. As the lithium source, lithium-containing compounds such as lithium hydroxide, lithium hydroxide hydrate, lithium acetate, lithium nitrate, lithium carbonate, lithium chloride, and lithium lactate can be used.

(炭素材料)
炭素材料は導電性を有し、特にカーボンナノチューブなどの繊維構造を有する繊維状炭素を好適に用いることができる。カーボンナノチューブは、単層カーボンナノチューブ(SWCNT)及び多層カーボンナノチューブ(MWCNT)の何れでもよい。他にも、中空シェル構造のカーボンブラックであるケッチェンブラック、アセチレンブラック等のカーボンブラック、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、活性炭、メソポーラス炭素のうちの一種又は複数種類を混合して使用することができる。炭素材料が繊維構造を有する場合(例えば、CNT、カーボンナノファイバ(CNF)や気相成長カーボンファイバ(VGCF))、繊維構造の分散及び均質化を目的として超高圧分散処理を施したものを使用しても良い。なかでも粒子径がナノサイズの炭素材料が好ましい。
(Carbon material)
The carbon material has electrical conductivity, and fibrous carbon having a fiber structure such as carbon nanotubes can be preferably used. The carbon nanotube may be either a single-walled carbon nanotube (SWCNT) or a multi-walled carbon nanotube (MWCNT). In addition, one or more of carbon blacks such as ketjen black and acetylene black, which are hollow shell carbon blacks, amorphous carbon, carbon fiber, natural graphite, artificial graphite, activated carbon, and mesoporous carbon are mixed. Can be used. When the carbon material has a fiber structure (for example, CNT, carbon nanofiber (CNF) or vapor-grown carbon fiber (VGCF)), one that has been subjected to ultra-high pressure dispersion treatment for the purpose of dispersion and homogenization of the fiber structure You may do it. Among these, a carbon material having a nano-sized particle size is preferable.

上記の金属粒子源は、錯体重合によりポリマー鎖が形成される。金属粒子源と炭素材料には、錯体重合のための錯体配位子と重合剤が混合される。   In the metal particle source, a polymer chain is formed by complex polymerization. A complex ligand and a polymerizing agent for complex polymerization are mixed in the metal particle source and the carbon material.

(錯体配位子)
錯体配位子としては、複数のカルボキシル基を有する有機化合物を用いる。例えば、トリカルボン酸のクエン酸を用いることが好ましい。他には、シュウ酸、マロン酸、コハク酸などのジカルボン酸を用いても良い。
(Complex ligand)
As the complex ligand, an organic compound having a plurality of carboxyl groups is used. For example, it is preferable to use tricarboxylic acid citric acid. In addition, dicarboxylic acids such as oxalic acid, malonic acid, and succinic acid may be used.

(重合剤)
重合剤としては、複数のヒドロキシル基を有するアルコールを用いる。例えば、エチレングリコールを用いることが好ましい。他には、プロピレングリコールなどの他の2価のアルコール、またはグリセリンなどの3価のアルコールを用いても良い。
(Polymerizer)
As the polymerization agent, an alcohol having a plurality of hydroxyl groups is used. For example, it is preferable to use ethylene glycol. In addition, other dihydric alcohols such as propylene glycol or trivalent alcohols such as glycerin may be used.

(2)電極
上記の本実施形態の電極材料は、正極及び負極にそれぞれ金属化合物を用いたリチウムイオン二次電池や、正極に活性炭、負極にリチウムイオンを可逆的に吸着/脱着可能な材料を用いたリチウムイオンキャパシタ等の蓄電デバイスに用いることができる。特に、リチウムイオン二次電池の負極のために好適に用いることができる。例えば、蓄電デバイスとして、正極と、上記電極材料を含む活物質層を有する負極と、負極と正極との間に配置された非水系電解液を保持したセパレータとを備えたリチウムイオン二次電池を提供することができる。
(2) Electrode The electrode material of the present embodiment includes a lithium ion secondary battery using a metal compound for each of the positive electrode and the negative electrode, and a material capable of reversibly adsorbing / desorbing lithium ions on the positive electrode and activated carbon on the positive electrode. It can be used for power storage devices such as the lithium ion capacitor used. In particular, it can be suitably used for a negative electrode of a lithium ion secondary battery. For example, as an electricity storage device, a lithium ion secondary battery including a positive electrode, a negative electrode having an active material layer containing the above electrode material, and a separator holding a non-aqueous electrolyte disposed between the negative electrode and the positive electrode Can be provided.

電極材料を、バインダーと混合および混練した後シート状に成形し、これを集電体に接合することで電極が形成される。電極材料とバインダーの混合液をドクターブレード法等によって集電体上に塗工し、乾燥することで電極を形成しても良い。また、電極材料を所定形状に成形し、集電体上に圧着することで電極を形成することもできる。   The electrode material is mixed and kneaded with a binder, then formed into a sheet shape, and this is joined to a current collector to form an electrode. An electrode may be formed by applying a mixed solution of an electrode material and a binder onto a current collector by a doctor blade method or the like and drying. Moreover, an electrode can also be formed by shape | molding electrode material into a predetermined shape and crimping | bonding it on a collector.

集電体としては、アルミニウム、銅、鉄、ニッケル、チタン、鋼、カーボン等の導電材料を使用することができる。特に、アルミニウムおよび銅を用いることが好ましい。高い熱伝導性と電子伝導性とを有しているからである。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状等の任意の形状を採用することができる。   As the current collector, conductive materials such as aluminum, copper, iron, nickel, titanium, steel, and carbon can be used. In particular, it is preferable to use aluminum and copper. This is because it has high thermal conductivity and electronic conductivity. As the shape of the current collector, any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.

バインダーとしては、例えばフッ素系ゴム,ジエン系ゴム,スチレン系ゴム等のゴム類、ポリテトラフルオロエチレン,ポリフッ化ビニリデン等の含フッ素ポリマー、カルボキシメチルセルロース,ニトロセルロース等のセルロース、その他、ポリオレフィン樹脂、ポリイミド樹脂,アクリル樹脂、ニトリル樹脂、ポリエステル樹脂、フェノール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、エポキシ樹脂などを挙げることができる。これらのバインダーは、単独で使用しても良く、2種以上を混合して使用しても良い。   Examples of binders include rubbers such as fluorine rubber, diene rubber, and styrene rubber, fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride, cellulose such as carboxymethyl cellulose and nitrocellulose, other polyolefin resins, polyimides Examples thereof include resins, acrylic resins, nitrile resins, polyester resins, phenol resins, polyvinyl acetate resins, polyvinyl alcohol resins, and epoxy resins. These binders may be used alone or in combination of two or more.

[2.電極材料の製造方法]
上記のような本実施形態の電極材料の製造方法は、以下の工程を含む。
(1)バナジウム源とリチウム源を含む金属粒子源、導電性炭素材料、錯体配位子、および重合剤とが混合された混合溶媒を作製する混合工程
(2)炭素材料の表面に金属粒子源を付着させ、バナジン酸リチウムの前駆体を生成する分散工程
(3)炭素材料上に付着したバナジン酸リチウムの前駆体にポリマー鎖を形成するポリマー鎖形成工程
(4)ポリマー鎖を形成したバナジン酸リチウムの前駆体が付着した炭素材料を加熱し、ポリマー鎖を除去する除去工程
(5)バナジン酸リチウムの前駆体が付着した炭素材料を焼成し、バナジン酸リチウムと炭素材料の複合材料を得る結晶化工程
[2. Method for manufacturing electrode material]
The manufacturing method of the electrode material of this embodiment as described above includes the following steps.
(1) Mixing step of preparing a mixed solvent in which a metal particle source including a vanadium source and a lithium source, a conductive carbon material, a complex ligand, and a polymerization agent are mixed. (2) A metal particle source on the surface of the carbon material. (3) A polymer chain forming step for forming a polymer chain on a lithium vanadate precursor deposited on a carbon material (4) A vanadic acid having a polymer chain formed thereon Removal step of heating the carbon material to which the lithium precursor is attached and removing the polymer chain (5) A crystal in which the carbon material to which the lithium vanadate precursor is attached is fired to obtain a composite material of lithium vanadate and the carbon material Process

(1)混合工程
混合工程では、バナジウム源とリチウム源を含む金属粒子源、炭素材料、錯体配位子、および重合剤を溶媒に添加し、混合溶液を作製する。溶媒に添加する材料の組成比は、例えば金属粒子源10〜20mol%、錯体配位子10〜20mol%、重合剤40〜80mol%とすることができる。また、金属粒子源と炭素材料の重量比は、80:20〜60:40とすると良い。溶媒は水を用いるが、イソプロピルアルコール等のアルコール類を用いても良い。他にも、例えば重合剤であるエチレングリコール溶液中に他の材料を添加しても良い。
(1) Mixing step In the mixing step, a metal particle source including a vanadium source and a lithium source, a carbon material, a complex ligand, and a polymerization agent are added to a solvent to prepare a mixed solution. The composition ratio of the material added to the solvent can be, for example, 10 to 20 mol% of the metal particle source, 10 to 20 mol% of the complex ligand, and 40 to 80 mol% of the polymerization agent. The weight ratio between the metal particle source and the carbon material is preferably 80:20 to 60:40. Water is used as the solvent, but alcohols such as isopropyl alcohol may be used. In addition, other materials may be added to, for example, an ethylene glycol solution that is a polymerization agent.

各材料が添加された水溶液を撹拌手段により混合することで、金属粒子源と錯体配位子により金属錯体が形成される。また、混合時において、一部の金属配位子のカルボキシル基と、一部の重合剤のヒドロキシル基との間でエステル化反応が起こり、ポリマー鎖が形成される。混合工程では、複数の水溶液を作製後、それらの溶液を混合することで上記の材料が添加された水溶液を得ても良い。例えば、金属粒子源と錯体配位子のみを水に添加して混合することで、金属錯体の形成を促すことができる。この水溶液を、例えばエチレングリコール水溶液と混合した後に、炭素材料を添加することもできる。撹拌手段は、マグネチックスターラー、電気モータ式撹拌機、エアモータ式撹拌機等を用いる。   A metal complex is formed by the metal particle source and the complex ligand by mixing the aqueous solution to which each material is added with a stirring means. Further, at the time of mixing, an esterification reaction occurs between the carboxyl groups of some metal ligands and the hydroxyl groups of some polymerizing agents, and a polymer chain is formed. In the mixing step, after preparing a plurality of aqueous solutions, an aqueous solution to which the above materials are added may be obtained by mixing the solutions. For example, formation of a metal complex can be promoted by adding only the metal particle source and the complex ligand to water and mixing them. The carbon material can be added after this aqueous solution is mixed with, for example, an aqueous ethylene glycol solution. As the stirring means, a magnetic stirrer, an electric motor type stirrer, an air motor type stirrer or the like is used.

(2)分散工程
分散工程では、炭素材料の表面に金属粒子源を付着させる。炭素材料の表面に金属粒子源を付着させる手法としては、メカノケミカル処理が挙げられる。メカノケミカル処理は、旋回する反応容器等を用いてずり応力や遠心力等の機械的エネルギーを与える処理である。メカノケミカル処理は、超遠心力処理(Ultra-Centrifugal force processing method:以下、UC処理という)等、ずり応力、遠心力、その他の機械的エネルギーを加えることができればよい。要するに、機械的エネルギーによって、炭素材料に金属粒子源を付着させ、炭素材料の表面上にバナジン酸リチウムの前駆体を生成できればよい。メカノケミカル処理は、金属粒子源及び炭素材料の微細化と高分散化処理を兼ねることもできる。
(2) Dispersing step In the dispersing step, a metal particle source is attached to the surface of the carbon material. A mechanochemical process is mentioned as a method of attaching a metal particle source to the surface of a carbon material. The mechanochemical treatment is a treatment for applying mechanical energy such as shear stress or centrifugal force using a rotating reaction vessel or the like. In the mechanochemical treatment, it is only necessary to apply shear stress, centrifugal force, and other mechanical energy such as ultra-centrifugal force processing method (hereinafter referred to as UC treatment). In short, it is only necessary that a metal particle source is attached to a carbon material by mechanical energy to generate a precursor of lithium vanadate on the surface of the carbon material. The mechanochemical treatment can also serve as a metal particle source and carbon material refinement and high dispersion treatment.

UC処理について図1を参照して説明する。図1に示す反応器は、開口部にせき板1−2を有する外筒1と、貫通孔2−1を有し旋回する内筒2からなる。この反応器の内筒2内部に反応物を投入し、内筒2を旋回することによってその遠心力で内筒2内部の反応物が内筒2の貫通孔2−1を通って外筒1の内壁1−3に移動する。この時反応物は内筒2の遠心力によって外筒1の内壁1−3に衝突し、薄膜状となって内壁1−3の上部へずり上がる。この状態では反応物には内壁1−3との間のずり応力と内筒2からの遠心力の双方が同時に加わり、薄膜状の反応物に大きな機械的エネルギーが加わることになる。この機械的なエネルギーが反応に必要な化学エネルギー、いわゆる活性化エネルギーに転化するものと思われる。これにより、短時間で反応が進行する。機械的エネルギーの満足する付与のためには、1500N(kgms−2)以上の遠心力を発生させることが望ましい。好ましくは60000N(kgms−2)以上である。 The UC process will be described with reference to FIG. The reactor shown in FIG. 1 includes an outer cylinder 1 having a cough plate 1-2 at an opening and an inner cylinder 2 having a through hole 2-1 and swirling. By putting the reactant into the inner cylinder 2 of this reactor and turning the inner cylinder 2, the reactant inside the inner cylinder 2 passes through the through-hole 2-1 of the inner cylinder 2 by the centrifugal force. Move to the inner wall 1-3. At this time, the reaction product collides with the inner wall 1-3 of the outer cylinder 1 by the centrifugal force of the inner cylinder 2, and forms a thin film and slides up to the upper part of the inner wall 1-3. In this state, both the shear stress between the inner wall 1-3 and the centrifugal force from the inner cylinder 2 are simultaneously applied to the reactant, and a large mechanical energy is applied to the thin-film reactant. It is considered that this mechanical energy is converted into chemical energy necessary for the reaction, so-called activation energy. Thereby, reaction advances in a short time. For satisfactory application of mechanical energy, it is desirable to generate a centrifugal force of 1500 N (kgms −2 ) or more. Preferably, it is 60000 N (kgms −2 ) or more.

メカノケミカル処理は、少なくとも2回の処理に分けて行うことができる。例えば、第1回目の処理では、バナジウム源と炭素材料とにずり応力と遠心力を加えて、炭素材料にバナジウム源を付着させる。そして、第2回目の処理では、リチウム源と、炭素材料の表面に付着されたバナジウム源とにずり応力と遠心力を加えて、炭素材料の表面上に形成されたバナジウムの基礎を基点にバナジン酸リチウムの前駆体を生成することができる。   The mechanochemical treatment can be performed in at least two separate treatments. For example, in the first treatment, shear stress and centrifugal force are applied to the vanadium source and the carbon material to adhere the vanadium source to the carbon material. In the second treatment, the vanadium is based on the basis of vanadium formed on the surface of the carbon material by applying shear stress and centrifugal force to the lithium source and the vanadium source attached to the surface of the carbon material. Lithium acid precursors can be produced.

以上のようなUC処理では、繊維状の炭素材料のバンドルが解れ、炭素材料が溶液中に分散する。また、図2の(a)に示すように混合溶液中の金属錯体が微粒子化され、炭素材料の表面に均一に分散して吸着される。   In the UC treatment as described above, the bundle of fibrous carbon materials is unwound and the carbon materials are dispersed in the solution. Further, as shown in FIG. 2A, the metal complex in the mixed solution is made into fine particles, and is uniformly dispersed and adsorbed on the surface of the carbon material.

なお、分散方法としては、UC処理以外にも、ミキサー、ジェットミキシング(噴流衝合)、および超音波処理などを用いることができる。ミキサーによる分散方法では、混合溶液に対して、ビーズミル、ロッドミル、ローラミル、攪拌ミル、遊星ミル、振動ミル、ボールミル、ホモジナイザー、ホモミキサーなどにより、物理的な力を加え、混合溶液を撹拌する。炭素材料に対して外力を加えることで、凝集した炭素材料を細分化及び均一化し、バンドルを解すことができる。中でも粉砕力が得られる遊星ミル、振動ミル、ボールミルが好ましい。   In addition to the UC treatment, a mixer, jet mixing (jet collision), ultrasonic treatment, and the like can be used as the dispersion method. In the dispersion method using a mixer, a physical force is applied to the mixed solution by a bead mill, a rod mill, a roller mill, a stirring mill, a planetary mill, a vibration mill, a ball mill, a homogenizer, a homomixer, and the like to stir the mixed solution. By applying an external force to the carbon material, the aggregated carbon material can be subdivided and homogenized, and the bundle can be unwound. Among these, a planetary mill, a vibration mill, and a ball mill that can obtain a crushing force are preferable.

ジェットミキシングによる分散方法では、筒状のチャンバの内壁の互いに対向する位置に一対のノズルを設ける混合溶液を、高圧ポンプにより加圧し、一対のノズルより噴射してチャンバ内で正面衝突させる。これにより、炭素材料のバンドルが粉砕され、分散及び均質化することができる。ジェットミキシングの条件としては、圧力は100MPa以上、濃度は5g/l未満が好ましい。   In the dispersion method by jet mixing, a mixed solution in which a pair of nozzles are provided at positions opposite to each other on the inner wall of a cylindrical chamber is pressurized by a high-pressure pump and sprayed from the pair of nozzles to cause a frontal collision in the chamber. Thereby, the bundle of carbon materials can be crushed and dispersed and homogenized. As conditions for jet mixing, the pressure is preferably 100 MPa or more and the concentration is less than 5 g / l.

(3)ポリマー鎖形成工程
ポリマー鎖形成工程では、UC処理を施した混合溶液を加熱し、炭素材料上に付着したバナジン酸リチウムの前駆体にポリマー鎖を形成する。例えば、ろ過により不純物を除去した混合溶液に対し、真空中において80〜150℃で乾燥を行う。乾燥時間は12〜24時間とする。このポリマー鎖形成処理により、バナジン酸リチウムの前駆体に配位した錯体配位子のカルボン酸と、重合剤のヒドロキシル基のエステル化反応が進行する。また、重合剤のヒドロキシル基間において、重合(脱水縮合)が進行する。これらの反応により、図2(b)に示すように多くのポリマー鎖が形成される。ポリマー鎖は、バナジン酸リチウムの前駆体単体に形成される態様と、バナジン酸リチウムの前駆体間に形成される態様を含む。以上のようなポリマー鎖形成工程により、バナジン酸リチウムの前駆体間にポリマー鎖が形成され、バナジン酸リチウムの前駆体同士が結合し凝集体が形成されることが防止される。すなわち、微細なバナジン酸リチウムの前駆体が、炭素材料の表面に均一に分散される。
(3) Polymer chain formation process In a polymer chain formation process, the mixed solution which performed UC process is heated, and a polymer chain is formed in the precursor of lithium vanadate adhering on a carbon material. For example, the mixed solution from which impurities have been removed by filtration is dried at 80 to 150 ° C. in a vacuum. The drying time is 12 to 24 hours. By this polymer chain formation treatment, esterification reaction of the carboxylic acid of the complex ligand coordinated to the precursor of lithium vanadate and the hydroxyl group of the polymerization agent proceeds. Further, polymerization (dehydration condensation) proceeds between the hydroxyl groups of the polymerization agent. By these reactions, many polymer chains are formed as shown in FIG. The polymer chain includes an embodiment in which the lithium vanadate precursor is formed alone and an embodiment in which the polymer chain is formed between the lithium vanadate precursors. By the polymer chain forming step as described above, polymer chains are formed between the lithium vanadate precursors, and the lithium vanadate precursors are prevented from being bonded to each other to form an aggregate. That is, the fine lithium vanadate precursor is uniformly dispersed on the surface of the carbon material.

(4)除去工程
除去工程では、ポリマー鎖を形成したバナジン酸リチウムの前駆体が付着した炭素材料を加熱し、ポリマー鎖を除去する。例えば、炭素材料に対し、大気雰囲気下において、300〜320℃で加熱を行う。加熱時間は3~5時間とする。この加熱工程により、金属配位子と重合剤により形成されたポリマー鎖が熱分解し、除去される。したがって、炭素材料上には、微細な粒子であるバナジン酸リチウムの前駆体のみが残される。
(4) Removal Step In the removal step, the carbon material to which the precursor of lithium vanadate that has formed the polymer chain is heated is heated to remove the polymer chain. For example, the carbon material is heated at 300 to 320 ° C. in an air atmosphere. The heating time is 3 to 5 hours. By this heating step, the polymer chain formed by the metal ligand and the polymerization agent is thermally decomposed and removed. Therefore, only the precursor of lithium vanadate, which is fine particles, remains on the carbon material.

(5)結晶化工程
結晶化工程では、バナジン酸リチウムの前駆体の前駆体が付着した炭素材料を焼成し、バナジン酸リチウムと炭素材料の複合材料を得る。焼成過程において、図2(c)に示すように、バナジン酸リチウムの前駆体が結晶化し、バナジン酸リチウムの金属粒子が炭素材料に担持される。加熱条件は、例えば、窒素雰囲気下において、500〜900℃で焼成を行う。焼成時間は0~5分とする。焼成過程では、室温から焼成温度まで急加熱することが好ましい。焼成時間0分とは、例えば3分かけて800℃まで昇温し、800℃に到達した時点で加熱を終了し自然冷却することを意味する。このような急加熱により、バナジン酸リチウムの結晶化が促進され粒子成長することが防止される。すなわち、粒径の小さなナノ金属粒子が維持される。
(5) Crystallization Step In the crystallization step, the carbon material to which the precursor of the lithium vanadate precursor is attached is fired to obtain a composite material of lithium vanadate and the carbon material. In the firing process, as shown in FIG. 2C, the precursor of lithium vanadate is crystallized, and the metal particles of lithium vanadate are supported on the carbon material. The heating condition is, for example, baking at 500 to 900 ° C. in a nitrogen atmosphere. The firing time is 0 to 5 minutes. In the firing process, rapid heating from room temperature to the firing temperature is preferred. The firing time of 0 minutes means that, for example, the temperature is raised to 800 ° C. over 3 minutes, and when the temperature reaches 800 ° C., heating is terminated and natural cooling is performed. Such rapid heating promotes crystallization of lithium vanadate and prevents particle growth. That is, nano metal particles having a small particle size are maintained.

また、急加熱は、酸素濃度が1000ppm程度の低酸素濃度の雰囲気下で行われることが好ましい。この条件で急加熱を行うと、炭素材料の酸化が阻止される。以上のような焼成工程により、バナジン酸リチウムが結晶化され、ナノ粒子であるバナジン酸リチウムが炭素材料に担持された複合材料が得られる。   The rapid heating is preferably performed in an atmosphere having a low oxygen concentration with an oxygen concentration of about 1000 ppm. When rapid heating is performed under these conditions, the oxidation of the carbon material is prevented. Through the baking process as described above, lithium vanadate is crystallized, and a composite material in which lithium vanadate as nanoparticles is supported on a carbon material is obtained.

[3.作用効果]
本実施形態の電極材料の製造方法が奏する作用効果は以下の通りである。
(1)バナジウム源とリチウム源を含む金属粒子源と、導電性炭素材料と、錯体配位子と、重合剤とが混合された混合溶液を作製する混合工程と、炭素材料の表面に金属粒子源を付着させ、バナジン酸リチウムの前駆体を生成する分散工程と、炭素材料上に付着したバナジン酸リチウムの前駆体にポリマー鎖を形成するポリマー鎖形成工程と、ポリマー鎖を形成したバナジン酸リチウムの前駆体が付着した炭素材料を加熱し、ポリマー鎖を除去する除去工程と、バナジン酸リチウムの前駆体が付着した炭素材料を焼成し、バナジン酸リチウムと炭素材料の複合材料を得る結晶化工程と、を有する。
[3. Effect]
The effect which the manufacturing method of the electrode material of this embodiment show | plays is as follows.
(1) A metal particle source containing a vanadium source and a lithium source, a mixing step for producing a mixed solution in which a conductive carbon material, a complex ligand, and a polymerizing agent are mixed, and metal particles on the surface of the carbon material. A dispersion step of attaching a source to produce a precursor of lithium vanadate, a polymer chain forming step of forming a polymer chain on the precursor of lithium vanadate attached on the carbon material, and a lithium vanadate having a polymer chain formed The carbon material with the precursor attached is heated to remove the polymer chain, and the carbon material with the lithium vanadate precursor attached is baked to obtain a composite material of lithium vanadate and carbon material. And having.

バナジン酸リチウムの前駆体にポリマー鎖を形成することで、金属粒子の前駆体同士が結合し凝集体が形成されることが防止される。そのため、ポリマー鎖を除去すると、微細なバナジン酸リチウムの前駆体が炭素材料上に残存する。このバナジン酸リチウムの前駆体が付着した炭素材料を焼成して複合材料を形成することにより、導電性炭素材料の表面にバナジン酸リチウムが担持させることができる。また、バナジン酸リチウムの金属粒子の大きさが100nm以下である電極材料を得ることができる。   By forming a polymer chain in the lithium vanadate precursor, it is possible to prevent the metal particle precursors from being bonded to each other to form an aggregate. Therefore, when the polymer chain is removed, a fine lithium vanadate precursor remains on the carbon material. By baking the carbon material to which the precursor of lithium vanadate is adhered to form a composite material, lithium vanadate can be supported on the surface of the conductive carbon material. In addition, an electrode material having a metal particle size of lithium vanadate of 100 nm or less can be obtained.

(2)分散工程は、混合溶液を、旋回する反応容器内でずり応力と遠心力を加え、炭素材料の表面に金属粒子源を付着させる工程を含む。
分散工程にUC処理を用いることにより、炭素材料のバンドルが解れ、炭素材料が溶液中に分散する。また、混合溶液中の金属錯体が微粒子化され、炭素材料の表面に均一に分散して吸着される。よって、バナジン酸リチウムを、炭素材料の表面に分散して均一に担持させることができる。
(2) The dispersion step includes a step of applying a shear stress and a centrifugal force to the mixed solution in a swirling reaction vessel to attach a metal particle source to the surface of the carbon material.
By using UC treatment in the dispersion step, the bundle of carbon materials is unwound and the carbon material is dispersed in the solution. Further, the metal complex in the mixed solution is made into fine particles, and is uniformly dispersed and adsorbed on the surface of the carbon material. Therefore, lithium vanadate can be uniformly dispersed and supported on the surface of the carbon material.

また、本実施形態の電極材料が奏する作用効果は以下の通りである。
(3)本実施形態の電極材料は、導電性炭素材料の表面にバナジン酸リチウムが担持され、バナジン酸リチウムの金属粒子の大きさが100nm以下である。
Moreover, the effect which the electrode material of this embodiment show | plays is as follows.
(3) In the electrode material of the present embodiment, lithium vanadate is supported on the surface of the conductive carbon material, and the size of the lithium vanadate metal particles is 100 nm or less.

炭素材料に、100nm以下のナノ粒子であるバナジン酸リチウムが担持されている。この微細なバナジン酸リチウムは、粒子内部まで反応しやすい状態であり、リチウムイオンの拡散経路が短縮される。したがって、活物質の利用率が向上し、発現容量が拡大する。すなわち、高い充放電容量を有する電極材料を提供することが可能となる。   Lithium vanadate, which is a nanoparticle of 100 nm or less, is supported on the carbon material. This fine lithium vanadate is in a state where it easily reacts to the inside of the particle, and the diffusion path of lithium ions is shortened. Therefore, the utilization factor of the active material is improved and the expression capacity is expanded. That is, an electrode material having a high charge / discharge capacity can be provided.

バナジン酸リチウムの電位は、Li/Liに対し、約1.0Vである。よって、リチウムの析出や電解液の分解などの副反応が生じにくい。また、バナジン酸リチウムの理論容量は、約600mAh/gである。バナジン酸リチウムは電気伝導性10−10S cm−1以下と低いが、バナジン酸リチウムのナノ粒子を炭素材料に担持させることで、電気伝導性が向上する。したがって、高い充放電容量と出入力特性を達成することができる。 The potential of lithium vanadate is about 1.0 V with respect to Li / Li + . Therefore, side reactions such as lithium deposition and electrolytic solution decomposition hardly occur. The theoretical capacity of lithium vanadate is about 600 mAh / g. Although lithium vanadate is low in electric conductivity of 10 −10 S cm −1 or less, electric conductivity is improved by supporting the lithium vanadate nanoparticles on a carbon material. Therefore, high charge / discharge capacity and input / output characteristics can be achieved.

(4)バナジン酸リチウムは、前記炭素材料の表面に分散して均一に担持されており、バナジン酸リチウムの面積あたりの粒子数は、50〜200個/900nmである。
バナジン酸リチウムが炭素材料の表面に分散して均一に担持されることにより、電気伝導性が向上する。そのため、電極材料を電極に用いた場合に、幅広い電流密度において充放電容量が向上し、高出入力特性が得られる。
(4) The lithium vanadate is dispersed and uniformly supported on the surface of the carbon material, and the number of particles per area of the lithium vanadate is 50 to 200/900 nm 2 .
Electrical conductivity is improved by lithium vanadate being dispersed and uniformly supported on the surface of the carbon material. Therefore, when an electrode material is used for the electrode, the charge / discharge capacity is improved over a wide current density, and high input / output characteristics are obtained.

(5)炭素材料は、繊維状炭素である。
繊維状炭素は導電性に優れている。そのため、炭素材料として繊維状炭素を用いることで、電気伝導性を向上させることが可能となる。
(5) The carbon material is fibrous carbon.
Fibrous carbon is excellent in conductivity. Therefore, electrical conductivity can be improved by using fibrous carbon as the carbon material.

以下、実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. In addition, this invention is not limited to the following Example.

(実施例1)
本実施例では、以下の製造方法により、バナジン酸リチウムとカーボンナノチューブ(CNT)の複合材料(LiVO/CNT)を生成した。
Example 1
In this example, a composite material (Li 3 VO 4 / CNT) of lithium vanadate and carbon nanotubes (CNT) was generated by the following manufacturing method.

バナジン酸リチウムの金属粒子源は、バナジウム源としてメタバナジン酸アンモニウム(NHVO)、リチウム源として水酸化リチウム(LiOH)溶液を用い、モル比でLi:V=3:1となるように混合した。CNTは、多層カーボンナノチューブを用いた。CNTの平均繊維径は、11nmであった。使用したバナジン酸リチウムの金属粒子源とCNTの重量比率は、60:40であった。また、金属配位子としてクエン酸、重合剤としてエチレングリコールを用いた。バナジウム源に対し、クエン酸は1当量、エチレングリコールは4当量添加した。 As the metal particle source of lithium vanadate, ammonium metavanadate (NH 4 VO 3 ) is used as the vanadium source, and lithium hydroxide (LiOH) solution is used as the lithium source, and mixed so that the molar ratio is Li: V = 3: 1. did. As the CNT, a multi-walled carbon nanotube was used. The average fiber diameter of CNT was 11 nm. The weight ratio of the lithium vanadate metal particle source and the CNT used was 60:40. Further, citric acid was used as the metal ligand, and ethylene glycol was used as the polymerization agent. 1 equivalent of citric acid and 4 equivalents of ethylene glycol were added to the vanadium source.

具体的には、図3に示すように、第1の溶液として、メタバナジン酸アンモニウムとクエン酸を蒸留水(HO)に添加し、マグネチックスターラーを用いて撹拌した。第1の溶液では、メタバナジン酸アンモニウムの金属錯体が形成される。また、第2の溶液として、エチレングリコールを蒸留水に添加し、マグネチックスターラーを用いて撹拌した。この第1の溶液と第2の溶液を混合し、さらにマグネチックスターラーを用いて撹拌した。第1の溶液と第2の溶液の混合溶液に、水酸化リチウム溶液、カーボンナノチューブ、および蒸留水を添加し、第3の溶液とした。 Specifically, as shown in FIG. 3, as a first solution, ammonium metavanadate and citric acid were added to distilled water (H 2 O), and the mixture was stirred using a magnetic stirrer. In the first solution, a metal complex of ammonium metavanadate is formed. Moreover, ethylene glycol was added to distilled water as a 2nd solution, and it stirred using the magnetic stirrer. The first solution and the second solution were mixed and further stirred using a magnetic stirrer. A lithium hydroxide solution, carbon nanotubes, and distilled water were added to the mixed solution of the first solution and the second solution to obtain a third solution.

この第3の溶液について、80℃の環境下においてUC処理を行った。UC処理では、図1に示すような反応器を用い、回転速度を50m/sとし、第3の溶液に5分間にわたって66000N(kgms−2)の遠心力を与えた。このUC処理では、CNTのバンドルが解れるとともに、金属錯体を有するバナジン酸リチウムの前駆体が微粒子化し、均一に分散した状態でCNTの表面に付着することが促進されていると考えられる。 About this 3rd solution, UC process was performed in 80 degreeC environment. In the UC treatment, a reactor as shown in FIG. 1 was used, the rotational speed was 50 m / s, and a centrifugal force of 66000 N (kgms −2 ) was applied to the third solution for 5 minutes. In this UC treatment, it is considered that the bundle of CNTs is unraveled, and the precursor of lithium vanadate having a metal complex is atomized and adhered to the surface of the CNTs in a uniformly dispersed state.

次に、第3の溶液から不純物をろ過し、130℃において、終夜、真空乾燥を行った。この真空乾燥では、CNTの表面に付着したバナジン酸リチウムの前駆体を核に、クエン酸のカルボキシル基とエチレングリコールのヒドロキシル基との間でエステル化反応が進行し、ポリマー鎖が形成される。ポリマー鎖の形成により、バナジン酸リチウムの前駆体間にポリマー鎖が形成され、バナジン酸リチウムの前駆体同士が結合し凝集体が形成されることが防止されると考えられる。そのため、微細なバナジン酸リチウムの前駆体が、CNTの表面に均一に分散される。   Next, impurities were filtered from the third solution, and vacuum drying was performed at 130 ° C. overnight. In this vacuum drying, an esterification reaction proceeds between a carboxyl group of citric acid and a hydroxyl group of ethylene glycol with a precursor of lithium vanadate adhering to the surface of the CNT as a nucleus, and a polymer chain is formed. It is considered that the formation of the polymer chain prevents a polymer chain from being formed between the lithium vanadate precursors, and the lithium vanadate precursors are bonded to each other to form an aggregate. Therefore, the fine lithium vanadate precursor is uniformly dispersed on the surface of the CNT.

真空乾燥後のCNTについて、300℃で3時間、大気雰囲気下で加熱を行った。この300℃での熱処理により、クエン酸およびエチレングリコールのエステル化により形成されたポリマー鎖が熱分解する。したがって、CNTの表面には、微細なバナジン酸リチウムの前駆体のみが残存する。   The CNT after vacuum drying was heated at 300 ° C. for 3 hours in an air atmosphere. By this heat treatment at 300 ° C., the polymer chain formed by the esterification of citric acid and ethylene glycol is thermally decomposed. Therefore, only a fine lithium vanadate precursor remains on the surface of the CNT.

その後、窒素雰囲気下において、800℃で0分間焼成を行った。この焼成は、3分かけて800℃まで昇温し、800℃に到達した時点で加熱を終了し自然冷却した。この焼成により、バナジン酸リチウムの前駆体が結晶化し、CNTの表面にナノ粒子化したバナジン酸リチウムが結合している状態となる。以上のようにして、ナノ粒子化したバナジン酸リチウムがCNTに担持された複合材料(LiVO/CNT)が得られた。 Thereafter, baking was performed at 800 ° C. for 0 minute in a nitrogen atmosphere. In this firing, the temperature was raised to 800 ° C. over 3 minutes, and when the temperature reached 800 ° C., the heating was terminated and the product was naturally cooled. By this firing, the precursor of lithium vanadate is crystallized, and the nano-sized lithium vanadate is bonded to the surface of the CNT. As described above, a composite material (Li 3 VO 4 / CNT) in which nanoparticulate lithium vanadate was supported on CNTs was obtained.

(実施例2)
上記第3の溶液についてUC処理を行う代わりに、ホモジナイザーで撹拌した。それ以外は、実施例1と同様に作製した。
(Example 2)
The third solution was agitated with a homogenizer instead of performing UC treatment. Other than that, it produced similarly to Example 1. FIG.

(比較例1)
第1の溶液として、メタバナジン酸アンモニウムを蒸留水(HO)に添加し、マグネチックスターラーを用いて撹拌した。第1の溶液に、水酸化リチウム溶液、カーボンナノチューブ、および蒸留水を添加し、第2の溶液とした。この第2の溶液について、上記のUC処理以降の処理を行った。それ以外は、実施例1と同様に作製した。
(Comparative Example 1)
As a first solution, ammonium metavanadate was added to distilled water (H 2 O) and stirred using a magnetic stirrer. A lithium hydroxide solution, carbon nanotubes, and distilled water were added to the first solution to obtain a second solution. About this 2nd solution, the process after said UC process was performed. Other than that, it produced similarly to Example 1. FIG.

(1)電極材料の結晶構造解析
上記実施例1について、HRTEM像を撮影し結晶構造を解析した。図4および5は、実施例1において得られたCNTの表面にバナジン酸リチウムが結合した複合体を示すHRTEM像である。図4は全体像を、図5は部分拡大像を示す。図4から明らかな通り、CNTのバンドルが解れ、紐状のCNTの一本一本にバナジン酸リチウムのナノ粒子が複数結合している。また、図5に示すように、バナジン酸リチウムのナノ粒子は結晶化している。
(1) Crystal structure analysis of electrode material About the said Example 1, the HRTEM image was image | photographed and the crystal structure was analyzed. 4 and 5 are HRTEM images showing a composite in which lithium vanadate is bonded to the surface of the CNT obtained in Example 1. FIG. 4 shows an overall image, and FIG. 5 shows a partially enlarged image. As is apparent from FIG. 4, the bundle of CNTs is unwound, and a plurality of lithium vanadate nanoparticles are bonded to each of the string-like CNTs. Further, as shown in FIG. 5, the nanoparticles of lithium vanadate are crystallized.

図4に示す領域1〜3について、それぞれバナジン酸リチウムについて、凝集体を含む粒子の大きさと面積あたりの粒子数を目視にて計測した結果を図6〜8に示す。図6〜8から明らかな通り、各領域において確認されたバナジン酸リチウムの粒子の大きさは、最も大きなものでも50nm程度であった。また、図9に示すように、各領域における粒子数を計測したところ、領域1では計99個、領域2では計93個、領域3では計182個の粒子が確認された。すなわち、バナジン酸リチウムの面積あたりの粒子数は、50〜200個/900nmであった。領域1〜3における粒子の個数を合計したところ374個/2700nmであった。 About the area | regions 1-3 shown in FIG. 4, the result of having measured the magnitude | size of the particle | grains containing an aggregate and the particle | grain number per area visually about lithium vanadate is shown in FIGS. As is apparent from FIGS. 6 to 8, the size of the lithium vanadate particles confirmed in each region was about 50 nm even at the largest. As shown in FIG. 9, when the number of particles in each region was measured, a total of 99 particles in region 1, 93 particles in region 2, and 182 particles in region 3 were confirmed. That is, the number of particles per area of lithium vanadate was 50 to 200/900 nm 2 . The total number of particles in the regions 1 to 3 was 374/2700 nm 2 .

さらに、各領域において30nm以下の微細なナノ粒子が存在する割合を算出した。その結果、領域1は約90%、領域2は約79%、領域3は約89%が、30nm以下の金属粒子を含んでいた。領域全体では、約87%が30nm以下の金属粒子であった。すなわち、実施例1の複合体は、金属粒子の約80%以上が30nm以下の微細なナノ粒子であることが確認された。以上より、実施例1のLiVO/CNTでは、CNTの表面に微細なナノ粒子のバナジン酸リチウムが均一かつ高い分散度で担持された状態であることが分かった。 Further, the ratio of the presence of fine nanoparticles of 30 nm or less in each region was calculated. As a result, the region 1 was about 90%, the region 2 was about 79%, the region 3 was about 89%, and contained metal particles of 30 nm or less. In the entire region, about 87% were metal particles of 30 nm or less. That is, it was confirmed that about 80% or more of the metal particles were fine nanoparticles of 30 nm or less in the composite of Example 1. From the above, it was found that in Li 3 VO 4 / CNT of Example 1, fine nano-sized lithium vanadate was supported on the CNT surface uniformly and with a high degree of dispersion.

(2)電極材料の放電容量特性
実施例1、実施例2、および比較例1の電極材料を、バインダーとしてのポリフッ化ビニリデンPVDFとNMP共に攪拌してスラリー状にし、銅箔上に塗布し、作用電極W.E.とした。投入比率は、重量比にしてLiVO/CNT:PVDF=94:6であった。充放電特性は2032型コインセルにて評価した。リチウム金属を対極C.Eとして下蓋に貼り付けた。対極C.Eの上にセパレータ、ガスケット、W.E、スペーサー、スプリング、上蓋の順に載せ、かしめてセルを作製した。電解液は、1.0M六フッ化リン酸リチウム(LiPF)/炭酸エチレン(EC)と炭酸ジメチル(DEC)とし、これらを浸透させてセルとした。なお、体積比率でEC:DEC=1:1であった。
(2) Discharge capacity characteristics of electrode material The electrode materials of Example 1, Example 2, and Comparative Example 1 were stirred together with polyvinylidene fluoride PVDF and NMP as a binder to form a slurry, and applied onto a copper foil. Working electrode W. E. It was. The input ratio was Li 3 VO 4 / CNT: PVDF = 94: 6 in terms of weight ratio. The charge / discharge characteristics were evaluated using a 2032 type coin cell. Lithium metal counter electrode C.I. Attached to the lower lid as E. Counter electrode C.I. E. Separator, gasket, W. E, a spacer, a spring, and an upper lid were placed in this order and caulked to produce a cell. The electrolyte was 1.0 M lithium hexafluorophosphate (LiPF 6 ) / ethylene carbonate (EC) and dimethyl carbonate (DEC), and these were infiltrated into a cell. The volume ratio was EC: DEC = 1: 1.

実施例1、実施例2、および比較例1の電極材料を用いて作製したセルを用いて、任意の電流密度において充放電を行った。図10は、様々な電流密度における、各セルの活物質あたりの充電容量を示す。充放電容量の測定は、放電側(Lithiation)の電流値は0.1Ag-1で固定し、充電側(De-lithitation)の電流値は 0.01〜20Ag-1で3サイクルずつ変化させて行った。電位範囲は、0.5〜2.5V vs.Li/Liであった。 Using the cell produced using the electrode material of Example 1, Example 2, and the comparative example 1, it charged / discharged in arbitrary current densities. FIG. 10 shows the charge capacity per active material of each cell at various current densities. The charge / discharge capacity was measured by fixing the current value on the discharge side (Lithiation) at 0.1 Ag- 1 and changing the current value on the charge side (De-lithitation) in increments of 3 cycles from 0.01 to 20 Ag- 1. went. The potential range is 0.5 to 2.5 V vs. Li / Li + .

図10からも明らかな通り、実施例1はいずれの電流密度においても、比較例1と比較して活物質あたりの充電容量が大きい。すなわち、実施例1では、充電容量が安定的に発現していることが分かる。また、実施例2は、特に15Ag−1以下の低レート側において、比較例1と比較して活物質あたりの充電容量が大きい。実施例1および2の電極材料では、電気伝導性の向上が、出入力特性の向上に寄与していると考えられる。また、バナジン酸リチウムがナノ粒子化されていることにより、リチウムイオンの拡散経路が短縮され、粒子内部まで反応が起こりやすい状態となっている。したがって、活物質利用率が向上し、発現容量が拡大していると考えられる。 As is clear from FIG. 10, the charge capacity per active material of Example 1 is larger than that of Comparative Example 1 at any current density. That is, in Example 1, it turns out that charge capacity is expressing stably. In addition, Example 2 has a larger charge capacity per active material than Comparative Example 1, particularly on the low rate side of 15 Ag −1 or less. In the electrode materials of Examples 1 and 2, it is considered that the improvement in electrical conductivity contributes to the improvement in input / output characteristics. In addition, since lithium vanadate is made into nanoparticles, the diffusion path of lithium ions is shortened, and the reaction is likely to occur inside the particles. Therefore, it is considered that the active material utilization rate is improved and the expression capacity is expanded.

1…外筒
1−2…せき板
1−3…内壁
2…内筒
2−1…貫通孔
DESCRIPTION OF SYMBOLS 1 ... Outer cylinder 1-2 ... Baffle 1-3 ... Inner wall 2 ... Inner cylinder 2-1 ... Through-hole

Claims (8)

バナジウム源とリチウム源を含む金属粒子源と、導電性炭素材料と、錯体配位子と、重合剤とが混合された混合溶液を作製する混合工程と、
前記炭素材料の表面に前記金属粒子源を付着させ、バナジン酸リチウムの前駆体を生成する分散工程と、
前記炭素材料上に付着したバナジン酸リチウムの前駆体にポリマー鎖を形成するポリマー鎖形成工程と、
ポリマー鎖を形成したバナジン酸リチウムの前駆体が付着した前記炭素材料を加熱し、ポリマー鎖を除去する除去工程と、
バナジン酸リチウムの前駆体が付着した前記炭素材料を焼成し、バナジン酸リチウムと前記炭素材料の複合材料を得る結晶化工程と、
を有することを特徴とする電極材料の製造方法。
A mixing step of preparing a mixed solution in which a metal particle source including a vanadium source and a lithium source, a conductive carbon material, a complex ligand, and a polymerization agent are mixed;
A dispersion step of attaching the metal particle source to the surface of the carbon material to generate a precursor of lithium vanadate;
A polymer chain forming step of forming a polymer chain on a precursor of lithium vanadate adhering to the carbon material;
Removing the polymer chain by heating the carbon material to which the precursor of lithium vanadate that has formed a polymer chain is attached; and
Calcination of the carbon material to which the precursor of lithium vanadate is adhered, and a crystallization step of obtaining a composite material of lithium vanadate and the carbon material;
A method for producing an electrode material comprising:
前記分散工程は、前記混合溶液を、旋回する反応容器内でずり応力と遠心力を加え、前記炭素材料の表面に前記金属粒子源を付着させる工程を含むことを特徴とする請求項1記載の電極材料の製造方法。   2. The dispersion step of claim 1, wherein the mixed solution includes a step of applying a shear stress and a centrifugal force to the mixed solution in a swirling reaction vessel to attach the metal particle source to the surface of the carbon material. Manufacturing method of electrode material. 前記炭素材料が、繊維状炭素であることを特徴とする請求項1又は2記載の電極材料の製造方法。   The method for producing an electrode material according to claim 1, wherein the carbon material is fibrous carbon. 導電性炭素材料の表面にバナジン酸リチウムが担持され、
バナジン酸リチウムの金属粒子の大きさが100nm以下であることを特徴とする電極材料。
Lithium vanadate is supported on the surface of the conductive carbon material,
An electrode material, wherein the metal particles of lithium vanadate have a size of 100 nm or less.
バナジン酸リチウムは、前記炭素材料の表面に分散して均一に担持されており、
バナジン酸リチウムの面積あたりの粒子数は、50〜200個/900nmであることを特徴とする請求項4記載の電極材料。
Lithium vanadate is dispersed and uniformly supported on the surface of the carbon material,
The electrode material according to claim 4, wherein the number of particles per area of lithium vanadate is 50 to 200 particles / 900 nm 2 .
前記炭素材料は、繊維状炭素であることを特徴とする請求項4又は5記載の電極材料。   6. The electrode material according to claim 4, wherein the carbon material is fibrous carbon. 請求項4〜6いずれか一項記載の電極材料を用いて形成されたことを特徴とする電極。   An electrode formed using the electrode material according to any one of claims 4 to 6. 請求項7に記載の電極を備えた蓄電デバイス。   An electricity storage device comprising the electrode according to claim 7.
JP2015220790A 2015-11-10 2015-11-10 Electrode material, method for manufacturing electrode material, electrode, and power storage device Active JP6678012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220790A JP6678012B2 (en) 2015-11-10 2015-11-10 Electrode material, method for manufacturing electrode material, electrode, and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220790A JP6678012B2 (en) 2015-11-10 2015-11-10 Electrode material, method for manufacturing electrode material, electrode, and power storage device

Publications (2)

Publication Number Publication Date
JP2017091818A true JP2017091818A (en) 2017-05-25
JP6678012B2 JP6678012B2 (en) 2020-04-08

Family

ID=58770960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220790A Active JP6678012B2 (en) 2015-11-10 2015-11-10 Electrode material, method for manufacturing electrode material, electrode, and power storage device

Country Status (1)

Country Link
JP (1) JP6678012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471402A (en) * 2021-07-03 2021-10-01 江西理工大学 Preparation method of carbon nanotube/lithium vanadate composite membrane with multiple polarization centers and application of composite membrane in catalysis of lithium-sulfur battery reaction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
JP2011251889A (en) * 2010-03-31 2011-12-15 Nippon Chemicon Corp Composite of metal oxide nanoparticle and carbon, method for producing the composite, electrode using the composite, and electrochemical element
JP2012209032A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Metal compound-conductive agent complex, lithium secondary battery using the same, and metal compound-conductive agent complex manufacturing method
WO2012147766A1 (en) * 2011-04-28 2012-11-01 昭和電工株式会社 Positive electrode material for lithium secondary battery, and method for producing said positive electrode material
JP2013206748A (en) * 2012-03-28 2013-10-07 Nippon Chemicon Corp Electrode material of secondary battery and production method therefor
JP2014053295A (en) * 2012-08-06 2014-03-20 Toray Ind Inc Metal oxide nano particle-conductive agent complex, lithium ion secondary battery and lithium ion capacitor using the same, and method for manufacturing metal oxide nano particle-conductive agent complex
JP2014229830A (en) * 2013-05-24 2014-12-08 日本ケミコン株式会社 Electrode material for power storage device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270795A (en) * 2007-03-28 2008-11-06 Nippon Chemicon Corp Reaction method and metal oxide nano-particles obtained using the method, or metal oxide nanoparticle-dispersed/deposited carbon and electrode containing this carbon and electric chemical element using this electrode
JP2011251889A (en) * 2010-03-31 2011-12-15 Nippon Chemicon Corp Composite of metal oxide nanoparticle and carbon, method for producing the composite, electrode using the composite, and electrochemical element
JP2012209032A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Metal compound-conductive agent complex, lithium secondary battery using the same, and metal compound-conductive agent complex manufacturing method
WO2012147766A1 (en) * 2011-04-28 2012-11-01 昭和電工株式会社 Positive electrode material for lithium secondary battery, and method for producing said positive electrode material
JP2013206748A (en) * 2012-03-28 2013-10-07 Nippon Chemicon Corp Electrode material of secondary battery and production method therefor
JP2014053295A (en) * 2012-08-06 2014-03-20 Toray Ind Inc Metal oxide nano particle-conductive agent complex, lithium ion secondary battery and lithium ion capacitor using the same, and method for manufacturing metal oxide nano particle-conductive agent complex
JP2014229830A (en) * 2013-05-24 2014-12-08 日本ケミコン株式会社 Electrode material for power storage device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471402A (en) * 2021-07-03 2021-10-01 江西理工大学 Preparation method of carbon nanotube/lithium vanadate composite membrane with multiple polarization centers and application of composite membrane in catalysis of lithium-sulfur battery reaction
CN113471402B (en) * 2021-07-03 2022-09-30 江西理工大学 Preparation method of carbon nanotube/lithium vanadate composite membrane with multiple polarization centers and application of composite membrane in catalysis of lithium-sulfur battery reaction

Also Published As

Publication number Publication date
JP6678012B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP4944974B2 (en) Lithium titanate nanoparticle / carbon composite, method for producing the same, electrode material comprising the composite, electrode using the electrode material, and electrochemical device
EP2562854B1 (en) Preparation method of transition metal oxide and carbon nanotube composite, and composite thereof
JP2010212309A (en) Electrode material, and electrode containing the same
WO2011122047A1 (en) Composite of metal oxide nanoparticles and carbon, method for producing said composite, electrode using said composite, and electrochemical element
JP5836568B2 (en) Lithium titanate crystal structure and carbon composite, manufacturing method thereof, electrode using the composite, and electrochemical device
JP2018125214A (en) Composite active material particle, positive electrode, all solid lithium ion battery, and manufacturing method thereof
JP6197454B2 (en) METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION
JP6688840B2 (en) METHOD FOR PRODUCING METAL COMPOUND PARTICLE, METAL COMPOUND PARTICLE, AND ELECTRODE FOR STORAGE DEVICE HAVING METAL COMPOUND PARTICLE
JP7208147B2 (en) Lithium vanadium oxide crystal, electrode material, and storage device
KR20130107928A (en) Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same
JPWO2015133586A1 (en) Conductive carbon, electrode material containing this conductive carbon, and electrode using this electrode material
JPWO2014196615A1 (en) Positive electrode material for lithium ion secondary battery and manufacturing method thereof
KR101907240B1 (en) Method for preparing electrode materials and electrode materials produce therefrom
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
JP6319741B2 (en) Electrode manufacturing method
JP6155316B2 (en) Composite of metal compound nanoparticles and carbon, electrode having the composite, and electrochemical device
JP6678012B2 (en) Electrode material, method for manufacturing electrode material, electrode, and power storage device
JP2013114809A (en) Nonaqueous electrolytic secondary battery and method of manufacturing the same
JP6775937B2 (en) Electrode material, method of manufacturing electrode material, and power storage device with electrode material
JP5969554B2 (en) Positive electrode active material for secondary battery and method for producing the same
US11631854B2 (en) Battery electrode, method for making the same and hybrid energy storage device using the same
JP6370531B2 (en) Rod-like titanium-based structure for power storage device, method for producing the same, and electrode active material, electrode active material layer, electrode, and power storage device using the titanium-based structure
JP6396550B2 (en) Rod-like titanium-based structure for power storage device, method for producing the same, and electrode active material, electrode active material layer, electrode, and power storage device using the titanium-based structure
JP5965015B2 (en) Lithium titanate crystal structure
CN117566714A (en) Lithium ion battery positive electrode material, precursor thereof, preparation method, positive electrode plate and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6678012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250