JP2017039630A - Porous carbon material and manufacturing method therefor - Google Patents

Porous carbon material and manufacturing method therefor Download PDF

Info

Publication number
JP2017039630A
JP2017039630A JP2015163731A JP2015163731A JP2017039630A JP 2017039630 A JP2017039630 A JP 2017039630A JP 2015163731 A JP2015163731 A JP 2015163731A JP 2015163731 A JP2015163731 A JP 2015163731A JP 2017039630 A JP2017039630 A JP 2017039630A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
nitrogen
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015163731A
Other languages
Japanese (ja)
Inventor
勇介 井関
Yusuke Iseki
勇介 井関
宏寿 石井
Hirotoshi Ishii
宏寿 石井
誠之 柴田
Masayuki Shibata
誠之 柴田
浩昭 中村
Hiroaki Nakamura
浩昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2015163731A priority Critical patent/JP2017039630A/en
Publication of JP2017039630A publication Critical patent/JP2017039630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous carbon material usable as a fuel cell catalyst and having high oxygen reduction activity, a manufacturing method therefor and a catalyst and electrode using the same.SOLUTION: A porous carbon material contains nitrogen and at least one metal selected from iron, cobalt, nickel, copper, zinc, lithium, sodium, potassium, magnesium and calcium, and has specific surface area of 450 m/g or more. N/C ratio of all nitrogen atoms to all carbon atoms is 0.020 to 0.200 and metal/N ratio of all metal atoms to all nitrogen atoms is 0.02 to 2.00.SELECTED DRAWING: Figure 1

Description

本発明は、多孔質炭素材料及びその製造方法に関する。   The present invention relates to a porous carbon material and a method for producing the same.

燃料電池は高効率で、環境調和型電源として注目を集めている。しかしながら、燃料電池はその電極材料に、資源量が乏しく高価な白金及び白金を含む合金材料が使用されており、普及への大きな足枷の1つとなっている。   Fuel cells are attracting attention as environmentally friendly power sources with high efficiency. However, fuel cells use platinum and an alloy material containing platinum, which are scarce and have a small amount of resources, and are one of the major obstacles to popularization.

特にカソード側は酸素還元反応を促進させるために多くの白金を必要とし、白金等の高価な貴金属を使用しない電極触媒が求められている。そのため、世界中で白金代替触媒の開発が活発に進められている。しかしながら、未だ発電性能、耐久性は十分でなく、実用化には至っていない。   In particular, the cathode side requires a large amount of platinum to promote the oxygen reduction reaction, and an electrode catalyst that does not use expensive noble metals such as platinum is required. Therefore, the development of platinum alternative catalysts is being actively promoted around the world. However, the power generation performance and durability are still not sufficient and have not been put into practical use.

特許文献1では、窒素と金属を含む炭素触媒が記載されている。高い酸素還元活性を得るために、異なる結合エネルギーを有する窒素原子の比が検討されている。   In patent document 1, the carbon catalyst containing nitrogen and a metal is described. In order to obtain high oxygen reduction activity, the ratio of nitrogen atoms having different binding energies has been studied.

非特許文献1〜3は、カーボン材料共存下でアニリンを重合して前駆体を製造している。得られた前駆体を焼成しカーボン材料の表面に触媒層を形成しているが、重合物及び焼成物がカーボン材料の細孔を埋めてしまい、原料のカーボン材料よりもしばしば比表面積が小さくなっている。   Non-Patent Documents 1 to 3 produce a precursor by polymerizing aniline in the presence of a carbon material. The obtained precursor is calcined to form a catalyst layer on the surface of the carbon material. However, the polymer and the calcined material fill the pores of the carbon material, and the specific surface area is often smaller than the raw carbon material. ing.

特開2009−291706号公報JP 2009-291706 A

Science,2011,332,443.Science, 2011, 332, 443. J.Phys.Chem.,2012,116,16001.J. et al. Phys. Chem. 2012, 116, 16001. J.Mater.Chem.A.2014,2,1242.J. et al. Mater. Chem. A. 2014, 2, 1242.

本発明の目的は、燃料電池触媒として使用可能な高い酸素還元活性を有する多孔質炭素材料、その製造方法並びにそれを用いた触媒及び電極を提供することにある。   An object of the present invention is to provide a porous carbon material having high oxygen reduction activity that can be used as a fuel cell catalyst, a production method thereof, and a catalyst and an electrode using the same.

本発明者らは、多孔質炭素材料の前駆体中の金属比率や焼成条件を変えることにより、比表面積を調整できることを見い出し、さらに比表面積を大きくすることにより、材料内部まで有効に活用した高い触媒活性を得られることを見い出した。本発明はこれら知見に基づき完成した。   The present inventors have found that the specific surface area can be adjusted by changing the metal ratio in the precursor of the porous carbon material and the firing conditions, and further increasing the specific surface area to effectively utilize the interior of the material. It has been found that catalytic activity can be obtained. The present invention has been completed based on these findings.

本発明によれば、以下の多孔質炭素材料等が提供される。
1.窒素並びに、
鉄、コバルト、ニッケル、銅、亜鉛、リチウム、ナトリウム、カリウム、マグネシウム及びカルシウムから選択される少なくとも1つの金属を含み、
比表面積が450m/g以上の多孔質炭素材料であって、
全炭素原子に対する全窒素原子のN/C比が、0.020〜0.200であり、全窒素原子に対する全金属原子の金属/N比が、0.02〜2.00である多孔質炭素材料。
2.不活性ガス雰囲気下において、500℃〜1500℃の条件下で焼成することによって得られる1に記載の多孔質炭素材料。
3.原料として、(1)含窒素基を含む芳香族環化合物又は含窒素ヘテロ環化合物の重合体と、(2)鉄、コバルト、ニッケル、銅、亜鉛、リチウム、ナトリウム、カリウム、マグネシウム及びカルシウムから選択される少なくとも1つの金属を含む金属化合物を用いて、前駆体を作製し、
前記前駆体を焼成する
1記載の多孔質炭素材料の製造方法。
4.原料として、さらに(3)炭素原料を用いて、前記前駆体を作製する3に記載の製造方法。
5.前記(3)炭素原料と前記(1)重合体の合計のうち、前記(1)重合体の質量比率が50質量%以上である4に記載の製造方法。
6.前記含窒素基を含む芳香族環化合物が、ベンゾニトリル及びその誘導体、並びにアニリン及びその誘導体から選択される少なくとも1種である3〜5のいずれかに記載の製造方法。
7.前記含窒素ヘテロ環化合物が、含窒素複素単環化合物及び含窒素縮合複素環化合物から選択される少なくとも1種である3〜6のいずれかに記載の製造方法。
8.前記(2)金属化合物の質量比率が、前記(1)重合体の質量比率より多い3〜7のいずれかに記載の製造方法。
9.前記前駆体を不活性ガス雰囲気下において500℃〜1500℃で焼成する3〜8のいずれかに記載の製造方法。
10.1又は2に記載の多孔質炭素材料からなる酸素還元用又は燃料電池用触媒。
11.1又は2に記載の多孔質炭素材料を含む電極材料。
12.1又は2に記載の多孔質炭素材料と、導電性カーボン材料とを含む混合物。
13.1又は2に記載の多孔質炭素材料とイオン伝導性材料とを含む混合物。
14.12又は13に記載の混合物から得られる成形体。
15.固体電解質と、前記固体電解質を挟んで対向配置された電極とを含み、前記電極の少なくとも一方に、1又は2に記載の多孔質炭素材料を有する燃料電池。
16.固体電解質と、前記固体電解質を挟んで対向配置された電極とを含み、前記電極の少なくとも一方に、1又は2に記載の多孔質炭素材料を有する発電機器。
17.電極材と、電解質とを含み、前記電極材が、1又は2に記載の多孔質炭素材料を含む蓄電装置。
According to the present invention, the following porous carbon materials and the like are provided.
1. Nitrogen and
Including at least one metal selected from iron, cobalt, nickel, copper, zinc, lithium, sodium, potassium, magnesium and calcium;
A porous carbon material having a specific surface area of 450 m 2 / g or more,
Porous carbon in which the N / C ratio of all nitrogen atoms to all carbon atoms is 0.020 to 0.200, and the metal / N ratio of all metal atoms to all nitrogen atoms is 0.02 to 2.00 material.
2. 2. The porous carbon material according to 1, obtained by firing under conditions of 500 ° C. to 1500 ° C. in an inert gas atmosphere.
3. The raw material is selected from (1) a polymer of an aromatic ring compound or nitrogen-containing heterocyclic compound containing a nitrogen-containing group, and (2) iron, cobalt, nickel, copper, zinc, lithium, sodium, potassium, magnesium and calcium. Using a metal compound comprising at least one metal to be prepared,
2. The method for producing a porous carbon material according to 1, wherein the precursor is fired.
4). 4. The production method according to 3, wherein the precursor is further produced by using (3) a carbon raw material as a raw material.
5). 5. The production method according to 4, wherein the mass ratio of the (1) polymer is 50% by mass or more in the total of the (3) carbon raw material and the (1) polymer.
6). The manufacturing method in any one of 3-5 whose aromatic ring compound containing the said nitrogen-containing group is at least 1 sort (s) selected from benzonitrile and its derivative (s), and aniline and its derivative (s).
7). The production method according to any one of 3 to 6, wherein the nitrogen-containing heterocyclic compound is at least one selected from a nitrogen-containing heterocyclic monocyclic compound and a nitrogen-containing condensed heterocyclic compound.
8). The production method according to any one of 3 to 7, wherein the mass ratio of the (2) metal compound is larger than the mass ratio of the (1) polymer.
9. The manufacturing method in any one of 3-8 which bakes the said precursor at 500 to 1500 degreeC in inert gas atmosphere.
10. A catalyst for oxygen reduction or fuel cell comprising the porous carbon material according to 10.1 or 2.
11. An electrode material comprising the porous carbon material described in 2 or 1.
A mixture comprising the porous carbon material according to 12.1 or 2 and a conductive carbon material.
13. A mixture comprising the porous carbon material according to 1 or 2 and an ion conductive material.
14. A molded body obtained from the mixture according to 12 or 13.
15. A fuel cell comprising: a solid electrolyte; and an electrode disposed opposite to the solid electrolyte, the porous carbon material according to 1 or 2 being provided on at least one of the electrodes.
16. A power generator including a solid electrolyte and electrodes arranged to face each other with the solid electrolyte interposed therebetween, and having the porous carbon material according to 1 or 2 on at least one of the electrodes.
17. A power storage device including an electrode material and an electrolyte, wherein the electrode material includes the porous carbon material according to 1 or 2.

本発明によれば、燃料電池触媒として使用可能な高い酸素還元活性を有する多孔質炭素材料、その製造方法並びにそれを用いた触媒及び電極を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the porous carbon material which has high oxygen reduction activity which can be used as a fuel cell catalyst, its manufacturing method, a catalyst using the same, and an electrode can be provided.

本発明の多孔質炭素材料の製造工程の模式図である。It is a schematic diagram of the manufacturing process of the porous carbon material of this invention. 前駆体における金属化合物の質量比率と比表面積の関係を示す図である。It is a figure which shows the relationship between the mass ratio of the metal compound in a precursor, and a specific surface area. 本発明の燃料電池の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the fuel cell of this invention. 本発明の蓄電装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the electrical storage apparatus of this invention.

本発明の多孔質炭素材料は、炭素中に、窒素と金属を含み、比表面積が450m/g以上である。金属としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)等の遷移金属、リチウム(Li)、ナトリウム(Na)、カリウム(K)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)等のアルカリ土類金属を用いることができる。具体的には、鉄、コバルト、ニッケル、銅、亜鉛、リチウム、ナトリウム、カリウム、マグネシウム及びカルシウムから選択される少なくとも1つの金属を含む。
金属種は窒素及び酸素との親和性を有する遷移金属が好ましいため、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)を1種以上含むことが好ましい。
特に鉄(Fe)やコバルト(Co)は生体酵素にも含まれ、酸素還元反応を触媒することが知られており、これらのうちどちらかを用いることが好ましい。
The porous carbon material of the present invention contains nitrogen and metal in carbon and has a specific surface area of 450 m 2 / g or more. Examples of metals include transition metals such as iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn), and alkalis such as lithium (Li), sodium (Na), and potassium (K). An alkaline earth metal such as metal, magnesium (Mg), calcium (Ca), or the like can be used. Specifically, at least one metal selected from iron, cobalt, nickel, copper, zinc, lithium, sodium, potassium, magnesium and calcium is included.
Since the metal species is preferably a transition metal having an affinity for nitrogen and oxygen, it is preferable to include one or more of iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn). .
In particular, iron (Fe) and cobalt (Co) are also included in biological enzymes and are known to catalyze the oxygen reduction reaction, and it is preferable to use one of these.

金属を活性化させるためには窒素と金属とが配位していることが好ましい。従って、窒素量が多いほど、活性の向上に繋がる。しかしながら窒素量が多すぎると、電子伝導性を阻害する恐れがある。
元素分析により求めた全炭素量と全窒素量の元素比率(N/C)は、通常0.020〜0.200であり、好ましくは0.022〜0.120であり、より好ましくは0.025〜0.120であり、さらに好ましくは0.055〜0.120である。
In order to activate the metal, it is preferable that nitrogen and the metal are coordinated. Therefore, the greater the amount of nitrogen, the better the activity. However, if the amount of nitrogen is too large, the electron conductivity may be hindered.
The elemental ratio (N / C) of the total carbon amount and the total nitrogen amount determined by elemental analysis is usually 0.020 to 0.200, preferably 0.022 to 0.120, more preferably 0.8. It is 025-0.120, More preferably, it is 0.055-0.120.

触媒全体を有効活用することが好ましく、これを評価するためには表面に存在する量ではなく全体に存在する量を評価する方がよい。従って、評価方法は表面分析手法であるXPS(X線光電子分光)等よりも元素分析にて全体量を評価する方が好ましい。   It is preferable to effectively utilize the entire catalyst, and in order to evaluate this, it is better to evaluate the amount present on the whole rather than the amount present on the surface. Therefore, it is preferable to evaluate the total amount by elemental analysis rather than XPS (X-ray photoelectron spectroscopy) which is a surface analysis method.

金属の分散性が大きい方が活性点密度の向上に繋がり、さらには触媒としての活性の向上に繋がる。よって、担持箇所である窒素量に対して、金属量は多すぎないことが好ましい。
元素分析により求めた全金属量と全窒素量の元素比率(金属/窒素)は、通常0.010〜2.00であり、好ましくは0.012〜1.00であり、より好ましくは0.015〜0.500であり、さらに好ましくは0.020〜0.400である。
The greater the dispersibility of the metal, the higher the active site density, and the higher the activity as a catalyst. Therefore, it is preferable that the amount of metal is not too much with respect to the amount of nitrogen that is the support site.
The elemental ratio (metal / nitrogen) of the total metal amount and the total nitrogen amount determined by elemental analysis is usually from 0.010 to 2.00, preferably from 0.012 to 1.00, more preferably from 0.02. It is 015 to 0.500, More preferably, it is 0.020 to 0.400.

本発明の多孔質炭素材料は、後述する原料由来の原子のみから構成するとしてよい。原料由来の原子は製造の際に一部消失し得る。不可避不純物は含んでもよい。   The porous carbon material of the present invention may be composed only of atoms derived from raw materials described later. A part of the atoms derived from the raw material may disappear during the production. Inevitable impurities may be included.

活性部位を有効活用するには比表面積が大きいことが好ましい。BET法で求めた比表面積は、通常450〜1300m/gであり、好ましくは500〜1300m/gであり、より好ましくは550〜1300m/gであり、さらに好ましくは650〜1300m/gである。 In order to effectively utilize the active site, it is preferable that the specific surface area is large. The specific surface area determined by the BET method, is usually 450~1300m 2 / g, preferably 500~1300m 2 / g, more preferably 550~1300m 2 / g, more preferably 650~1300m 2 / g.

多孔質炭素材料の酸素還元活性値は、実施例に記載の測定方法で、0.70Vvs.RHEの電圧において、好ましくは−0.80〜−3.60mA/cmであり、より好ましくは−1.50〜−3.60mA/cmであり、より好ましくは−1.80〜−3.60mA/cmである。 The oxygen reduction activity value of the porous carbon material was 0.70 Vvs. The voltage of RHE is preferably −0.80 to −3.60 mA / cm 2 , more preferably −1.50 to −3.60 mA / cm 2 , and more preferably −1.80 to −3. .60 mA / cm 2 .

本発明の多孔質炭素材料は比表面積が大きく、材料内部にまで窒素及び金属が導入されているため、優れた酸素還元化活性を有する。そのため、燃料電池用電極触媒として用いることができる。また、導電性を有した多孔質炭素材料であることから、各種電極材料としても用いることができる。また、本発明の多孔質炭素材料は高価な白金を使用しないで低コストで製造できる。   Since the porous carbon material of the present invention has a large specific surface area and nitrogen and metal are introduced into the material, it has an excellent oxygen reduction activity. Therefore, it can be used as an electrode catalyst for fuel cells. Further, since it is a porous carbon material having conductivity, it can also be used as various electrode materials. Further, the porous carbon material of the present invention can be produced at low cost without using expensive platinum.

以下、本発明の多孔質炭素材料の製造方法について説明する。
本発明の多孔質炭素材料は、原料として、(1)含窒素基を含む芳香族環化合物又は含窒素ヘテロ環化合物の重合体と、(2)上記の金属を含む金属化合物を用いて前駆体を作製し、この前駆体を焼成して製造できる。
Hereinafter, the manufacturing method of the porous carbon material of this invention is demonstrated.
The porous carbon material of the present invention is a precursor using (1) a polymer of an aromatic ring compound or nitrogen-containing heterocyclic compound containing a nitrogen-containing group and (2) a metal compound containing the above metal as a raw material. Can be produced by firing this precursor.

図1に本発明の多孔質炭素材料の製造工程の模式図を示す。
図1(a)は、重合体に金属化合物が付着した前駆体を示し、この前駆体を焼成すると、(b)に示すように、表面積が大きく内部に金属が存在する多孔質炭素材料ができる。表面積が大きいため触媒内部まで利用できる。
FIG. 1 shows a schematic diagram of the production process of the porous carbon material of the present invention.
FIG. 1A shows a precursor in which a metal compound is attached to a polymer. When this precursor is baked, a porous carbon material having a large surface area and containing a metal is formed as shown in FIG. 1B. . Since the surface area is large, it can be used even inside the catalyst.

重合体には、オリゴマー、ポリマー又はこれらの混合物が含まれる。重合度は限定されないが、通常、10以上である。低分子化合物では揮発、昇華が生じ焼成が困難になるため重合体が好ましい。好ましくはポリマーである。   The polymer includes an oligomer, a polymer, or a mixture thereof. The degree of polymerization is not limited, but is usually 10 or more. Polymers are preferred because low molecular weight compounds cause volatilization and sublimation, making firing difficult. A polymer is preferred.

原料として用いる金属は上記の通りであり、多孔質炭素材料が含む金属に対応する。金属化合物として、金属塩化物、金属硝酸物、金属酸化物、金属酢酸物、金属錯体化合物等を使用できる。   The metal used as a raw material is as described above, and corresponds to the metal contained in the porous carbon material. As the metal compound, metal chloride, metal nitrate, metal oxide, metal acetate, metal complex compound and the like can be used.

原料として用いる重合体を構成する含窒素基を含む芳香族環化合物又は含窒素ヘテロ環化合物は、5員環構造や6員環構造等の環構造に窒素原子が含まれている、もしくは、環構造が含窒素基を有することで、焼成後も窒素原子が残留しやすく、触媒活性の向上に繋がる。含窒素基は環構造の近接部位にあると好ましい。   The aromatic ring compound or nitrogen-containing heterocyclic compound containing a nitrogen-containing group constituting the polymer used as a raw material contains a nitrogen atom in a ring structure such as a 5-membered ring structure or a 6-membered ring structure, or a ring When the structure has a nitrogen-containing group, nitrogen atoms are likely to remain even after calcination, leading to an improvement in catalytic activity. The nitrogen-containing group is preferably in the vicinity of the ring structure.

含窒素基としてアミノ基、ニトロ基等が挙げられる。芳香族環としてベンゼン環、ナフタレン環等が挙げられる。芳香族炭化水素環が好ましい。含窒素基が置換した芳香族環化合物は、ベンゾニトリル、アニリン及びこれらの誘導体が好ましい。   Examples of nitrogen-containing groups include amino groups and nitro groups. Examples of the aromatic ring include a benzene ring and a naphthalene ring. Aromatic hydrocarbon rings are preferred. The aromatic ring compound substituted with a nitrogen-containing group is preferably benzonitrile, aniline or a derivative thereof.

含窒素ヘテロ環化合物は、好ましくは含窒素複素単環化合物及び含窒素縮合複素環化合物から選択される少なくとも1種である。窒素以外の他のヘテロ原子は含まないことが好ましい。例えば、5員環化合物であるピロール及びその誘導体、ジアゾール類及びその誘導体、トリアゾール類及びその誘導体、6員環化合物であるピリジン及びその誘導体、ジアジン類及びその誘導体、並びに、トリアジン類及びその誘導体から選択される少なくとも1種である。キノリン、フェナントロリン及びプリン等を例示できる。   The nitrogen-containing heterocyclic compound is preferably at least one selected from nitrogen-containing heterocyclic monocyclic compounds and nitrogen-containing condensed heterocyclic compounds. It is preferable that other hetero atoms other than nitrogen are not included. For example, from 5-membered ring compound pyrrole and derivatives thereof, diazoles and derivatives thereof, triazoles and derivatives thereof, pyridine and derivatives thereof as 6-membered ring compounds, diazines and derivatives thereof, and triazines and derivatives thereof. At least one selected. Examples include quinoline, phenanthroline and purine.

図2に示すように、前駆体中の金属化合物の質量比率を多くすると、比表面積が増大する。従って、金属化合物の質量比率が重合体の質量比率より多いことが好ましい。具体的には、金属化合物の質量が重合体の質量の2倍以上が好ましく、5倍以上がより好ましく、10倍以上がさらに好ましい。上限は通常 倍以下である。   As shown in FIG. 2, when the mass ratio of the metal compound in the precursor is increased, the specific surface area is increased. Therefore, it is preferable that the mass ratio of the metal compound is larger than the mass ratio of the polymer. Specifically, the mass of the metal compound is preferably at least twice the mass of the polymer, more preferably at least 5 times, and even more preferably at least 10 times. The upper limit is usually less than double.

原料として、さらに(3)炭素原料を用いて、前記前駆体を作製してもよい。炭素原料として、カーボンブラック、グラファイト、グラフェン、カーボンナノチューブ等が挙げられる。本発明は、炭素原料を用いなくても製造できる。炭素原料の量は、例えば0〜80質量%であり、好ましくは0〜50質量%である。   The precursor may be produced using (3) a carbon raw material as a raw material. Examples of the carbon raw material include carbon black, graphite, graphene, and carbon nanotube. The present invention can be produced without using a carbon raw material. The amount of the carbon raw material is, for example, 0 to 80% by mass, preferably 0 to 50% by mass.

窒素量を多く残留させることが、高い活性に繋がる。従って、多孔質炭素材料の炭素となる原料の内、重合体の質量比率が50質量%以上であることが好ましい。80質量%以上、90質量%以上又は100質量%とできる。   Remaining a large amount of nitrogen leads to high activity. Therefore, it is preferable that the mass ratio of the polymer in the raw material to be carbon of the porous carbon material is 50% by mass or more. 80 mass% or more, 90 mass% or more, or 100 mass%.

前駆体を製造するとき、金属と窒素とで配位結合を形成することが窒素の残留に有効であるため、重合体と金属化合物を混合する際は、アルコールや水等の極性溶媒を用いて、溶媒中で混合することが好ましい。超音波照射すると重合体が極性溶媒に分散しやすくなる。混合後、乾燥して前駆体を得るが、前駆体の均一性を向上させるため、乳鉢等を用いて粉砕してもよい。   When the precursor is produced, forming a coordination bond between the metal and nitrogen is effective for residual nitrogen, so when mixing the polymer and the metal compound, use a polar solvent such as alcohol or water. It is preferable to mix in a solvent. When irradiated with ultrasonic waves, the polymer is easily dispersed in a polar solvent. After mixing, the precursor is obtained by drying, but may be pulverized using a mortar or the like in order to improve the uniformity of the precursor.

焼成は、前駆体を不活性ガス(窒素、アルゴン等)雰囲気下において500℃〜1500℃の温度で焼成することが好ましい。炭素化には高温が好ましいが、窒素原子、配位金属を残留させるにはより低温が好ましい。従って、好ましくは600℃〜1200℃、より好ましくは650℃〜1100℃、さらに好ましくは700℃〜1000℃である。焼成時間は本発明の効果が得られる範囲で調整できるが、通常0.5時間〜10時間、好ましくは1時間から5時間である。   Firing is preferably performed by firing the precursor at a temperature of 500 ° C. to 1500 ° C. in an inert gas (nitrogen, argon, etc.) atmosphere. A high temperature is preferable for carbonization, but a lower temperature is preferable for leaving nitrogen atoms and coordination metals. Therefore, it is preferably 600 ° C to 1200 ° C, more preferably 650 ° C to 1100 ° C, and further preferably 700 ° C to 1000 ° C. The firing time can be adjusted within a range where the effects of the present invention can be obtained, but is usually 0.5 hours to 10 hours, preferably 1 hour to 5 hours.

焼成後の材料は不要な金属分を除去することが好ましい。従って、硫酸等の酸を用いて洗浄することが好ましい。また、酸洗浄後はイオンの吸着を防ぐため、イオン交換水等で洗浄することが好ましい。   It is preferable to remove unnecessary metal from the fired material. Therefore, it is preferable to wash using an acid such as sulfuric acid. Moreover, after acid cleaning, in order to prevent adsorption | suction of ion, it is preferable to wash | clean with ion-exchange water etc.

上述したように、本発明の多孔質炭素材料は、酸素還元化活性を有するため、触媒として用いることができる。また、導電性を有するため電極材料としても用いることができる。   As described above, since the porous carbon material of the present invention has oxygen reduction activity, it can be used as a catalyst. Moreover, since it has electroconductivity, it can be used also as an electrode material.

本発明の多孔質炭素材料は、様々な用途に使用することが可能である。例えば、燃料電池、発電機器、蓄電装置(電池、電気二重層キャパシタ等)を構成することができる。   The porous carbon material of the present invention can be used for various applications. For example, a fuel cell, a power generation device, a power storage device (battery, electric double layer capacitor, etc.) can be configured.

本発明の多孔質炭素材料を使用して、燃料電池を構成する場合には、固体電解質と、その固体電解質を挟んで対向配置された2つ(一対)の電極触媒とから燃料電池を構成して、2つ(一対)の電極触媒のうち少なくとも一方に本発明の多孔質炭素材料を使用する。本発明の多孔質炭素材料を使用して、蓄電装置を構成する場合には、電極材と電解質とを含んで蓄電装置を構成して、電極材に本発明の多孔質炭素材料を使用する。   When a fuel cell is constructed using the porous carbon material of the present invention, a fuel cell is constructed from a solid electrolyte and two (a pair) of electrode catalysts arranged opposite to each other with the solid electrolyte interposed therebetween. Thus, the porous carbon material of the present invention is used for at least one of the two (pair) electrode catalysts. When the power storage device is configured using the porous carbon material of the present invention, the power storage device is configured to include the electrode material and the electrolyte, and the porous carbon material of the present invention is used as the electrode material.

ここで、本発明の多孔質炭素材料を使用した燃料電池の一実施形態の概略構成図を、図3に示す。この燃料電池は、固体高分子電解質1を挟むように、対向配置された一対の電極触媒層2,3を有し、これら電極触媒層2,3のさらに外側に、それぞれ電極触媒層2,3を支持するための支持体4,5を有している。所謂、固体高分子形燃料電池(PFEC)と呼ばれている構成である。   Here, FIG. 3 shows a schematic configuration diagram of an embodiment of a fuel cell using the porous carbon material of the present invention. This fuel cell has a pair of electrode catalyst layers 2 and 3 arranged to face each other with the solid polymer electrolyte 1 sandwiched therebetween, and the electrode catalyst layers 2 and 3 are further disposed outside the electrode catalyst layers 2 and 3, respectively. It has the support bodies 4 and 5 for supporting. This is a so-called solid polymer fuel cell (PFEC).

図中左側の電極触媒層2は、アノード電極触媒層(燃料極)である。図中右側の電極触媒層3は、カソード電極触媒層(酸化剤極)である。これら一対の電極触媒層2,3のうち、いずれか一方又は両方に、本発明の多孔質炭素材料を使用して、燃料電池を構成することができる。   The left electrode catalyst layer 2 in the figure is an anode electrode catalyst layer (fuel electrode). The electrode catalyst layer 3 on the right side in the figure is a cathode electrode catalyst layer (oxidant electrode). A fuel cell can be constituted by using the porous carbon material of the present invention for either one or both of the pair of electrode catalyst layers 2 and 3.

固体高分子電解質1としては、フッ素系陽イオン交換樹脂膜を用いることができる。
支持体4,5は、アノード電極触媒層2及びカソード電極触媒層3を支持すると共に、燃料ガスHや酸化剤ガスO等の反応ガスの供給・排出を行うものである。尚、支持体4,5は、通常、外側のセパレータ及び内側(電解質側)のガス拡散層により構成されるが、触媒の性状によっては、ガス拡散層を不要としてセパレータのみにより支持体を構成することが可能になる。例えば、比表面積が大きく、さらに、気体の拡散性が高い触媒を電極触媒層に使用することにより、触媒層がガス拡散層の機能をも兼ねるため、ガス拡散層を省略することが可能になる。
As the solid polymer electrolyte 1, a fluorine-based cation exchange resin membrane can be used.
Support 4 and 5, to support the anode electrode catalyst layer 2 and cathode catalyst layer 3, and performs supply and discharge of the reaction gas such as fuel gas H 2 and oxygen-containing gas O 2. The supports 4 and 5 are usually constituted by an outer separator and an inner (electrolyte side) gas diffusion layer. However, depending on the properties of the catalyst, the gas diffusion layer is not required and the support is constituted only by the separator. It becomes possible. For example, by using a catalyst having a large specific surface area and a high gas diffusibility for the electrode catalyst layer, the catalyst layer also functions as a gas diffusion layer, so that the gas diffusion layer can be omitted. .

この実施形態の燃料電池の構成によれば、アノード電極触媒層2及びカソード電極触媒層3の少なくとも一方に、高い活性を有する本発明の多孔質炭素材料を使用するので、高い性能を有する燃料電池を、白金触媒を使用した場合よりも充分に安いコストで実現することが可能になる。   According to the configuration of the fuel cell of this embodiment, since the porous carbon material of the present invention having high activity is used for at least one of the anode electrode catalyst layer 2 and the cathode electrode catalyst layer 3, the fuel cell having high performance. Can be realized at a cost sufficiently lower than when a platinum catalyst is used.

上述の実施形態の燃料電池は固体高分子形燃料電池(PFEC)である。本発明の多孔質炭素材料は、炭素触媒を使用することが可能な燃料電池であれば、固体高分子形燃料電池(PFEC)に限らず、その他の種類の燃料電池にも適用することが可能である。   The fuel cell of the above-described embodiment is a polymer electrolyte fuel cell (PFEC). The porous carbon material of the present invention can be applied not only to a polymer electrolyte fuel cell (PFEC) but also to other types of fuel cells as long as it can use a carbon catalyst. It is.

次に、本発明の多孔質炭素材料を使用した蓄電装置の一実施形態として、電気二重層キャパシタの概略構成図を、図4に示す。
この電気二重層キャパシタは、セパレータ23を介して、分極性電極である第1の電極21及び第2の電極22が対向し、外装蓋24aと外装ケース24bの中に収容されてなる。
第1の電極21及び第2の電極22は、それぞれ集電体25を介して、外装蓋24aと外装ケース24bに接続されている。
また、セパレータ23には、電解液が含浸されている。そして、ガスケット26を介して電気的に絶縁させた状態で、外装蓋24aと外装ケース24bとがかしめられることによって、内部が密封されている。
Next, FIG. 4 shows a schematic configuration diagram of an electric double layer capacitor as an embodiment of a power storage device using the porous carbon material of the present invention.
In this electric double layer capacitor, the first electrode 21 and the second electrode 22 which are polarizable electrodes are opposed to each other through the separator 23, and are accommodated in the outer lid 24a and the outer case 24b.
The first electrode 21 and the second electrode 22 are connected to the exterior lid 24a and the exterior case 24b via current collectors 25, respectively.
The separator 23 is impregnated with an electrolytic solution. The interior is sealed by caulking the exterior lid 24a and the exterior case 24b while being electrically insulated via the gasket 26.

本実施形態の電気二重層キャパシタにおいて、本発明の多孔質炭素材料を、第1の電極21及び/又は第2の電極22に適用することができる。そして、電極材に多孔質炭素材料が適用された電気二重層キャパシタを構成することができる。   In the electric double layer capacitor of the present embodiment, the porous carbon material of the present invention can be applied to the first electrode 21 and / or the second electrode 22. And the electric double layer capacitor by which the porous carbon material was applied to the electrode material can be comprised.

本発明の多孔質炭素材料は、電解液に対して電気化学的に不活性であり、適度な電気導電性を有する。このため、キャパシタの電極として適用することにより、電極の単位体積当たりの静電容量を向上させることができる。   The porous carbon material of the present invention is electrochemically inactive with respect to the electrolytic solution and has appropriate electrical conductivity. For this reason, the electrostatic capacitance per unit volume of an electrode can be improved by applying as an electrode of a capacitor.

また、上述の実施形態の電気二重層キャパシタと同様に、例えば、リチウムイオン二次電池の負極材等のように、炭素材料から構成される電極材として、本発明の多孔質炭素材料を使用することができる。   Further, like the electric double layer capacitor of the above-described embodiment, the porous carbon material of the present invention is used as an electrode material composed of a carbon material, such as a negative electrode material of a lithium ion secondary battery. be able to.

尚、多孔質炭素材料は、それ単独で使用しても、他の物質と混合して使用してもよい。例えば、多孔質炭素材料と導電性カーボン材料の混合物は、燃料電池電極、キャパシタ等に使用される。多孔質炭素材料とイオン伝導性材料の混合物は、燃料電池電極等に使用される。これら混合物から必要に応じて様々な形態の成形体を形成して使用してよい。   In addition, the porous carbon material may be used alone or in combination with other substances. For example, a mixture of a porous carbon material and a conductive carbon material is used for fuel cell electrodes, capacitors, and the like. A mixture of a porous carbon material and an ion conductive material is used for a fuel cell electrode or the like. You may form and use the molded object of various forms from these mixtures as needed.

実施例1
(1)多孔質炭素材料の製造
ケッチェンブラックEC300J(ライオン社製)とポリアニリン(アルドリッチ社製、Mw:65000)と塩化鉄六水和物とを、質量比1:1:12で、メタノール中で混合した。このメタノール溶液を30分間超音波照射し、エバポレーターにて減圧乾固し、前駆体を得た。得られた前駆体を窒素雰囲気下、70分かけて室温から700℃まで昇温し、そのまま4時間保持した。700℃で保持後、焼成した前駆体を0.5M硫酸中に入れ、80℃で1時間撹拌し、余分な金属分の除去を行った。ろ別後、蒸留水で洗浄し、120℃で真空乾燥して多孔質炭素材料を得た。
Example 1
(1) Production of porous carbon material Ketjen Black EC300J (manufactured by Lion), polyaniline (manufactured by Aldrich, Mw: 65000) and iron chloride hexahydrate in methanol at a 1: 1: 1 ratio in methanol Mixed. This methanol solution was irradiated with ultrasonic waves for 30 minutes and dried under reduced pressure using an evaporator to obtain a precursor. The obtained precursor was heated from room temperature to 700 ° C. in a nitrogen atmosphere over 70 minutes, and kept as it was for 4 hours. After maintaining at 700 ° C., the calcined precursor was placed in 0.5 M sulfuric acid and stirred at 80 ° C. for 1 hour to remove excess metal. After filtration, it was washed with distilled water and vacuum dried at 120 ° C. to obtain a porous carbon material.

得られた多孔質炭素材料の特性を以下の方法で測定した。結果を表1に示す。
(元素分析)
炭素、水素、窒素分はエレメンタール社製全自動元素分析装置(vario EL cube)を用いて、測定した。
鉄分は、灰化処理後、アジレントテクノロジー社製ICP発光分光分析装置を用いて、測定した。
The characteristics of the obtained porous carbon material were measured by the following method. The results are shown in Table 1.
(Elemental analysis)
Carbon, hydrogen, and nitrogen content were measured using a fully automatic elemental analyzer (vario EL cube) manufactured by Elemental.
The iron content was measured using an ICP emission spectrophotometer manufactured by Agilent Technologies after the ashing treatment.

(比表面積測定)
150℃加熱下3時間の真空排気にて前処理後、窒素吸着法により吸着等温線を求め、BET比表面積解析を行い、比表面積の値を算出した。
(Specific surface area measurement)
After pretreatment by vacuum evacuation under heating at 150 ° C. for 3 hours, an adsorption isotherm was determined by a nitrogen adsorption method, BET specific surface area analysis was performed, and a specific surface area value was calculated.

(酸素還元活性)
500μlのイソプロパノール、450μlの蒸留水、50μlの5wt%ナフィオン溶液、多孔質炭素材料6mgを混合し、1時間超音波処理をし、スラリー溶液を作製した。作製したスラリー溶液を80μl取り、炭素電極上(10mmφ)に塗り付け、50℃で乾燥した。
炭素電極を作用極、白金線を対極、可逆水素電極を参照極とし、サイクリックボルタモグラムの測定を行った。電解液は0.1M過塩素酸溶液を用い、30分間酸素バブリングをした後に測定した。掃引速度は10mV/sとした。0.70Vにおける電流値を酸素還元活性とした。
(Oxygen reduction activity)
500 μl of isopropanol, 450 μl of distilled water, 50 μl of 5 wt% Nafion solution and 6 mg of porous carbon material were mixed and sonicated for 1 hour to prepare a slurry solution. 80 μl of the prepared slurry solution was taken, applied on a carbon electrode (10 mmφ), and dried at 50 ° C.
A cyclic voltammogram was measured using a carbon electrode as a working electrode, a platinum wire as a counter electrode, and a reversible hydrogen electrode as a reference electrode. The electrolytic solution was a 0.1M perchloric acid solution, which was measured after oxygen bubbling for 30 minutes. The sweep speed was 10 mV / s. The current value at 0.70 V was defined as oxygen reduction activity.

実施例2
実施例1において、前駆体の焼成方法を変えた他は、即ち、窒素雰囲気下、80分かけて室温から800℃まで昇温し、そのまま4時間保持した他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 2
In Example 1, except that the method for firing the precursor was changed, that is, the temperature was raised from room temperature to 800 ° C. over 80 minutes in a nitrogen atmosphere, and kept for 4 hours in the same manner as in Example 1. A porous carbon material was obtained and evaluated. The results are shown in Table 1.

実施例3
実施例1において、ポリアニリンの代わりに以下の式のトリアジン重合体1を用いた他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。

Figure 2017039630
Example 3
In Example 1, a porous carbon material was obtained and evaluated in the same manner as in Example 1 except that the triazine polymer 1 having the following formula was used instead of polyaniline. The results are shown in Table 1.
Figure 2017039630

実施例4
実施例1において、ポリアニリンの代わりに以下の式のトリアジン重合体2を用いた他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。

Figure 2017039630
Example 4
In Example 1, a porous carbon material was obtained and evaluated in the same manner as in Example 1 except that the triazine polymer 2 having the following formula was used instead of polyaniline. The results are shown in Table 1.
Figure 2017039630

実施例5
実施例1において、ケッチェンブラックとポリアニリンと塩化鉄六水和物の質量比を1:1:3に変えた他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 5
In Example 1, a porous carbon material was obtained and evaluated in the same manner as in Example 1 except that the mass ratio of ketjen black, polyaniline, and iron chloride hexahydrate was changed to 1: 1: 3. The results are shown in Table 1.

実施例6
実施例1において、前駆体の原料として、ケッチェンブラックを用いずに、ポリアニリンと塩化鉄六水和物とを、質量比1:6で用いた他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 6
In Example 1, porous material was used in the same manner as in Example 1 except that polyaniline and iron chloride hexahydrate were used in a mass ratio of 1: 6 without using ketjen black as a precursor raw material. A carbonaceous material was obtained and evaluated. The results are shown in Table 1.

実施例7
実施例6において、ポリアニリンと塩化鉄六水和物との質量比を1:4とした他は実施例6と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 7
In Example 6, a porous carbon material was obtained and evaluated in the same manner as in Example 6 except that the mass ratio of polyaniline to iron chloride hexahydrate was 1: 4. The results are shown in Table 1.

実施例8
実施例6において、ポリアニリンと塩化鉄六水和物との質量比を1:12とした他は実施例6と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 8
In Example 6, a porous carbon material was obtained and evaluated in the same manner as in Example 6 except that the mass ratio of polyaniline to iron chloride hexahydrate was 1:12. The results are shown in Table 1.

実施例9
実施例8において、前駆体の焼成方法を変えた他は、即ち、窒素雰囲気下、80分かけて室温から800℃まで昇温し、そのまま4時間保持した他は実施例8と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 9
In Example 8, except that the method for firing the precursor was changed, that is, the temperature was raised from room temperature to 800 ° C. over 80 minutes in a nitrogen atmosphere, and kept for 4 hours in the same manner as in Example 8, A porous carbon material was obtained and evaluated. The results are shown in Table 1.

実施例10
実施例8において、前駆体の焼成方法を変えた他は、即ち、窒素雰囲気下、100分かけて室温から1000℃まで昇温し、そのまま2時間保持した他は実施例8と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 10
In Example 8, except that the method for firing the precursor was changed, that is, the temperature was raised from room temperature to 1000 ° C. in a nitrogen atmosphere over 100 minutes, and the state was maintained for 2 hours in the same manner as in Example 8, A porous carbon material was obtained and evaluated. The results are shown in Table 1.

実施例11
実施例6において、前駆体の焼成方法を変えた他は、即ち、窒素雰囲気下、90分かけて室温から900℃まで昇温し、そのまま2時間保持した他は実施例6と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Example 11
In Example 6, except that the method for firing the precursor was changed, that is, the temperature was raised from room temperature to 900 ° C. over 90 minutes in a nitrogen atmosphere, and the state was maintained for 2 hours in the same manner as in Example 6, A porous carbon material was obtained and evaluated. The results are shown in Table 1.

比較例1
実施例1において、前駆体の原料として、ポリアニリンを用いずに、ケッチェンブラックと塩化鉄六水和物とを、質量比1:6で用いた他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Comparative Example 1
In Example 1, porous material was used in the same manner as in Example 1 except that ketjen black and iron chloride hexahydrate were used at a mass ratio of 1: 6 without using polyaniline as a precursor raw material. A carbonaceous material was obtained and evaluated. The results are shown in Table 1.

比較例2
実施例1において、ケッチェンブラックとポリアニリンと塩化鉄六水和物の質量比を1:1:0.75に変えた他は、実施例1と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Comparative Example 2
In Example 1, a porous carbon material was obtained and evaluated in the same manner as in Example 1 except that the mass ratio of Ketjen Black, polyaniline, and iron chloride hexahydrate was changed to 1: 1: 0.75. did. The results are shown in Table 1.

比較例3
実施例6において、前駆体の焼成方法を変えた他は、即ち、窒素雰囲気下、90分かけて室温から900℃まで昇温し、そのまま4時間保持した他は実施例6と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。
Comparative Example 3
In Example 6, except that the precursor firing method was changed, that is, the temperature was raised from room temperature to 900 ° C. over 90 minutes in a nitrogen atmosphere, and the state was maintained for 4 hours in the same manner as in Example 6, A porous carbon material was obtained and evaluated. The results are shown in Table 1.

比較例4
実施例6において、前駆体の焼成方法を変えた他は、即ち、窒素雰囲気下、60分かけて室温から600℃まで昇温し、そのまま4時間保持した他は実施例6と同様にして、多孔質炭素材料を得て評価した。結果を表1に示す。

Figure 2017039630
Comparative Example 4
In Example 6, except that the method for firing the precursor was changed, that is, the temperature was raised from room temperature to 600 ° C. over 60 minutes in a nitrogen atmosphere, and was kept as it was for 4 hours. A porous carbon material was obtained and evaluated. The results are shown in Table 1.
Figure 2017039630

前駆体の総質量における塩化鉄六水和物の質量比率と、比表面積の関係を、図2に示す。   FIG. 2 shows the relationship between the mass ratio of iron chloride hexahydrate and the specific surface area in the total mass of the precursor.

本発明の多孔質炭素材料は優れた酸素還元活性を有し、酸素還元用又は燃料電池用触媒として使用できる。また、燃料電池、発電機器、蓄電装置等において電極材料として使用できる。   The porous carbon material of the present invention has an excellent oxygen reduction activity, and can be used as a catalyst for oxygen reduction or a fuel cell. It can also be used as an electrode material in fuel cells, power generation equipment, power storage devices, and the like.

1 固体高分子電解質、2 アノード電極触媒層(燃料極)、3 カソード電極触媒層(酸化剤極)、4,5 支持体、21 第1の電極、22 第2の電極、23 セパレータ、24a 外装蓋、24b 外装ケース、25 集電体、26 ガスケット   DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte, 2 Anode electrode catalyst layer (fuel electrode), 3 Cathode electrode catalyst layer (oxidant electrode), 4, 5 Support body, 21 1st electrode, 22 2nd electrode, 23 Separator, 24a Exterior Lid, 24b Exterior case, 25 Current collector, 26 Gasket

Claims (17)

窒素並びに、
鉄、コバルト、ニッケル、銅、亜鉛、リチウム、ナトリウム、カリウム、マグネシウム及びカルシウムから選択される少なくとも1つの金属を含み、
比表面積が450m/g以上の多孔質炭素材料であって、
全炭素原子に対する全窒素原子のN/C比が、0.020〜0.200であり、全窒素原子に対する全金属原子の金属/N比が、0.02〜2.00である多孔質炭素材料。
Nitrogen and
Including at least one metal selected from iron, cobalt, nickel, copper, zinc, lithium, sodium, potassium, magnesium and calcium;
A porous carbon material having a specific surface area of 450 m 2 / g or more,
Porous carbon in which the N / C ratio of all nitrogen atoms to all carbon atoms is 0.020 to 0.200, and the metal / N ratio of all metal atoms to all nitrogen atoms is 0.02 to 2.00 material.
不活性ガス雰囲気下において、500℃〜1500℃の条件下で焼成することによって得られる請求項1に記載の多孔質炭素材料。   The porous carbon material according to claim 1, which is obtained by firing under conditions of 500 ° C. to 1500 ° C. in an inert gas atmosphere. 原料として、(1)含窒素基を含む芳香族環化合物又は含窒素ヘテロ環化合物の重合体と、(2)鉄、コバルト、ニッケル、銅、亜鉛、リチウム、ナトリウム、カリウム、マグネシウム及びカルシウムから選択される少なくとも1つの金属を含む金属化合物を用いて、前駆体を作製し、
前記前駆体を焼成する
請求項1記載の多孔質炭素材料の製造方法。
The raw material is selected from (1) a polymer of an aromatic ring compound or nitrogen-containing heterocyclic compound containing a nitrogen-containing group, and (2) iron, cobalt, nickel, copper, zinc, lithium, sodium, potassium, magnesium and calcium. Using a metal compound comprising at least one metal to be prepared,
The method for producing a porous carbon material according to claim 1, wherein the precursor is fired.
原料として、さらに(3)炭素原料を用いて、前記前駆体を作製する請求項3に記載の製造方法。   The manufacturing method according to claim 3, wherein the precursor is further produced by using (3) a carbon raw material as a raw material. 前記(3)炭素原料と前記(1)重合体の合計のうち、前記(1)重合体の質量比率が50質量%以上である請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein the mass ratio of the (1) polymer is 50% by mass or more in the total of the (3) carbon raw material and the (1) polymer. 前記含窒素基を含む芳香族環化合物が、ベンゾニトリル及びその誘導体、並びにアニリン及びその誘導体から選択される少なくとも1種である請求項3〜5のいずれかに記載の製造方法。   The method according to any one of claims 3 to 5, wherein the aromatic ring compound containing a nitrogen-containing group is at least one selected from benzonitrile and derivatives thereof, and aniline and derivatives thereof. 前記含窒素ヘテロ環化合物が、含窒素複素単環化合物及び含窒素縮合複素環化合物から選択される少なくとも1種である請求項3〜6のいずれかに記載の製造方法。   The production method according to claim 3, wherein the nitrogen-containing heterocyclic compound is at least one selected from a nitrogen-containing heterocyclic monocyclic compound and a nitrogen-containing condensed heterocyclic compound. 前記(2)金属化合物の質量比率が、前記(1)重合体の質量比率より多い請求項3〜7のいずれかに記載の製造方法。   The production method according to claim 3, wherein the mass ratio of the (2) metal compound is greater than the mass ratio of the (1) polymer. 前記前駆体を不活性ガス雰囲気下において500℃〜1500℃で焼成する請求項3〜8のいずれかに記載の製造方法。   The manufacturing method according to claim 3, wherein the precursor is fired at 500 ° C. to 1500 ° C. in an inert gas atmosphere. 請求項1又は2に記載の多孔質炭素材料からなる酸素還元用又は燃料電池用触媒。   An oxygen reduction or fuel cell catalyst comprising the porous carbon material according to claim 1 or 2. 請求項1又は2に記載の多孔質炭素材料を含む電極材料。   An electrode material comprising the porous carbon material according to claim 1. 請求項1又は2に記載の多孔質炭素材料と、導電性カーボン材料とを含む混合物。   A mixture comprising the porous carbon material according to claim 1 or 2 and a conductive carbon material. 請求項1又は2に記載の多孔質炭素材料とイオン伝導性材料とを含む混合物。   A mixture comprising the porous carbon material according to claim 1 or 2 and an ion conductive material. 請求項12又は13に記載の混合物から得られる成形体。   The molded object obtained from the mixture of Claim 12 or 13. 固体電解質と、前記固体電解質を挟んで対向配置された電極とを含み、前記電極の少なくとも一方に、請求項1又は2に記載の多孔質炭素材料を有する燃料電池。   A fuel cell comprising: a solid electrolyte; and an electrode disposed opposite to the solid electrolyte, wherein the porous carbon material according to claim 1 or 2 is provided on at least one of the electrodes. 固体電解質と、前記固体電解質を挟んで対向配置された電極とを含み、前記電極の少なくとも一方に、請求項1又は2に記載の多孔質炭素材料を有する発電機器。   3. A power generator including a solid electrolyte and an electrode disposed opposite to the solid electrolyte, and having the porous carbon material according to claim 1 at least one of the electrodes. 電極材と、電解質とを含み、前記電極材が、請求項1又は2に記載の多孔質炭素材料を含む蓄電装置。   A power storage device comprising an electrode material and an electrolyte, wherein the electrode material comprises the porous carbon material according to claim 1.
JP2015163731A 2015-08-21 2015-08-21 Porous carbon material and manufacturing method therefor Pending JP2017039630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163731A JP2017039630A (en) 2015-08-21 2015-08-21 Porous carbon material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163731A JP2017039630A (en) 2015-08-21 2015-08-21 Porous carbon material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017039630A true JP2017039630A (en) 2017-02-23

Family

ID=58206294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163731A Pending JP2017039630A (en) 2015-08-21 2015-08-21 Porous carbon material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017039630A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136579A (en) * 2016-02-05 2017-08-10 国立大学法人大阪大学 Cathode catalyst for fuel cell
CN108172846A (en) * 2018-01-12 2018-06-15 湖南科技大学 A kind of cobalt doped nano material, the preparation method and application of bilayer carbon-to-nitrogen compound package
CN109807350A (en) * 2019-03-06 2019-05-28 浙江工业大学 A kind of preparation method of 3-D ordered multiporous copper current collector
CN110010905A (en) * 2019-03-14 2019-07-12 复旦大学 A kind of three-dimensional order square hole mesoporous carbon carries the preparation method of monatomic iron nitrogen catalyst
CN111490259A (en) * 2019-01-25 2020-08-04 苏州沃泰丰能电池科技有限公司 Nitrogen-doped and defect-containing porous carbon pore channel loaded cobalt cluster material for zinc-air battery and preparation method thereof
JP2021039950A (en) * 2020-11-19 2021-03-11 国立大学法人大阪大学 Binder for fuel cell
CN112647095A (en) * 2021-01-25 2021-04-13 浙江大学 Atomically dispersed bimetallic site anchored nitrogen-doped carbon material and preparation and application thereof
JP2022014913A (en) * 2020-07-07 2022-01-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Process for preparing porous nitrogen-containing carbon material with metallic dopant, useful in particular as oxygen reduction (orr) catalyst

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136579A (en) * 2016-02-05 2017-08-10 国立大学法人大阪大学 Cathode catalyst for fuel cell
CN108172846A (en) * 2018-01-12 2018-06-15 湖南科技大学 A kind of cobalt doped nano material, the preparation method and application of bilayer carbon-to-nitrogen compound package
CN108172846B (en) * 2018-01-12 2020-04-03 湖南科技大学 Cobalt-doped nano material wrapped by double-layer carbon-nitrogen compound, preparation method and application
CN111490259A (en) * 2019-01-25 2020-08-04 苏州沃泰丰能电池科技有限公司 Nitrogen-doped and defect-containing porous carbon pore channel loaded cobalt cluster material for zinc-air battery and preparation method thereof
CN111490259B (en) * 2019-01-25 2022-05-31 苏州沃泰丰能电池科技有限公司 Nitrogen-doped and defect-containing porous carbon pore channel loaded cobalt cluster material for zinc-air battery and preparation method thereof
CN109807350A (en) * 2019-03-06 2019-05-28 浙江工业大学 A kind of preparation method of 3-D ordered multiporous copper current collector
CN109807350B (en) * 2019-03-06 2022-04-05 浙江工业大学 Preparation method of three-dimensional ordered porous copper current collector
CN110010905A (en) * 2019-03-14 2019-07-12 复旦大学 A kind of three-dimensional order square hole mesoporous carbon carries the preparation method of monatomic iron nitrogen catalyst
JP2022014913A (en) * 2020-07-07 2022-01-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Process for preparing porous nitrogen-containing carbon material with metallic dopant, useful in particular as oxygen reduction (orr) catalyst
JP7394812B2 (en) 2020-07-07 2023-12-08 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for preparing porous nitrogen-containing carbon materials with metal dopants, particularly useful as oxygen reduction (ORR) catalysts
JP6996719B2 (en) 2020-11-19 2022-02-21 国立大学法人大阪大学 Binder for fuel cells
JP2021039950A (en) * 2020-11-19 2021-03-11 国立大学法人大阪大学 Binder for fuel cell
CN112647095B (en) * 2021-01-25 2021-07-27 浙江大学 Atomically dispersed bimetallic site anchored nitrogen-doped carbon material and preparation and application thereof
CN112647095A (en) * 2021-01-25 2021-04-13 浙江大学 Atomically dispersed bimetallic site anchored nitrogen-doped carbon material and preparation and application thereof

Similar Documents

Publication Publication Date Title
Zhu et al. Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities
Zhong et al. Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@ Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries
Deng et al. NiCo-doped CN nano-composites for cathodic catalysts of Zn-air batteries in neutral media
Lux et al. Heat-treatment of metal–organic frameworks for green energy applications
JP2017039630A (en) Porous carbon material and manufacturing method therefor
Liu et al. N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn–air battery
Zeng et al. Enhanced Li-O2 battery performance, using graphene-like nori-derived carbon as the cathode and adding LiI in the electrolyte as a promoter
Yuan et al. Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution
JP5481646B2 (en) Carbon catalyst, fuel cell, power storage device
Pan et al. All-solid-state sponge-like squeezable zinc-air battery
Zhang et al. Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction
JP5557564B2 (en) Nitrogen-containing carbon alloy and carbon catalyst using the same
Xu et al. Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries
Zhang et al. Preparation and properties of an amorphous MnO2/CNTs-OH catalyst with high dispersion and durability for magnesium-air fuel cells
Zhang et al. Three-dimensional carbon felt host for stable sodium metal anode
Yin et al. Dual catalytic behavior of a soluble ferrocene as an electrocatalyst and in the electrochemistry for Na–air batteries
KR102321423B1 (en) Multi-heteroatom-doped carbon catalyst from waste-yeast biomass for sustained water splitting, water splitting device comprising the same and producing method of the same
CN108878909A (en) A kind of three-dimensional porous composite material and preparation method and application based on biomass
Jia et al. A novel synthesis of Prussian blue nanocubes/biomass-derived nitrogen-doped porous carbon composite as a high-efficiency oxygen reduction reaction catalyst
JP2012182050A (en) Lithium-air cell using graphene free from metal in air electrode
Yu et al. Nitrogen-doped porous carbon nanosheets derived from coal tar pitch as an efficient oxygen-reduction catalyst
Yan et al. In situ formed VOOH nanosheet arrays anchored on a Ti 3 C 2 T x MXene as a highly efficient and robust synergistic electrocatalyst for boosting water oxidation and reduction
JP2021039935A (en) Positive electrode for zinc-bromine battery and method of manufacturing the same
Peng et al. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors
Li et al. Bamboo-like N, S-doped carbon nanotubes with encapsulated Co nanoparticles as high-performance electrocatalyst for liquid and flexible all-solid-state rechargeable Zn-air batteries