JP2017063518A - Rotary electric machine system - Google Patents

Rotary electric machine system Download PDF

Info

Publication number
JP2017063518A
JP2017063518A JP2015186437A JP2015186437A JP2017063518A JP 2017063518 A JP2017063518 A JP 2017063518A JP 2015186437 A JP2015186437 A JP 2015186437A JP 2015186437 A JP2015186437 A JP 2015186437A JP 2017063518 A JP2017063518 A JP 2017063518A
Authority
JP
Japan
Prior art keywords
coils
phase
machine system
current flowing
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015186437A
Other languages
Japanese (ja)
Inventor
堺 和人
Kazuto Sakai
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2015186437A priority Critical patent/JP2017063518A/en
Publication of JP2017063518A publication Critical patent/JP2017063518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a rotary electric machine system capable of saving energy, increasing an amount of power generation, reducing torque and output pulsation, and reducing vibration and noise.SOLUTION: The rotary electric machine system includes: power conversion circuits 30a to 30i capable of changing a magnitude and phase of a current flowing through each of a plurality of coils; a stator 10 having windings formed of a plurality of coils; and a rotor 20 having a coil, a permanent magnet, or a magnetic salient pole iron core. The power conversion circuits 30a to 30i can individually change the magnitude and the phase of the current flowing through each of the plurality of coils.SELECTED DRAWING: Figure 1

Description

本発明は、個別コイル電流制御方式の回転電機システムに関する。例えば、交通システムにおけるハイブリッド自動車、電気自動車、鉄道に利用でき、エネルギーシステムにおける火力、水力、風力、海流発電機にも利用でき、社会システム・家電におけるエレベータ、エアコン等家電機器、モータ駆動の産業装置にも利用できる回転電機システムに関する。   The present invention relates to a rotating electrical machine system of an individual coil current control system. For example, it can be used for hybrid vehicles, electric vehicles, railways in transportation systems, thermal power, hydropower, wind power, ocean current generators in energy systems, home appliances such as elevators and air conditioners in social systems and home appliances, motor driven industrial devices The present invention also relates to a rotating electrical machine system that can also be used.

現在、世界のエネルギー総消費量のおよそ50%がモータによるものであると言われている。そのため、モータおよびドライブシステムの省エネルギー化・高効率化が求められている。   Currently, it is said that approximately 50% of the world's total energy consumption comes from motors. Therefore, there is a demand for energy saving and high efficiency of motors and drive systems.

従来、モータや発電機のような回転電機では、3相の交流電流が流れる3相のコイルを固定子に設けて相毎のコイルを接続して3相巻線を構成している。この3相巻線を持つ回転電機ではその3相の巻線それぞれの端子に外部の3相電力変換装置を接続してエネルギー変換し、回転子を回転させて回転力を取出し、あるいは回転子の回転によって固定子側から出力される電力を取り出す。   Conventionally, in a rotating electrical machine such as a motor or a generator, a three-phase coil through which a three-phase alternating current flows is provided in a stator and a coil for each phase is connected to form a three-phase winding. In a rotating electric machine having this three-phase winding, an external three-phase power converter is connected to the terminals of each of the three-phase windings for energy conversion, and the rotor is rotated to extract the rotational force. The electric power output from the stator side by the rotation is taken out.

このような3相の回転電機では、トルク脈動や出力脈動を小さくするためにコイルの数や配置を最適化して起磁力を正弦波に近づける設計を行っている。しかしながら、スロット数を限りなく増やすことはできないので、高調波の低減量には限界がある。また巻線電流による電磁力で発生する振動や騒音を低減するのに電気的にスロット数や鉄心形状などで最適化しても、ある程度までしか低減できない。   In such a three-phase rotating electric machine, in order to reduce torque pulsation and output pulsation, the number and arrangement of coils are optimized to make the magnetomotive force approach a sine wave. However, since the number of slots cannot be increased without limit, the amount of harmonics to be reduced is limited. Moreover, even if it electrically optimizes the number of slots and the iron core shape to reduce the vibration and noise generated by the electromagnetic force due to the winding current, it can be reduced only to a certain extent.

またハイブリッド自動車や鉄道等の可変速モータや風力用可変速発電機では、低速から高速まで低損失であることが性能上最も重要となる。しかし、機器設計上で固定された極数では、極数によって良好な出力性能が得られる回転数範囲があるので、低速域から高速域まで広範囲で高効率にすることは困難である。   Further, in variable speed motors and variable speed generators for wind power such as hybrid cars and railways, low loss from low speed to high speed is the most important in terms of performance. However, with the number of poles fixed in the device design, there is a rotational speed range in which good output performance can be obtained depending on the number of poles, so it is difficult to achieve high efficiency over a wide range from a low speed range to a high speed range.

小川哲史・堺和人:「エレクトロニクスモータドライブシステムに関する基礎研究」、平成25年電気学会産業応用部門大会、Y−80(2013年)Tetsufumi Ogawa and Kazuhito Tsuji: “Basic research on electronics motor drive systems”, 2013 IEEJ Industrial Application Conference, Y-80 (2013) 松井、他:「省レアアース・脱レアアースモータ」、日刊工業新聞社(2013年)Matsui, et al .: "Reduced rare earth / de-rare earth motor", Nikkan Kogyo Shimbun (2013) 堺和人・湯澤成彰:「巻数切り替え無し極数変換永久磁石モータの原理と基本特性」、平成25年度電会大、No.5−008(2013年)Kazuhito Tsuji and Shigeaki Yuzawa: “Principle and basic characteristics of a pole-changing permanent magnet motor without switching the number of turns”, 2013 Dentsu University No. 5-008 (2013) 岡安正憲・小川哲史・堺和人:「エレクトロニクスモータドライブシステムの試作と実験」、平成27年電気学会全国大会、4−048(2015年)Masanori Okayasu, Satoshi Ogawa, Kazuhito Tsuji: “Prototype and Experiment of Electronics Motor Drive System”, 2015 Annual Conference of the Institute of Electrical Engineers of Japan, 4-048 (2015) 坪井和男・廣塚功・水野孝行・足利正:「EV用六相極数切換誘導電動機の円滑な極数切換法の考察」、平成12年電学論D、120巻11号p.1351〜1359(1996年)Tsuboi Kazuo, Isuzuka Isao, Mizuno Takayuki, Ashikaga Tadashi: "Study on smooth pole number switching method of 6-phase pole number switching induction motor for EV", 2000 Electron Theory D, Vol. 120, No. 11, p. 1351-1359 (1996) 新妻孝則・倉持暁・堺和人:「極数・機器定数変換エレクトロニクスモータの研究」、平成24年度電会大、No.5pp.32−33(2012年)Takanori Niizuma, Satoshi Kuramochi, Kazuhito Tsuji: “Study on Pole / Constant Parameter Conversion Electronics Motor”, 2012 Denki University, No. 5pp. 32-33 (2012)

本発明はこのような従来の技術的な課題に鑑みてなされたもので、省エネルギーや発電量の増加、トルクや出力脈動の低減、振動や騒音の低減が図れる回転電機システムを提供することを目的とする。   The present invention has been made in view of such conventional technical problems, and an object of the present invention is to provide a rotating electrical machine system that can save energy, increase power generation, reduce torque and output pulsation, and reduce vibration and noise. And

本発明は、複数のコイル各々に流れる電流の大きさと位相とを変化させることができる電力変換回路、前記複数のコイルで成る巻線を有する固定子、及び、コイルまたは永久磁石または磁気的突極鉄心を有する回転子から構成される回転電機システムを特徴とする。   The present invention relates to a power conversion circuit capable of changing the magnitude and phase of a current flowing in each of a plurality of coils, a stator having a winding composed of the plurality of coils, and a coil, a permanent magnet, or a magnetic salient pole. It is characterized by a rotating electrical machine system composed of a rotor having an iron core.

また本発明は、複数のコイル各々に流れる電流の大きさと位相とを変化させることができる電力変換回路、前記複数のコイル各々で成る巻線を有する固定子、及び、コイルまたは永久磁石または磁気的突極鉄心を有する回転子から構成される回転電機システムにおいて、前記電力変換回路は、前記複数のコイル各々に流れる電流の大きさと位相とを個々に変化させることができるものとした回転電機システムを特徴とする。   The present invention also provides a power conversion circuit capable of changing the magnitude and phase of the current flowing through each of the plurality of coils, a stator having a winding composed of each of the plurality of coils, and a coil, permanent magnet, or magnetic In a rotating electrical machine system including a rotor having a salient pole iron core, the rotating electrical machine system in which the power conversion circuit is capable of individually changing the magnitude and phase of a current flowing through each of the plurality of coils. Features.

また本発明は、複数のコイル各々に流れる電流の大きさと位相とを変化させることができる電力変換回路、前記複数のコイル各々で成る巻線を有する固定子、及び、コイルまたは永久磁石または磁気的突極鉄心を有する回転子から構成される回転電機システムにおいて、前記電力変換回路は、前記コイルを複数のコイルを接続したグループ毎の巻線に分け、前記グループ毎の巻線に流れる電流の大きさと位相とを個々に変化させることができる電力変換回路とした回転電機システムを特徴とする。   The present invention also provides a power conversion circuit capable of changing the magnitude and phase of the current flowing through each of the plurality of coils, a stator having a winding composed of each of the plurality of coils, and a coil, permanent magnet, or magnetic In a rotating electrical machine system including a rotor having a salient pole iron core, the power conversion circuit divides the coil into windings for each group in which a plurality of coils are connected, and the magnitude of current flowing through the windings for each group. It is characterized by a rotating electrical machine system that is a power conversion circuit capable of individually changing the phase and phase.

本発明の回転電機システムによれば、電力変換回路により固定子の巻線の複数のコイル各々に流れる電流の大きさと位相を個別に制御することによって省エネルギーや発電量の増加、トルクや出力脈動の低減、振動や騒音の低減、可変速運転範囲の拡大、軽負荷から高負荷及び低速から高速回転における省エネルギーなど性能の向上が図れる。   According to the rotating electrical machine system of the present invention, the power conversion circuit individually controls the magnitude and phase of the current flowing through each of the plurality of coils of the stator winding, thereby saving energy, increasing power generation, torque and output pulsation. Performance improvement such as reduction, reduction of vibration and noise, expansion of variable speed operation range, energy saving from light load to high load and low speed to high speed rotation.

本発明の第1の実施の形態の回転電機システムの説明図。Explanatory drawing of the rotary electric machine system of the 1st Embodiment of this invention. 上記第1の実施の形態の回転電機システムの回路図。The circuit diagram of the rotary electric machine system of the said 1st Embodiment. 上記第1の実施の形態の回転電機システムの動作説明図。Operation | movement explanatory drawing of the rotary electric machine system of the said 1st Embodiment. 上記第1の実施の形態の回転電機システムにおける9相電圧波形図。FIG. 9 is a nine-phase voltage waveform diagram in the rotating electrical machine system according to the first embodiment. 上記第1の実施の形態の回転電機システムの出力トルク特性及びコギングトルク特性図。The output torque characteristic and cogging torque characteristic figure of the rotary electric machine system of the said 1st Embodiment. 従来の3相回転電機システムの出力トルク特性及びコギングトルク特性図。The output torque characteristic and cogging torque characteristic figure of the conventional three-phase rotary electric machine system. 本発明の第2の実施の形態の回転電機システムの説明図。Explanatory drawing of the rotary electric machine system of the 2nd Embodiment of this invention. 上記第2の実施の形態の回転電機システムによる4極運転時の回転磁界の分布図。The distribution map of the rotating magnetic field during four-pole operation by the rotating electrical machine system of the second embodiment. 上記第2の実施の形態の回転電機システムによる8極運転時の回転磁界の分布図。The distribution map of the rotating magnetic field at the time of 8-pole operation by the rotating electrical machine system of the second embodiment. 可変速モータの可変速運転における低速運転時の極数と高速運転時の極数との極数変換を示す説明図。Explanatory drawing which shows pole number conversion of the pole number at the time of low speed driving | running | working in the variable speed driving | operation of a variable speed motor, and the pole number at the time of high speed driving | operation. 本発明の第3の実施の形態の回転電機システムのブロック図。The block diagram of the rotary electric machine system of the 3rd Embodiment of this invention. 上記第3の実施の形態の回転電機システムのモータ部の断面図。Sectional drawing of the motor part of the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムにおけるインバータの出力パターン表。The output pattern table | surface of the inverter in the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムのモータパラメータ表。The motor parameter table | surface of the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムの無負荷時解析条件表。The no-load analysis condition table of the rotating electrical machine system of the third embodiment. 上記第3の実施の形態の回転電機システムにおけるインバータ出力電流特性図、インバータの出力電圧特性図、回転速度特性図。The inverter output current characteristic figure in the rotary electric machine system of the said 3rd Embodiment, the output voltage characteristic figure of an inverter, and a rotational speed characteristic figure. 上記第3の実施の形態の回転電機システムにおけるインバータの出力電圧特性図。The output voltage characteristic view of the inverter in the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムのモータ回転速度特性図。The motor rotational speed characteristic figure of the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムの負荷時解析条件表。An on-load analysis condition table for the rotating electrical machine system according to the third embodiment. 上記第3の実施の形態の回転電機システムのモータの負荷時回転速度特性図。The rotational speed characteristic figure at the time of the load of the motor of the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムのモータの負荷時すべり特性図。The slip characteristic figure at the time of the load of the motor of the rotary electric machine system of the said 3rd Embodiment. 上記第3の実施の形態の回転電機システムのモータの負荷時トルク特性図。The torque characteristic figure at the time of the load of the motor of the rotary electric machine system of the said 3rd Embodiment.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1の実施の形態>
図1、図2に示すように、第1の実施の形態の回転電機システムはモータ1であり、9スロットの固定子鉄心11と固定子鉄心11の各スロット12内に配置したコイル13(13a〜13i)から成る固定子10と、回転子鉄心21内に永久磁石22を埋め込んだ4極または8極の磁極を有する回転子20とを備え、固定子10の各スロット12内のコイル13a,13b,…,13i各々には個々に独立した電力変換回路30a,30b,…,30iそれぞれを接続した構成である。固定子10の内周面と回転子20の外周面との間にはエアギャップ40を形成している。
<First Embodiment>
As shown in FIGS. 1 and 2, the rotating electrical machine system according to the first embodiment is a motor 1, and a 9-slot stator core 11 and coils 13 (13 a) disposed in each slot 12 of the stator core 11. 13i) and a rotor 20 having a 4-pole or 8-pole magnetic pole in which a permanent magnet 22 is embedded in a rotor iron core 21, and a coil 13a in each slot 12 of the stator 10. Each of 13b,..., 13i has an independent power conversion circuit 30a, 30b,. An air gap 40 is formed between the inner peripheral surface of the stator 10 and the outer peripheral surface of the rotor 20.

本実施の形態における電力変換回路30a,30b,…,30iはフルブリッジの単相インバータ回路で構成している。これにより、固定子10の複数のコイル13a〜13i各々に電流位相を40°ずつシフトした電流が流れるように複数のコイル13a,13b,…,13i各々に接続された電力変換回路30a,30b,…,30iのパワー素子のスイッチング動作を制御して、モータ1の全体としては9個のコイル13a〜13iに電気角で40°ずつ位相のずれた9相の電流を流すことができる。これによって、モータ1は9相モータとして駆動できる。   The power conversion circuits 30a, 30b,..., 30i in the present embodiment are configured by full-bridge single-phase inverter circuits. Thereby, the power conversion circuits 30a, 30b connected to each of the plurality of coils 13a, 13b,..., 13i so that a current having a current phase shifted by 40 ° flows to each of the plurality of coils 13a to 13i of the stator 10. .., 30i by controlling the switching operation of the power elements, the motor 1 as a whole can pass nine-phase currents that are out of phase by 40 ° in electrical angle through the nine coils 13a to 13i. As a result, the motor 1 can be driven as a nine-phase motor.

[トルクリプルの低減]
本実施の形態のモータ1の特性を検証するため、電磁界解析でモータ1の固定子10のコイル13a〜13iに図4に示す電気角で40°ずつ位相のずれた9相の電流を流して8極誘導モータとして無負荷運転したとき、図5に示す駆動特性が得られた。図6には参照のために従来の3相モータの駆動特性を示している。
[Reduction of torque ripple]
In order to verify the characteristics of the motor 1 of the present embodiment, a nine-phase current having a phase shift of 40 ° in terms of the electrical angle shown in FIG. 4 is applied to the coils 13a to 13i of the stator 10 of the motor 1 by electromagnetic field analysis. When the no-load operation was performed as an 8-pole induction motor, the drive characteristics shown in FIG. 5 were obtained. FIG. 6 shows the driving characteristics of a conventional three-phase motor for reference.

図3〜図5に示すように、コイル13a,13b,…,13i各々に電力変換回路30a,30b,…,30i各々を接続している。例えば、a相の電力変換回路30aでは電気角で2π(4/9)位相の電流I4をコイル13aに流し、以下同様に、b相の電力変換回路30bでは2π(3/9)位相の電流I3をコイル13bに流し、c相の電力変換回路30cでは2π(2/9)位相の電流I2をコイル13cに流し、d相の電力変換回路30dでは2π(1/9)位相の電流I1をコイル13dに流し、e相の電力変換回路30eでは2π(0/9)位相の電流I0をコイル13eに流し、f相の電力変換回路30fでは2π(−1/9)=2π(8/9)位相の電流I8をコイル13fに流し、g相の電力変換回路30gでは2π(−2/9)=2π(7/9)位相の電流I7をコイル13gに流し、h相の電力変換回路30hでは2π(−3/9)=2π(6/9)位相の電流I6をコイル13hに流し、i相の電力変換回路30iでは2π(−4/9)=2π(5/9)位相の電流I5をコイル13iに流すというように、電気角で40°の位相差を設けた単相電流をコイル13a,13b,…,13i各々に流すことにより8極誘導モータとして駆動した。   As shown in FIGS. 3 to 5, power conversion circuits 30 a, 30 b,..., 30 i are connected to the coils 13 a, 13 b,. For example, in the a-phase power conversion circuit 30a, a current I4 having an electrical angle of 2π (4/9) phase is passed through the coil 13a. Similarly, in the b-phase power conversion circuit 30b, a current of 2π (3/9) phase is supplied. I3 is caused to flow through the coil 13b, a 2π (2/9) phase current I2 is caused to flow through the coil 13c in the c phase power conversion circuit 30c, and a 2π (1/9) phase current I1 is caused to flow in the coil 13c. In the e-phase power conversion circuit 30e, a 2π (0/9) phase current I0 is caused to flow in the coil 13e, and in the f-phase power conversion circuit 30f, 2π (−1/9) = 2π (8/9). ) A phase current I8 is caused to flow through the coil 13f, and a 2π (−2/9) = 2π (7/9) phase current I7 is caused to flow through the coil 13g in the g-phase power conversion circuit 30g. Then, 2π (-3/9) = 2π (6/9) phase Current i6 is caused to flow through the coil 13h, and in the i-phase power conversion circuit 30i, a current I5 having a phase of 2π (−4/9) = 2π (5/9) is caused to flow through the coil 13i. A single-phase current having a phase difference was supplied to each of the coils 13a, 13b,.

これによって、図6の特性グラフに示したように従来の3相モータのトルクリプルは5.70%であるのに対して、本実施の形態のモータ1では図5の特性グラフに示したようにトルクリプルが1.99%であり、従来の3相モータに対して半分以下に大幅に低減できていることが確認できた。尚、コギングトルクに関しては同等であった。   As a result, the torque ripple of the conventional three-phase motor is 5.70% as shown in the characteristic graph of FIG. 6, whereas the motor 1 of the present embodiment has the torque ripple as shown in the characteristic graph of FIG. The torque ripple was 1.99%, and it was confirmed that the torque ripple was significantly reduced to less than half that of the conventional three-phase motor. The cogging torque was the same.

[トルクと出力の変動低減]
複数のコイル13a,13b,…,13i各々で発生する電磁力の接線方向成分を個々に調整することによって、これらの合計となるモータ1全体のトルクや出力の変動を低減できる。主には複数のコイル13各々のq軸電流を可変することで個々の電磁力の接線方向成分を制御できる。
[Torque and output fluctuation reduction]
By individually adjusting the tangential direction component of the electromagnetic force generated in each of the plurality of coils 13a, 13b,..., 13i, the total torque and output fluctuation of the motor 1 can be reduced. The tangential component of each electromagnetic force can be controlled mainly by varying the q-axis current of each of the plurality of coils 13.

[振動と騒音の低減]
振動や騒音の発生要因はモータ1の電流で生じる電磁力の法線方向成分である。そこで複数のコイル13a,13b,…,13i各々で発生する法線力を個々に調整することによって、モータ1全体に分布して現れる振動モードと騒音モードを低減するように複数のコイル13a,13b,…,13i各々の電流を調整する。主には複数のコイル13a,13b,…,13i各々のd軸電流を変化させることで個々の法線力を制御する。
[Reduction of vibration and noise]
The generation factor of vibration and noise is a normal direction component of electromagnetic force generated by the current of the motor 1. Therefore, the normal force generated in each of the plurality of coils 13a, 13b,..., 13i is individually adjusted to reduce the vibration mode and the noise mode that appear distributed in the entire motor 1 so as to reduce the vibration mode and the noise mode. ,..., 13i are adjusted. Each normal force is controlled mainly by changing the d-axis current of each of the plurality of coils 13a, 13b,.

このように、本実施の形態の回転電機システムによれば、次のような作用、効果を奏する。   Thus, according to the rotating electrical machine system of the present embodiment, the following operations and effects are achieved.

(1)複数のコイル13a,13b,…,13i各々の電流位相を変化させることによって多相交流のモータや発電機にできるので、相切替時の変動が小さくなってトルク脈動や出力脈動を低減できる。   (1) By changing the current phase of each of the plurality of coils 13a, 13b,..., 13i, a multi-phase AC motor or generator can be obtained, so that fluctuation during phase switching is reduced and torque pulsation and output pulsation are reduced. it can.

(2)複数のコイル13a,13,…,13i各々の電流位相を可変にして相数や極数を変換することができるので、回転速度に応じて適切な相数や極数に切り替えて運転することができ、銅損や鉄損を低減できる。この結果、低速回転から高速回転まで広範囲で高効率のモータや発電機が得られ、総運転時間では省エネルギーや発電量の増加が図れる。   (2) Since the number of phases and the number of poles can be converted by changing the current phase of each of the plurality of coils 13a, 13,..., 13i, the operation is performed by switching to the appropriate number of phases and the number of poles according to the rotational speed. Copper loss and iron loss can be reduced. As a result, high-efficiency motors and generators can be obtained in a wide range from low-speed rotation to high-speed rotation, and energy can be saved and the amount of power generation can be increased in the total operation time.

(3)複数のコイル13a,13b,…,13i各々の電流I0,I1,…,I8の大きさや位相を制御して、モータや発電機の接線力であるトルク変動や出力変動をアクティブに低減できる。また、モータや発電機の法線力である振動や騒音をアクティブに低減できる。   (3) Actively reducing torque fluctuations and output fluctuations, which are tangential forces of motors and generators, by controlling the magnitudes and phases of the currents I0, I1,..., I8 of the coils 13a, 13b,. it can. In addition, vibration and noise that are normal forces of the motor and the generator can be actively reduced.

<第2の実施の形態>
図7に示した第2の実施の形態の回転電機システムは、回転子20’の構造として銅製の導体バー23を備えたかご型ロータで構成している。固定子10と電力変換回路30の構造は第1の実施の形態と同様である。この固定子10と回転子20’によってかご形誘導モータ1’を構成する。
<Second Embodiment>
The rotating electrical machine system according to the second embodiment shown in FIG. 7 is constituted by a cage rotor provided with a copper conductor bar 23 as a structure of the rotor 20 ′. The structures of the stator 10 and the power conversion circuit 30 are the same as those in the first embodiment. The stator 10 and the rotor 20 'constitute a squirrel-cage induction motor 1'.

この第2の実施の形態のかご型誘導モータ1’では、回転子20’に固定数の極がなく、固定子電流で形成される回転磁界で導体バー23に誘導された電流で回転子20に等価的な極が自動的に形成されて出力を生じる。   In the squirrel-cage induction motor 1 ′ according to the second embodiment, the rotor 20 ′ has no fixed number of poles, and the rotor 20 is driven by a current induced in the conductor bar 23 by a rotating magnetic field formed by the stator current. A pole equivalent to is automatically formed to produce an output.

図8には4極回転磁界の場合、図9には8極回転磁界の場合を示している。このように、モータの極数を変換する場合は、固定子10の複数のコイル13a,13b,…,13i各々に流れる電流位相を変化させるだけでよく、回転子20’の極数の変換は不要となる。これより極数変換も容易になり、極数変換時の瞬間的な電流の変動や出力の変動も小さくなる。   FIG. 8 shows a case of a quadrupole rotating magnetic field, and FIG. 9 shows a case of an octupole rotating magnetic field. Thus, when converting the number of poles of the motor, it is only necessary to change the phase of the current flowing through each of the coils 13a, 13b,..., 13i of the stator 10, and the number of poles of the rotor 20 ′ is converted. It becomes unnecessary. As a result, pole number conversion is facilitated, and instantaneous current fluctuation and output fluctuation during pole number conversion are also reduced.

<第3の実施の形態>
第3の実施の形態は、3相インバータを2台使用し、3相入力でモータの極数を8極/4極に極数可変なエレクトロニクスモータドライブシステムである。回転速度に応じてモータの極数を可変にすると全運転範囲で高性能化が可能となる。図10に示すように低速回転域では8極、高速回転域では4極に極数を変換する。高出力・高効率が得られる永久磁石モータの場合は、回転子の永久磁石の磁化を可変にして極数を変換し、さらに固定子巻線をパワー素子のスイッチング回路で接続切換えして極数の変換を行う。誘導モータの場合は、同様に固定子巻線をパワー素子のスイッチング回路で切換えて固定子の極数を変換し、各コイル電流により発生する固定子の回転磁界を制御して回転子の磁界を決定することにより、極数を変換する。
<Third Embodiment>
The third embodiment is an electronic motor drive system in which two three-phase inverters are used, and the number of motor poles can be varied to 8/4 poles by 3-phase input. If the number of poles of the motor is made variable according to the rotational speed, high performance can be achieved over the entire operation range. As shown in FIG. 10, the number of poles is converted to 8 poles in the low speed rotation range and 4 poles in the high speed rotation range. In the case of a permanent magnet motor with high output and high efficiency, the number of poles is changed by changing the number of poles by changing the magnetization of the permanent magnet of the rotor, and switching the stator winding with the switching circuit of the power element. Perform the conversion. In the case of an induction motor, similarly, the stator winding is switched by a power element switching circuit to convert the number of poles of the stator, and the rotating magnetic field of the stator generated by each coil current is controlled to control the rotor magnetic field. By determining, the number of poles is converted.

電気的な極数変換の方式は2方式がある。第1、第2の実施の形態に示したように各コイル13にそれぞれインバータ30を設置し、各コイル電流を個々に直接的に制御する方式(以下、「コイル電流直接制御方式」と称する。)と、6相インバータを用いて電流を制御する方式とがある。さらに3相インバータを複数台用いる方式も考えられる。(以下、「n×3相インバータ制御方式」と称する。)
コイル電流直接制御方式は、各コイル電流を制御できるため、制御による出力脈動の低減や高調波成分の低減、運転範囲の拡大などのモータドライブ性能の向上が期待できる。n×3相インバータ制御方式は前者と比べ制御の自由度は制限されるものの、従来のインバータ制御回路を利用できる点や現行の制御方式への適応が比較的に容易である。本実施の形態は、n×3相インバータ制御方式の回転電機システムである。
There are two methods of electrical pole number conversion. As shown in the first and second embodiments, an inverter 30 is installed in each coil 13, and each coil current is directly controlled individually (hereinafter referred to as "coil current direct control system"). ) And a method of controlling current using a six-phase inverter. Furthermore, a method using a plurality of three-phase inverters is also conceivable. (Hereinafter referred to as “n × 3 phase inverter control system”.)
Since the coil current direct control method can control each coil current, it can be expected to improve motor drive performance such as reduction of output pulsation, reduction of harmonic components, and expansion of the operation range by the control. Although the degree of freedom of control is limited in the n × 3 phase inverter control method as compared with the former, the conventional inverter control circuit can be used and the adaptation to the current control method is relatively easy. The present embodiment is an n × 3 phase inverter control type rotating electrical machine system.

極数変換エレクトロニクスモータの構成はPMモータタイプとIMモータタイプとがある。PMモータは、12個のスロットに集中巻コイルを設けた固定子と、16個の低保磁力の磁石を放射状に配置した回転子とで構成される。IMモータは、固定子の各コイルを独立させた集中巻かご型誘導機である。   There are PM motor type and IM motor type configurations of the pole number conversion motor. The PM motor includes a stator having concentrated winding coils in 12 slots, and a rotor in which 16 low coercivity magnets are arranged radially. The IM motor is a concentrated squirrel-cage induction machine in which each coil of the stator is made independent.

以下、図11、図12を用いて第3の実施の形態の回転電機システムとして、ロータ極数の変換が不要なIMモータ1”について説明する。固定子10”側にある固定子鉄心11”内のスロット12”に設置した12個の各コイル13”を対角線にあるコイル2個を並列に接続し、等価的に6個のコイル13”の電流を3相インバータINV0,INV1の2台で制御する。コントローラ50はインバータINV0の出力a,b,cとインバータINV1の出力a’,b’,c’とを同期させ制御をする。回転子20”は第2の実施の形態と同様、導体バー23を設置したかご型ロータである。   Hereinafter, an IM motor 1 ″ that does not require conversion of the number of rotor poles will be described as a rotating electrical machine system according to the third embodiment with reference to FIGS. 11 and 12. The stator core 11 ″ on the stator 10 ″ side. Twelve coils 13 ″ installed in the slot 12 ″ in the inside are connected in parallel with two diagonal coils, and the current of the six coils 13 ″ is equivalently supplied by two units of three-phase inverters INV0 and INV1. Control. The controller 50 controls the outputs a, b, c of the inverter INV0 and the outputs a ', b', c 'of the inverter INV1 in synchronization. The rotor 20 ″ is a squirrel-cage rotor provided with conductor bars 23, as in the second embodiment.

コントローラ50はオープンループ制御のVVVF制御である。加えて極数変換関数を定義し、制御変数により8極の回転磁界と4極の回転磁界を制御変数により切り替える。図12にモータコイルを並列に接続した構成とインバータ接続構成を示す。また、インバータ出力パターンを図13に示す。   The controller 50 is open loop control VVVF control. In addition, a pole conversion function is defined, and an 8-pole rotating magnetic field and a 4-pole rotating magnetic field are switched by a control variable by a control variable. FIG. 12 shows a configuration in which motor coils are connected in parallel and an inverter connection configuration. An inverter output pattern is shown in FIG.

[3相8極/4極変換のシミュレーション]
それぞれ独立したインバータINV0,INV1でドライブ制御を行い、極数変換は主回路電源のオンオフで行う。制御系はオープンループのVVVF制御を適応する。シミュレーション上のモータパラメータは汎用かご型誘導機のものを用いる。極数以外のパラメータは同等として設定する。図14にモータパラメータを示す。
[3-phase 8-pole / 4-pole conversion simulation]
Drive control is performed by independent inverters INV0 and INV1, and pole number conversion is performed by turning on and off the main circuit power supply. The control system adapts open loop VVVF control. The motor parameters used in the simulation are those of a general-purpose squirrel-cage induction machine. Parameters other than the number of poles are set as equivalent. FIG. 14 shows the motor parameters.

[3相8極/4極無負荷時極数変換特性]
回路シミュレータを使用し、無負荷時に極数変換を行った時の過渡応答特性を得た。図15に解析条件を示す。また、図16A〜図16Cに8極から4極への極数変換時の各インバータ出力電流、線間電圧、回転速度の過渡応答特性を示す。Iu,Iv,IwはインバータINV0,INV1の出力電流を合成した値である。図16Aと図16Bから8極から4極へ極数変換した時に電流と電圧の周期が2倍に変化し、安定に駆動できていることが確認できる。
[3-phase 8-pole / 4-pole no-load pole number conversion characteristics]
Using a circuit simulator, we obtained the transient response characteristics when the number of poles was converted at no load. FIG. 15 shows the analysis conditions. 16A to 16C show transient response characteristics of each inverter output current, line voltage, and rotation speed when converting the number of poles from 8 poles to 4 poles. Iu, Iv, and Iw are values obtained by combining the output currents of the inverters INV0 and INV1. From FIG. 16A and FIG. 16B, when the number of poles is converted from 8 poles to 4 poles, it can be confirmed that the cycle of current and voltage changes twice, and that stable driving is possible.

[3相8極/4極負荷時極数変換特性]
次に、負荷時に極数変換を行った時の過渡応答特性を説明する。図17に解析条件を示す。また、図18A〜図18Cに8極/4極変換時の回転速度、すべり、トルクの過渡応答特性を示す。VVVF制御を適用し変調率ゲインを無負荷時と同等にしたため、インバータ出力電流および線間電圧は同一の波形を確認した。これら図18A〜図18Cから8極から4極に変換すると、同一トルク(同量の負荷)におけるすべりが大きくなっていることが確認できる。
[3-phase 8-pole / 4-pole load pole number conversion characteristics]
Next, a transient response characteristic when the pole number conversion is performed at the time of load will be described. FIG. 17 shows the analysis conditions. 18A to 18C show transient response characteristics of rotational speed, slip, and torque at the time of 8-pole / 4-pole conversion. Since VVVF control was applied and the modulation factor gain was made equal to that at no load, the inverter output current and the line voltage confirmed the same waveform. When converting from 8 poles to 4 poles from FIGS. 18A to 18C, it can be confirmed that the slip at the same torque (the same amount of load) is increased.

以上のように第3の実施の形態の回転電機システムによれば、n×3相インバータ制御方式で極数変換制御運転ができ、コイル電流直接制御方式に対して制御の自由度は制限されるものの、従来のインバータ制御回路を利用でき、また現行の制御方式への適応が比較的に容易である利点がある。   As described above, according to the rotating electrical machine system of the third embodiment, the pole number conversion control operation can be performed by the n × 3 phase inverter control method, and the degree of freedom of control is limited as compared with the coil current direct control method. However, there are advantages that a conventional inverter control circuit can be used and that adaptation to the current control method is relatively easy.

1,1’,1” モータ
10,10” 固定子
11 固定子鉄心
12,12” スロット
13a,13b,…,13i,13” 固定子コイル
20,20’,20” 回転子
21 回転子鉄心
22 永久磁石
23 導体バー
30a,30b,…,30i 電力変換回路
40 エアギャップ
50 コントローラ
INV0,INV1 インバータ
1, 1 ', 1 "motor 10, 10" stator 11 stator core 12, 12 "slot 13a, 13b, ..., 13i, 13" stator coil 20, 20', 20 "rotor 21 rotor core 22 Permanent magnet 23 Conductor bars 30a, 30b, ..., 30i Power conversion circuit 40 Air gap 50 Controller INV0, INV1 Inverter

Claims (8)

複数のコイル各々に流れる電流の大きさと位相とを変化させることができる電力変換回路、前記複数のコイル各々で成る巻線を有する固定子、及び、コイルまたは永久磁石または磁気的突極鉄心を有する回転子から構成されることを特徴とする回転電機システム。   A power conversion circuit capable of changing the magnitude and phase of a current flowing in each of the plurality of coils, a stator having a winding composed of each of the plurality of coils, and a coil, a permanent magnet, or a magnetic salient pole iron core A rotating electrical machine system comprising a rotor. 複数のコイル各々に流れる電流の大きさと位相とを変化させることができる電力変換回路、前記複数のコイル各々で成る巻線を有する固定子、及び、コイルまたは永久磁石または磁気的突極鉄心を有する回転子から構成される回転電機システムにおいて、
前記電力変換回路は、前記複数のコイル各々に流れる電流の大きさと位相とを個々に変化させることができるものとしたことを特徴とする回転電機システム。
A power conversion circuit capable of changing the magnitude and phase of a current flowing in each of the plurality of coils, a stator having a winding composed of each of the plurality of coils, and a coil, a permanent magnet, or a magnetic salient pole iron core In a rotating electrical machine system composed of rotors,
The rotating electrical machine system, wherein the power conversion circuit is capable of individually changing a magnitude and a phase of a current flowing through each of the plurality of coils.
複数のコイル各々に流れる電流の大きさと位相とを変化させることができる電力変換回路、前記複数のコイル各々で成る巻線を有する固定子、及び、コイルまたは永久磁石または磁気的突極鉄心を有する回転子から構成される回転電機システムにおいて、
前記電力変換回路は、前記コイルを複数のコイルを接続したグループ毎の巻線に分け、前記グループ毎の巻線に流れる電流の大きさと位相とを個々に変化させることができる電力変換回路としたことを特徴とする回転電機システム。
A power conversion circuit capable of changing the magnitude and phase of a current flowing in each of the plurality of coils, a stator having a winding composed of each of the plurality of coils, and a coil, a permanent magnet, or a magnetic salient pole iron core In a rotating electrical machine system composed of rotors,
The power conversion circuit is a power conversion circuit that divides the coil into windings for each group in which a plurality of coils are connected, and can individually change the magnitude and phase of the current flowing through the windings for each group. A rotating electrical machine system characterized by that.
前記複数のコイル各々に流れる電流の位相を可変にして相数を可変したことを特徴とする請求項1〜3のいずれかに記載の回転電機システム。   The rotating electrical machine system according to any one of claims 1 to 3, wherein the number of phases is changed by changing a phase of a current flowing through each of the plurality of coils. 前記複数のコイル各々に流れる電流の位相を可変にして極数を可変にしたことを特徴とする請求項1〜4のいずれかに記載の回転電機システム。   The rotating electrical machine system according to any one of claims 1 to 4, wherein the number of poles is made variable by changing a phase of a current flowing through each of the plurality of coils. 前記複数のコイル各々に流れる電流の大きさと位相を可変にして前記複数のコイル各々で生じるトルク脈動波形と出力脈動波形を互いに逆位相にし、または位相をずらして前記脈動を低減する制御機能を有することを特徴とする請求項1〜5のいずれかに記載の回転電機システム。   A control function for reducing the pulsation by shifting the magnitude and phase of the current flowing through each of the plurality of coils so that the torque pulsation waveform and the output pulsation waveform generated in each of the plurality of coils are opposite to each other or shifted in phase. The rotating electrical machine system according to any one of claims 1 to 5. 前記複数のコイル各々に流れる電流の大きさと位相を可変にして前記複数のコイル各々で生じるトルク脈動波形と出力脈動波形を互いに逆位相にするか、または位相をずらして前記脈動を低減する制御機能を有することを特徴とする請求項1〜6のいずれかに記載の回転電機システム。   A control function for reducing the pulsation by changing the magnitude and phase of the current flowing through each of the plurality of coils so that the torque pulsation waveform and the output pulsation waveform generated in each of the plurality of coils are in opposite phases, or shifted in phase. The rotating electrical machine system according to claim 1, comprising: 通電時の前記コイル全体で形成する回転磁界が極数の異なる複数の回転磁界を同時に形成する場合に、不要とする極数の回転磁界に対して逆位相の回転磁界を形成する電流を前記複数のコイル各々に流れる電流に重畳させた電流波形を、前記複数のコイル各々に流れる電流の大きさと位相を変化させて形成することを特徴とする請求項1〜7のいずれかに記載の回転電機システム。
When the rotating magnetic field formed by the entire coil during energization forms a plurality of rotating magnetic fields having different pole numbers at the same time, the plurality of currents that form a rotating magnetic field having an opposite phase to the rotating magnetic field having the number of poles that are not required The rotating electrical machine according to claim 1, wherein a current waveform superimposed on a current flowing through each of the coils is formed by changing a magnitude and a phase of a current flowing through each of the plurality of coils. system.
JP2015186437A 2015-09-24 2015-09-24 Rotary electric machine system Pending JP2017063518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186437A JP2017063518A (en) 2015-09-24 2015-09-24 Rotary electric machine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186437A JP2017063518A (en) 2015-09-24 2015-09-24 Rotary electric machine system

Publications (1)

Publication Number Publication Date
JP2017063518A true JP2017063518A (en) 2017-03-30

Family

ID=58430297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186437A Pending JP2017063518A (en) 2015-09-24 2015-09-24 Rotary electric machine system

Country Status (1)

Country Link
JP (1) JP2017063518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050639A (en) * 2017-12-06 2018-05-18 中山市天隆燃具电器有限公司 A kind of distribution machine room ventilation energy-saving equipment
WO2018235586A1 (en) * 2017-06-20 2018-12-27 株式会社デンソー Pole-changing rotating electric machine control device
JPWO2018159763A1 (en) * 2017-03-03 2019-11-07 東芝産業機器システム株式会社 Rotating electrical machine system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111690A (en) * 1979-02-16 1980-08-28 Meidensha Electric Mfg Co Ltd Pole changer for induction motor
JPS583586A (en) * 1981-06-26 1983-01-10 Nippon Steel Corp Torque controller for thyristor motor
JPH06319289A (en) * 1993-03-12 1994-11-15 Meidensha Corp Operation system for induction motor
JPH07298685A (en) * 1994-04-27 1995-11-10 Meidensha Corp Driving system of multiplex winding motor
JPH07322413A (en) * 1994-05-24 1995-12-08 Hitachi Ltd Rotary electric machine controller and electric car
JPH09331694A (en) * 1996-06-10 1997-12-22 Toshiba Corp Inverter motor
JP2001352798A (en) * 2000-06-02 2001-12-21 Mitsubishi Electric Corp Control equipment and control method of permanent magnet synchronous motor
WO2009144957A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous electric motor drive system
JP2013039032A (en) * 2006-07-13 2013-02-21 Protean Electric Ltd Electric motors
JP2014168331A (en) * 2013-02-28 2014-09-11 Toyo Univ Permanent magnet dynamo-electric machine and permanent magnet dynamo-electric machine drive system
WO2015001612A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Motor control device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111690A (en) * 1979-02-16 1980-08-28 Meidensha Electric Mfg Co Ltd Pole changer for induction motor
JPS583586A (en) * 1981-06-26 1983-01-10 Nippon Steel Corp Torque controller for thyristor motor
JPH06319289A (en) * 1993-03-12 1994-11-15 Meidensha Corp Operation system for induction motor
JPH07298685A (en) * 1994-04-27 1995-11-10 Meidensha Corp Driving system of multiplex winding motor
JPH07322413A (en) * 1994-05-24 1995-12-08 Hitachi Ltd Rotary electric machine controller and electric car
JPH09331694A (en) * 1996-06-10 1997-12-22 Toshiba Corp Inverter motor
JP2001352798A (en) * 2000-06-02 2001-12-21 Mitsubishi Electric Corp Control equipment and control method of permanent magnet synchronous motor
JP2013039032A (en) * 2006-07-13 2013-02-21 Protean Electric Ltd Electric motors
WO2009144957A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous electric motor drive system
JP2014168331A (en) * 2013-02-28 2014-09-11 Toyo Univ Permanent magnet dynamo-electric machine and permanent magnet dynamo-electric machine drive system
WO2015001612A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Motor control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018159763A1 (en) * 2017-03-03 2019-11-07 東芝産業機器システム株式会社 Rotating electrical machine system
WO2018235586A1 (en) * 2017-06-20 2018-12-27 株式会社デンソー Pole-changing rotating electric machine control device
CN108050639A (en) * 2017-12-06 2018-05-18 中山市天隆燃具电器有限公司 A kind of distribution machine room ventilation energy-saving equipment

Similar Documents

Publication Publication Date Title
Ibrahim et al. An improved torque density synchronous reluctance machine with a combined star–delta winding layout
Zhu et al. Integrated field and armature current control for dual three-phase variable flux reluctance machine drives
Ding et al. Performance improvement for segmented-stator hybrid-excitation SRM drives using an improved asymmetric half-bridge converter
Xu et al. Pole optimization and thrust ripple suppression of new Halbach consequent-pole PMLSM for ropeless elevator propulsion
JP2012222941A (en) Rotating electric machine
Sun et al. Winding design for pole-phase modulation of induction machines
Husain et al. DC-assisted bipolar switched reluctance machine
Fernando et al. Flux switching machines: A review on design and applications
CN111435813B (en) Dual stator PM machine with third harmonic current injection
Cai et al. Analysis of synergistic stator permanent magnet machine with the synergies of flux-switching and flux-reversal effects
Wu et al. Reduction of on-load DC winding-induced voltage in partitioned stator wound field switched flux machines by dual three-phase armature winding
JP2017063518A (en) Rotary electric machine system
Vandana et al. High torque polyphase segmented switched reluctance motor with novel excitation strategy
Jia et al. Analysis and experiment of a dual stator/rotor PM and winding flux modulated PM machine
Wang et al. Fault-tolerant analysis and design of AFPMSM with multi-disc type coreless open-end winding
Saeed et al. Partitioned stator doubly-fed brushless reluctance machine for wind generating systems
Shao et al. Design of a twelve-phase flux-switching permanent magnet machine for wind power generation
JP5335927B2 (en) Wind generator and wind power generation system
Yano et al. Integrated motor-controlled independently by multi-inverters with pole and phase changes
JP2014168331A (en) Permanent magnet dynamo-electric machine and permanent magnet dynamo-electric machine drive system
CN203522358U (en) Switch reluctance motor with phase change winding
CN103269134A (en) Nine-phase flux-switching permanent magnet motor
Ullah et al. Design of a low-cost dual rotor field excited flux switching generator for wind turbine applications
da Rosa et al. Comparison of operating curves of five-phase and three-phase induction machines of same size
CN114520559A (en) Winding mode of motor and driving system of motor

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200923