JP2017015948A - Element for charging, manufacturing method of element for charging, charger, and image forming apparatus - Google Patents

Element for charging, manufacturing method of element for charging, charger, and image forming apparatus Download PDF

Info

Publication number
JP2017015948A
JP2017015948A JP2015132991A JP2015132991A JP2017015948A JP 2017015948 A JP2017015948 A JP 2017015948A JP 2015132991 A JP2015132991 A JP 2015132991A JP 2015132991 A JP2015132991 A JP 2015132991A JP 2017015948 A JP2017015948 A JP 2017015948A
Authority
JP
Japan
Prior art keywords
charging
charged
image carrier
resin
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015132991A
Other languages
Japanese (ja)
Inventor
裕樹 永井
Hiroki Nagai
裕樹 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015132991A priority Critical patent/JP2017015948A/en
Publication of JP2017015948A publication Critical patent/JP2017015948A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a charger using an element for charging that discharges electrons through an action of an electric field to charge a charging target body, and make it possible to uniformly charge a surface of the charging target body while suppressing the generation of a corona product, such as ozone, by reducing a voltage to be applied to the element for charging, and make it possible to reduce a manufacturing cost of the element for charging.SOLUTION: An element for charging 21 is used in a charger 20, in which an element layer 21b having a carbon nanotube dispersed in a resin is provided on a surface of a conductive substrate 21a facing an image carrier 11. In the charger 20, a drawing electrode 22 is provided between the element for charging 21 and image carrier 11; a voltage is applied to the drawing electrode 22; and electrons are discharged from the element for charging 21 through an action of an electric field to charge the image carrier 11.SELECTED DRAWING: Figure 3

Description

本発明は、被帯電体を帯電させるのに使用する帯電用素子、帯電用素子を製造する帯電用素子の製造方法、帯電用素子を用いた帯電装置、及び帯電装置によって像担持体の表面を帯電させるようにした画像形成装置に関するものである。特に、帯電用素子を用いた帯電装置により画像形成装置における像担持体等の被帯電体を帯電させるのに、帯電用素子に印加させる電圧を低くして、オゾン等の放電生成物の発生を抑制しながら、像担持体等の被帯電体の表面を均一に帯電できるようにすると共に、帯電用素子の製造コスト等を低減させるようにした点に特徴を有するものである。   The present invention relates to a charging element used for charging an object to be charged, a method for manufacturing a charging element for manufacturing a charging element, a charging device using the charging element, and a surface of an image carrier by the charging device. The present invention relates to an image forming apparatus that is charged. In particular, in order to charge an object to be charged such as an image carrier in an image forming apparatus by a charging device using a charging element, the voltage applied to the charging element is lowered to generate discharge products such as ozone. The present invention is characterized in that the surface of an object to be charged such as an image carrier can be uniformly charged while suppressing the manufacturing cost and the like of the charging element.

従来から、複写機,ファクシミリ,プリンター及びこれらの複合機等の画像形成装置においては、像担持体からなる被帯電体の表面を帯電装置によって帯電させ、このように帯電された像担持体の表面に静電潜像を形成して画像形成を行うようにしている。   Conventionally, in an image forming apparatus such as a copying machine, a facsimile machine, a printer, and a composite machine of these, the surface of a charged body made of an image carrier is charged by a charging device, and the surface of the image carrier thus charged is charged. An image is formed by forming an electrostatic latent image.

そして、このように画像形成装置において、像担持体の表面を帯電装置によって帯電させるにあたり、従来においては、一般に、像担持体の表面と所要間隔を介して対向するように帯電用電極を配置させ、この帯電用電極と像担持体の表面との間でコロナ放電させて、像担持体の表面を帯電させるようにした非接触式の帯電装置や、導電性ゴムローラー等の帯電ローラーや導電性ブラシローラー等の帯電ブラシを像担持体の表面に接触させ、帯電ローラーや帯電ブラシと像担持体との間の微小空隙で放電を起こして、像担持体の表面を帯電させるようにしたものが提案されている。   In such an image forming apparatus, in order to charge the surface of the image carrier with the charging device, conventionally, the charging electrode is generally arranged so as to face the surface of the image carrier with a predetermined interval. , A non-contact type charging device in which the surface of the image carrier is charged by corona discharge between the charging electrode and the surface of the image carrier, a charging roller such as a conductive rubber roller, or a conductive material. A charging brush such as a brush roller is brought into contact with the surface of the image carrier, and a discharge is caused in a minute gap between the charging roller or the charging brush and the image carrier to charge the surface of the image carrier. Proposed.

ここで、非接触式の帯電装置の場合、一般に、帯電用電極に50μm程度のワイヤーや鋸刃状ブレードを用い、この帯電用電極と像担持体との間に高電圧を印加させて、帯電用電極と像担持体の表面との間でコロナ放電させるため、高圧電源が必要になると共に、オゾン等の放電生成物の発生量が多くなり、環境、コスト、省エネ面において様々な問題があった。また、帯電用電極と像担持体との間に放電電子量の調整を行うメッシュ状のグリッド電極を設けたスコロトロン方式のものも用いられているが、依然として前記のような問題が存在した。   Here, in the case of a non-contact type charging device, generally a wire of about 50 μm or a saw blade is used for the charging electrode, and a high voltage is applied between the charging electrode and the image carrier to charge the charging. In order to cause corona discharge between the electrode for use and the surface of the image carrier, a high-voltage power supply is required, and the amount of discharge products such as ozone increases, resulting in various problems in terms of environment, cost, and energy saving. It was. Further, although a scorotron type in which a mesh-like grid electrode for adjusting the amount of discharge electrons is provided between the charging electrode and the image carrier is also used, the above-described problems still exist.

一方、帯電ローラーや帯電ブラシを像担持体の表面に接触させ、帯電ローラーや帯電ブラシと像担持体との間の微小空隙で放電を起こして、像担持体の表面を帯電させる場合、前記のコロナ放電の場合に比べて低い電圧で放電を行うことができて、オゾン等の放電生成物の発生を低減させることができる。   On the other hand, when the surface of the image carrier is charged by bringing a charging roller or brush into contact with the surface of the image carrier and causing a discharge in a minute gap between the charging roller or brush and the image carrier, As compared with the case of corona discharge, discharge can be performed at a lower voltage, and generation of discharge products such as ozone can be reduced.

しかし、帯電ローラーや帯電ブラシを像担持体の表面に接触させる場合、像担持体の表面との接触むら等によって像担持体の表面に帯電むらが生じたり、像担持体との接触によって帯電ローラーや帯電ブラシが汚れたりするという問題があると共に、前記の帯電ローラーや帯電ブラシに高機能性材料を使用することが必要になり、また品質を確保するためには比較的高度な生産技術も要求され、帯電ローラーや帯電ブラシのコストが高くつくという問題があった。   However, when the charging roller or charging brush is brought into contact with the surface of the image carrier, uneven charging occurs on the surface of the image carrier due to uneven contact with the surface of the image carrier or the charging roller due to contact with the image carrier. In addition, there is a problem that the charging brush and the charging brush become dirty, and it is necessary to use a high-functional material for the charging roller and charging brush, and a relatively advanced production technology is also required to ensure quality. However, there is a problem that the cost of the charging roller and the charging brush is high.

さらに、近年においては、特許文献1、2に示されるように、像担持体等の被帯電体を帯電させるにあたり、電界の作用により電子を放出させる帯電用素子を用いるようにしたものが提案されている。   Further, in recent years, as shown in Patent Documents 1 and 2, a charging element that emits electrons by the action of an electric field has been proposed for charging a charged object such as an image carrier. ing.

ここで、このように電界の作用により電子を放出させる帯電用素子としては、エミッタ電極のような導電性基板の上に、分子中に不対電子を比較的多く有するカーボンナノチューブ等の電子放出材料を設けたものが提案されている。   Here, as a charging element that emits electrons by the action of an electric field, an electron emitting material such as a carbon nanotube having a relatively large number of unpaired electrons in a molecule on a conductive substrate such as an emitter electrode. The one that has been proposed is proposed.

しかし、高い電子放出性能を有するカーボンナノチューブは分子間のファンデルワールス力による自己凝集性が強いため、導電性基板の上に凝集した状態で設けられ、このようにカーボンナノチューブが凝集した状態にある帯電用素子に電界を作用させても、カーボンナノチューブから電子が像担持体等の被帯電体に向けて適切に放出されず、像担持体等の被帯電体を適切に帯電させることができないという問題があった。   However, since carbon nanotubes with high electron emission performance are strong in self-aggregation due to van der Waals force between molecules, they are provided in an aggregated state on a conductive substrate, and the carbon nanotubes are in an aggregated state in this way. Even if an electric field is applied to the charging element, electrons are not properly emitted from the carbon nanotubes toward the charged object such as the image carrier, and the charged object such as the image carrier cannot be appropriately charged. There was a problem.

ここで、特許文献1においては、帯電用素子として、エミッタ電極からなる導電性基板の上に、カーボンナノチューブ自体を個別に分散させた状態で、各カーボンナノチューブの長尺部分が被帯電体に向かうように配向させたものが示されている。   Here, in Patent Document 1, as a charging element, a long portion of each carbon nanotube is directed to a member to be charged in a state in which the carbon nanotube itself is individually dispersed on a conductive substrate made of an emitter electrode. The orientation is shown as follows.

しかし、特許文献1のように、エミッタ電極からなる導電性基板の上に、カーボンナノチューブ自体を個別に分散させた状態で、各カーボンナノチューブの長尺部分が被帯電体に向かうように配向させる作業は、非常に面倒かつ困難であり、帯電用素子の製造に時間を要すると共に、製造コストも高く付くという問題があった。   However, as in Patent Document 1, in a state in which the carbon nanotubes are individually dispersed on the conductive substrate made of the emitter electrode, the long portions of the carbon nanotubes are oriented so as to face the charged body. However, there is a problem that it is very troublesome and difficult, and it takes time to manufacture the charging element and the manufacturing cost is high.

特開2002−279885号公報Japanese Patent Application Laid-Open No. 2002-279885 特開2006−323366号公報JP 2006-323366 A

本発明は、帯電用素子を用いた帯電装置により画像形成装置における像担持体等の被帯電体を帯電させるにおける前記のような様々な問題を解決することを課題とするものである。   An object of the present invention is to solve the above-described various problems in charging a charged object such as an image carrier in an image forming apparatus by a charging device using a charging element.

そして、本発明においては、電界の作用により電子を放出して被帯電体を帯電させる帯電用素子を用い、帯電用素子に印加させる電圧を低くして、オゾン等の放電生成物の発生を抑制しながら、像担持体等の被帯電体の表面を均一に帯電できるようにすると共に、帯電用素子の製造コスト等を低減させることを課題とするものである。   In the present invention, a charging element that discharges electrons by the action of an electric field to charge an object to be charged is used, and the voltage applied to the charging element is lowered to suppress the generation of discharge products such as ozone. However, it is an object of the present invention to make it possible to uniformly charge the surface of an object to be charged such as an image carrier and to reduce the manufacturing cost of the charging element.

本発明における帯電用素子においては、前記のような課題を解決するため、電界の作用により電子を放出して被帯電体を帯電させる帯電用素子において、被帯電体と対向する導電性基板の面に、樹脂中にカーボンナノチューブが分散された素子層を設けるようにした。   In the charging element according to the present invention, in order to solve the above-described problems, the surface of the conductive substrate facing the charged body in the charging element that discharges electrons by the action of an electric field to charge the charged body. In addition, an element layer in which carbon nanotubes are dispersed in a resin is provided.

そして、この帯電用素子において、前記の素子層における樹脂中にカーボンナノチューブを分散させるにあたっては、カーボンナノチューブの長尺部分が、被帯電体に向かうように配向させることが好ましい。このようにカーボンナノチューブの長尺部分が被帯電体に向かうように配向させて、カーボンナノチューブを樹脂中に分散させると、樹脂中に分散させるカーボンナノチューブの量を少なくしても、被帯電体と対向して電子を放出させるカーボンナノチューブの端部の数が多くなり、帯電用素子に印加させる電圧を低くした場合においても、被帯電体を均一に適切に帯電させることができるようになる。   In this charging element, when the carbon nanotubes are dispersed in the resin in the element layer, it is preferable to align the long part of the carbon nanotubes toward the member to be charged. In this way, when the carbon nanotubes are oriented in such a way that the long portions of the carbon nanotubes are directed toward the object to be charged, and the carbon nanotubes are dispersed in the resin, the amount of the carbon nanotubes to be dispersed in the resin is reduced. The number of ends of the carbon nanotubes that emit electrons facing each other increases, and even when the voltage applied to the charging element is lowered, the charged object can be uniformly and appropriately charged.

また、この帯電用素子において、カーボンナノチューブの長尺部分の端部が、被帯電体と対向する素子層の面において露出されるようにすると、露出されたカーボンナノチューブの長尺部分の端部から電子が放出されやすくなり、帯電用素子に印加させる電圧を低くしても、被帯電体が適切に帯電されるようになる。   Further, in this charging element, when the end of the long part of the carbon nanotube is exposed on the surface of the element layer facing the charged body, the end of the long part of the exposed carbon nanotube is removed. Electrons are easily emitted, and even if the voltage applied to the charging element is lowered, the member to be charged is appropriately charged.

そして、本発明における帯電用素子を製造するにあたっては、導電性基板の面にカーボンナノチューブを分散させた樹脂を塗布し、電界を作用させながら前記の樹脂を硬化させ、樹脂中にカーボンナノチューブが分散された素子層を設けるようにすることができる。   In manufacturing the charging element according to the present invention, a resin in which carbon nanotubes are dispersed is applied to the surface of the conductive substrate, the resin is cured while applying an electric field, and the carbon nanotubes are dispersed in the resin. An element layer can be provided.

また、前記のように電界を作用させながらカーボンナノチューブを分散させた樹脂を硬化させるにあたり、カーボンナノチューブの長尺部分が被帯電体に向かうように電界を作用させて、カーボンナノチューブの長尺部分が被帯電体に向かうように配向させることができる。   Further, in curing the resin in which the carbon nanotubes are dispersed while applying the electric field as described above, the electric field is applied so that the long part of the carbon nanotube is directed toward the member to be charged. It can be oriented so as to be directed to the member to be charged.

また、前記のようにカーボンナノチューブを分散させた樹脂を硬化させた後、前記の被帯電体と対向する素子層の面を表面処理して、被帯電体と対向するカーボンナノチューブの長尺部分の端部を露出させることができる。   In addition, after curing the resin in which the carbon nanotubes are dispersed as described above, the surface of the element layer facing the charged body is surface-treated so that the long part of the carbon nanotube facing the charged body is The end can be exposed.

また、前記のようにして帯電用素子を製造するにあたっては、前記の樹脂に熱硬化性エポキシ樹脂を用いると共に、この熱硬化性エポキシ樹脂にイミダゾリウム塩を含有させるようにすることができる。ここで、前記のように熱硬化性エポキシ樹脂にイミダゾリウム塩を含有させると、イミダゾリウム塩が、前記の熱硬化性エポキシ樹脂を硬化させる硬化剤及び熱硬化性エポキシ樹脂中においてカーボンナノチューブを分散させる分散剤として作用し、熱硬化性エポキシ樹脂中にカーボンナノチューブが分散された状態で、この熱硬化性エポキシ樹脂が、比較的低温で、短時間で硬化されるようになる。   In manufacturing the charging element as described above, a thermosetting epoxy resin can be used as the resin, and an imidazolium salt can be contained in the thermosetting epoxy resin. Here, when an imidazolium salt is contained in the thermosetting epoxy resin as described above, the imidazolium salt disperses the carbon nanotubes in the curing agent and the thermosetting epoxy resin that cure the thermosetting epoxy resin. This thermosetting epoxy resin can be cured at a relatively low temperature in a short time with the carbon nanotubes dispersed in the thermosetting epoxy resin.

そして、本発明の帯電装置においては、前記の帯電用素子と被帯電体との間に引出電極を設け、この引出電極に電圧を印加させて、電界の作用により帯電用素子から電子を放出させ、このように放出された被帯電体に導いて、被帯電体を帯電させるようにしている。   In the charging device of the present invention, an extraction electrode is provided between the charging element and the member to be charged, and a voltage is applied to the extraction electrode so that electrons are emitted from the charging element by the action of an electric field. In this way, the charged body is charged by being led to the discharged charged body.

また、前記のように帯電用素子と被帯電体との間に引出電極を設けるにあたっては、帯電用素子と引出電極との間の距離d1と、引出電極と被帯電体との間の距離d2とが、d1≦d2の関係を満たすようにすることが好ましい。これは、帯電用素子と引出電極との間の距離d1が引出電極と被帯電体との間の距離d2よりも長くなると、帯電用素子から電界の作用により電子を被帯電体に向けて放出させるために、前記の引出電極に印加させる電圧を高くすることが必要になり、高圧電源が必要になると共に、オゾン等の放電生成物の発生量が多くなり、さらに引出電極と被帯電体との間でリークが発生するおそれが生じるためである。   Further, when the extraction electrode is provided between the charging element and the charged body as described above, the distance d1 between the charging element and the extraction electrode and the distance d2 between the extraction electrode and the charged body. Preferably satisfy the relationship of d1 ≦ d2. This is because when the distance d1 between the charging element and the extraction electrode is longer than the distance d2 between the extraction electrode and the charged body, electrons are emitted from the charging element toward the charged body by the action of the electric field. Therefore, it is necessary to increase the voltage applied to the extraction electrode, a high-voltage power supply is required, the amount of discharge products such as ozone increases, and the extraction electrode, the object to be charged, This is because leakage may occur between the two.

そして、本発明における画像形成装置においては、前記のような帯電装置を用いて像担持体の表面を帯電させるようにした。   In the image forming apparatus according to the present invention, the surface of the image carrier is charged using the charging device as described above.

本発明においては、前記のように被帯電体と対向する導電性基板の面に、樹脂中にカーボンナノチューブが分散された素子層を設けた帯電用素子を用い、この帯電用素子に電界を作用させて、この帯電用素子から電子を放出させて被帯電体を帯電させるようにしたため、コロナ放電の場合に比べて、帯電用素子に印加させる電圧を低くして、オゾン等の放電生成物の発生を抑制しながら、像担持体等の被帯電体の表面を均一に帯電できるようになる。   In the present invention, as described above, a charging element in which an element layer in which carbon nanotubes are dispersed in a resin is provided on the surface of a conductive substrate facing a member to be charged, and an electric field is applied to the charging element. As a result, electrons are discharged from the charging element to charge the object to be charged. Therefore, compared to the case of corona discharge, the voltage applied to the charging element is lowered to reduce the discharge product such as ozone. It becomes possible to uniformly charge the surface of an object to be charged such as an image carrier while suppressing the generation.

また、本発明においては、前記のようにカーボンナノチューブを樹脂中に分散させるようにしたため、導電性基板の面にカーボンナノチューブ自体を個別に分散させて、各カーボンナノチューブを個別に被帯電体に向かうように設ける場合に比べて、導電性基板の面にカーボンナノチューブを分散させた状態で、各カーボンナノチューブの長尺部分が被帯電体に向かうように配向させることが簡単に行えるようになり、前記のような帯電用素子を製造する時間を短縮することができると共に、その製造コストを低減させることができるようになる。   Further, in the present invention, since the carbon nanotubes are dispersed in the resin as described above, the carbon nanotubes themselves are individually dispersed on the surface of the conductive substrate, and each carbon nanotube is individually directed to the object to be charged. In comparison with the case where the carbon nanotubes are dispersed on the surface of the conductive substrate, it is possible to easily align the long portions of the carbon nanotubes toward the charged body, It is possible to reduce the time for manufacturing the charging element as described above and to reduce the manufacturing cost.

本発明の実施形態に係る帯電装置を使用した画像形成装置の概略説明図である。1 is a schematic explanatory diagram of an image forming apparatus using a charging device according to an embodiment of the present invention. 前記の実施形態に係る帯電装置において、導電性基板の面に素子層を設けた帯電用素子を示し、(A)は像担持体と対向する面から見た概略平面図、(B)は概略断面図である。In the charging device according to the above-described embodiment, a charging element in which an element layer is provided on the surface of a conductive substrate is shown, (A) is a schematic plan view viewed from a surface facing an image carrier, and (B) is a schematic diagram. It is sectional drawing. 前記の実施形態に係る帯電装置において、前記の帯電用素子と像担持体との間に引出電極を設け、この引出電極と帯電用素子との間に電界を作用させて、帯電用素子から電子を放出させて像担持体を帯電させる状態を示した概略説明図である。In the charging device according to the above-described embodiment, an extraction electrode is provided between the charging element and the image carrier, and an electric field is applied between the extraction electrode and the charging element, so that the electron from the charging element. FIG. 3 is a schematic explanatory view showing a state in which the image carrier is charged by discharging

次に、本発明の実施形態に係る帯電用素子、帯電用素子の製造方法、帯電装置、及び画像形成装置を添付図面に基づいて具体的に説明する。なお、本発明に係る帯電用素子、帯電用素子の製造方法、帯電装置、及び画像形成装置は、下記の実施形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, a charging element, a charging element manufacturing method, a charging device, and an image forming apparatus according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. Note that the charging element, the method for manufacturing the charging element, the charging device, and the image forming apparatus according to the present invention are not limited to those shown in the following embodiments, and may be changed as appropriate without departing from the scope of the invention. It can be implemented.

ここで、図1に示す実施形態における画像形成装置10においては、被帯電体として回転する感光体ドラムからなる像担持体11を用い、この像担持体11の軸方向に沿って設けられた帯電装置20により、回転する像担持体11の表面を帯電させるようにしている。   Here, in the image forming apparatus 10 in the embodiment shown in FIG. 1, an image carrier 11 made of a rotating photosensitive drum is used as a member to be charged, and charging provided along the axial direction of the image carrier 11 is performed. The surface of the rotating image carrier 11 is charged by the device 20.

そして、このように帯電された像担持体11の表面にレーザー等を用いた潜像形成装置12により画像情報に応じた露光を行い、この像担持体11の表面に静電潜像を形成するようにしている。   The surface of the image carrier 11 thus charged is exposed according to image information by a latent image forming apparatus 12 using a laser or the like, and an electrostatic latent image is formed on the surface of the image carrier 11. I am doing so.

次いで、このように像担持体11の表面に形成された静電潜像の部分に現像装置13からトナーを供給して、像担持体11の表面に静電潜像に対応したトナー像を形成するようにしている。   Next, toner is supplied from the developing device 13 to the portion of the electrostatic latent image formed on the surface of the image carrier 11 in this way, and a toner image corresponding to the electrostatic latent image is formed on the surface of the image carrier 11. Like to do.

そして、このように像担持体11の表面に形成されたトナー像を、ローラー状になった転写装置14と対向する位置に導くと共に、この像担持体11と転写装置14との間に記録シートSを導き、像担持体11の表面に形成されたトナー像を転写装置14より記録シートSに転写させ、このようにトナー像が転写された記録シートSを定着装置15に導き、この定着装置15においてトナー像を記録シートSに定着させるようにしている。   Then, the toner image formed on the surface of the image carrier 11 in this manner is guided to a position facing the roller-like transfer device 14, and a recording sheet is provided between the image carrier 11 and the transfer device 14. The toner image formed on the surface of the image carrier 11 is transferred to the recording sheet S from the transfer device 14, and the recording sheet S to which the toner image is transferred in this way is guided to the fixing device 15. In 15, the toner image is fixed on the recording sheet S.

また、記録シートSに転写されずに像担持体11の表面に残留したトナー等をクリーニング装置16によって像担持体11の表面から除去し、その後、この像担持体11の表面を、前記のように帯電装置20によって帯電させるようにしている。   Further, the toner remaining on the surface of the image carrier 11 without being transferred to the recording sheet S is removed from the surface of the image carrier 11 by the cleaning device 16, and then the surface of the image carrier 11 is changed as described above. The charging device 20 is charged.

ここで、この実施形態における帯電装置20においては、図1及び図2(A),(B)に示すように、像担持体11と対向する導電性基板21aの面に、樹脂中にカーボンナノチューブの長尺部分が像担持体11に向かうように配向されて分散された素子層21bが設けられ、また像担持体11と対向するこの素子層21bの面に、カーボンナノチューブの長尺部分の端部が露出された帯電用素子21を用いるようにしている。なお、この実施形態においては、帯電用素子21として、前記のように素子層21bにおいて、樹脂中にカーボンナノチューブの長尺部分が像担持体11に向かうように配向されて分散されると共に、像担持体11と対向する素子層21bの面にカーボンナノチューブの長尺部分の端部が露出されたものを用いるようにしたが、帯電装置20に用いる帯電用素子21は、必ずしも、各カーボンナノチューブがこのように配向されたものに限定されない。   Here, in the charging device 20 in this embodiment, as shown in FIGS. 1 and 2A and 2B, the carbon nanotubes in the resin are formed on the surface of the conductive substrate 21a facing the image carrier 11. An element layer 21b oriented and dispersed so that the long part of the carbon nanotube is directed toward the image carrier 11 is provided, and the end of the long part of the carbon nanotube is provided on the surface of the element layer 21b facing the image carrier 11. The charging element 21 with the exposed portion is used. In this embodiment, as the charging element 21, in the element layer 21b as described above, the long portion of the carbon nanotube is oriented and dispersed in the resin so as to face the image carrier 11, and the image is also obtained. Although the end of the long part of the carbon nanotube is exposed on the surface of the element layer 21b facing the carrier 11, the charging element 21 used in the charging device 20 does not necessarily include each carbon nanotube. The orientation is not limited to the above.

そして、この実施形態における帯電装置20においては、図1及び図3に示すように、前記の帯電用素子21と像担持体11との間に引出電極22を設け、この引出電極22と前記の帯電用素子21における導電性基板21aとの間に帯電用電源23から帯電バイアス電圧を印加させて、前記の帯電用素子21に電界を作用させ、これにより帯電用素子21における前記のカーボンナノチューブから電子を引き出し、このように引き出された電子を前記の引出電極22を通して像担持体11に導いて、像担持体11の表面を帯電させるようにしている。   In the charging device 20 in this embodiment, as shown in FIGS. 1 and 3, an extraction electrode 22 is provided between the charging element 21 and the image carrier 11, and the extraction electrode 22 A charging bias voltage is applied from the charging power source 23 to the conductive substrate 21 a in the charging element 21 to cause an electric field to act on the charging element 21, thereby causing the carbon nanotubes in the charging element 21 to Electrons are extracted, and the electrons thus extracted are guided to the image carrier 11 through the extraction electrode 22 so that the surface of the image carrier 11 is charged.

ここで、この帯電装置20において、帯電用素子21におけるカーボンナノチューブとしては、アーク法、レーザーアブレーション法、CVD法といった汎用的な製造方法によって得られたものを用いることができ、一般に、炭素純度が95%以上、直径が10〜40nm、長さが1〜10μmのものを使用するようにしている。   Here, in the charging device 20, as the carbon nanotubes in the charging element 21, those obtained by general-purpose manufacturing methods such as an arc method, a laser ablation method, and a CVD method can be used. A material having a diameter of 95% or more, a diameter of 10 to 40 nm, and a length of 1 to 10 μm is used.

そして、このようなカーボンナノチューブを分散させる樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂を用いることができるが、特に、カーボンナノチューブに対して良好な分散性を有するイミダゾール系化合物と、比較的低温で、短時間で硬化させることができる熱硬化性エポキシ樹脂を用いることが好ましい。なお、イミダゾール系化合物と硬化反応しない熱硬化性樹脂であっても、イミダゾール系化合物を溶解及びまたは分散でき、熱硬化後に樹脂内にカーボンナノチューブを分散状態で保持させることができる樹脂であれば使用することができる。   As the resin for dispersing such carbon nanotubes, thermosetting resins such as epoxy resins, phenol resins, unsaturated polyester resins, urea resins, melamine resins, diallyl phthalate resins can be used. It is preferable to use an imidazole compound having good dispersibility with respect to the nanotube and a thermosetting epoxy resin that can be cured at a relatively low temperature in a short time. In addition, even if it is a thermosetting resin that does not undergo a curing reaction with the imidazole compound, any resin that can dissolve and / or disperse the imidazole compound and retain the carbon nanotubes in a dispersed state in the resin after thermosetting is used. can do.

また、カーボンナノチューブを分散させる樹脂として使用する熱硬化性のエポキシ樹脂の種類は特に限定されず、汎用的なエポキシ樹脂であるビスフェノールA型、ビスフェノールF型、多官能型、可撓性型、臭素化型、高分子型、ビフェニル型を使用でき、これらの中でも、ビスフェノールAとエピクロルヒドリンとの縮合反応により合成されるビスフェノールA型のエポキシ樹脂が、反応温度、反応時間、可使時間等の点から好ましい。   Moreover, the kind of thermosetting epoxy resin used as the resin for dispersing the carbon nanotube is not particularly limited, and bisphenol A type, bisphenol F type, polyfunctional type, flexible type, bromine, which are general-purpose epoxy resins. Bisphenol A type epoxy resin synthesized by condensation reaction of bisphenol A and epichlorohydrin can be used from the viewpoint of reaction temperature, reaction time, pot life, etc. preferable.

また、前記のエポキシ樹脂の硬化剤としては、脂肪族アミン,芳香族アミン、変性アミン等のアミン類、ポリアミド樹脂、イミダゾール類、液状ポリメルカプタン,ポリスルフィド樹脂等のポリメルカプタン硬化剤、酸無水物類、三フッ化ホウ素−アミン錯体、ジシアンジアミド、有機酸ヒドラジッドといった潜在性硬化剤、光・紫外線硬化剤などがあるが、前記のようにカーボンナノチューブに対して良好な分散性を有するイミダゾール系化合物を用いることが好ましい。   The epoxy resin curing agent includes amines such as aliphatic amines, aromatic amines, and modified amines, polymercaptan curing agents such as polyamide resins, imidazoles, liquid polymercaptans, polysulfide resins, and acid anhydrides. There are latent curing agents such as boron trifluoride-amine complex, dicyandiamide, organic acid hydrazide, and light / ultraviolet curing agents, but as described above, an imidazole compound having good dispersibility to carbon nanotubes is used. It is preferable.

そして、この実施形態における帯電装置20において、前記の帯電用素子21のように、カーボンナノチューブの長尺部分が像担持体11に向かうように配向されて分散された素子層21bを得るにあたっては、カーボンナノチューブを分散させた樹脂を硬化させるにあたり、カーボンナノチューブの長尺部分が前記の導電性基板21aの面から反対側の面に向かうように電界を作用させて、カーボンナノチューブの長尺部分が素子層21bの表面に向かうように配向させるようにする。   Then, in the charging device 20 in this embodiment, as in the above-described charging element 21, in obtaining the element layer 21b in which the long portions of the carbon nanotubes are oriented and dispersed so as to face the image carrier 11, In curing the resin in which the carbon nanotubes are dispersed, an electric field is applied so that the long portion of the carbon nanotubes is directed from the surface of the conductive substrate 21a to the opposite surface, so that the long portion of the carbon nanotubes is an element. Orientation is directed toward the surface of the layer 21b.

また、前記の帯電用素子21のように、像担持体11と対向する素子層21bの面にカーボンナノチューブの長尺部分の端部が露出されるようにするにあたっては、前記のようにカーボンナノチューブの長尺部分が配向された素子層21bの表面を、数ミクロン程度の厚みで均一に削り取って、前記のように分散されて配向されているカーボンナノチューブの先端部を、素子層21bの表面に露出させるようにする。   Further, as described above, in order to expose the end of the long portion of the carbon nanotube on the surface of the element layer 21b facing the image carrier 11 as in the charging element 21, the carbon nanotube as described above is used. The surface of the element layer 21b in which the long portions are oriented is uniformly scraped to a thickness of several microns, and the tips of the carbon nanotubes dispersed and oriented as described above are disposed on the surface of the element layer 21b. Try to expose.

また、前記の帯電用素子21において、導電性基板21aの面に形成する素子層21bの幅は特に限定されないが、この帯電用素子21から放出される電子密度を高くして、像担持体11の表面を均一に帯電させるためには、この素子層21bの幅を1mm以上にすることが好ましい。   In the charging element 21, the width of the element layer 21 b formed on the surface of the conductive substrate 21 a is not particularly limited. However, the density of electrons emitted from the charging element 21 is increased to increase the image carrier 11. In order to uniformly charge the surface, the width of the element layer 21b is preferably 1 mm or more.

また、前記の引出電極22は、前記のように帯電用電源23から帯電バイアス電圧を印加させて帯電用素子21との間に電界を作用させ、帯電用素子21におけるカーボンナノチューブから電子を引き出し、このように引き出された電子を像担持体11に導くことが必要であり、このため、引出電極22としては、メッシュ状やグリッド(格子)状等の隙間を有する形状になったものを用いるようにする。   Further, the extraction electrode 22 applies a charging bias voltage from the charging power source 23 as described above to apply an electric field to the charging element 21, and draws electrons from the carbon nanotubes in the charging element 21, Thus, it is necessary to guide the extracted electrons to the image carrier 11, and for this reason, as the extraction electrode 22, one having a shape having a gap such as a mesh shape or a grid shape is used. To.

そして、前記のように引出電極22と前記の帯電用素子21における導電性基板21aとの間に帯電用電源23から帯電バイアス電圧を印加させて、帯電用素子21に電界を作用させ、これにより帯電用素子21におけるカーボンナノチューブから電子を引き出して像担持体11の表面を帯電させるにあたり、この実施形態においては、図3に示すように、帯電用素子21における導電性基板21aと引出電極22との間の距離d1と、引出電極22と像担持体11の表面との間の距離d2とが、d1≦d2の関係を満たすようにしている。このようにすると、前記の帯電用電源23から引出電極22と帯電用素子21における導電性基板21aとの間に印加させる帯電バイアス電圧を低くしても、帯電用素子21におけるカーボンナノチューブから電子が適切に引き出されて、像担持体11の表面を適切に帯電させることができ、オゾン等の放電生成物の発生量を少なくすることができると共に、引出電極22と像担持体11との間でリークが生じるということもなくなる。   Then, as described above, a charging bias voltage is applied from the charging power source 23 between the extraction electrode 22 and the conductive substrate 21a in the charging element 21 to cause an electric field to act on the charging element 21, thereby In extracting the electrons from the carbon nanotubes in the charging element 21 and charging the surface of the image carrier 11, in this embodiment, as shown in FIG. 3, the conductive substrate 21 a and the extraction electrode 22 in the charging element 21 are provided. And the distance d2 between the extraction electrode 22 and the surface of the image carrier 11 satisfy the relationship d1 ≦ d2. In this case, even if the charging bias voltage applied between the extraction electrode 22 and the conductive substrate 21a in the charging element 21 is lowered from the charging power source 23, electrons are emitted from the carbon nanotubes in the charging element 21. The surface of the image carrier 11 can be appropriately extracted and appropriately charged, the amount of discharge products such as ozone can be reduced, and between the extraction electrode 22 and the image carrier 11. There is no longer a leak.

また、前記の帯電装置20においては、前記の帯電用素子21や引出電極22を保持させるケーシング(図示せず)を設けることができ、このケーシングには金属、プラスチックといった汎用的な材質が使用できる。また、帯電用素子21における電子放出開始電圧を下げる目的で、ケーシングの内側にイオン、電子等の雰囲気中の電子伝導性を高める働きをする物質を設けることか好ましく、例えば、酸化チタンをケーシングの内面にコートし、電子放出時に発生すると一般的にいわれている紫外線を用い、光触媒作用によって、イオン、電子を放出させて雰囲気中の電子キャリア含有率を高め、電子導電性を高めることで、電子放出開始電圧を下げて、オゾン発生量の低減させることができる。また、ケーシングの内面にNaCl、酢酸ナトリウム等の電解質、あるいはこれら電解質を水に溶かした電解質水溶液を付与し、電子放出時の電磁波、熱エネルギーなどにより水溶液を揮発させてイオン性ミストを発生させる、あるいは、サブミクロンのイオン性粉体微粒子をケーシングの内面に付与してエアロゾルを発生させて、雰囲気中のイオン、電子キャリア含有率を高める等の方法を用いることも考えられる。   In the charging device 20, a casing (not shown) for holding the charging element 21 and the extraction electrode 22 can be provided. A general-purpose material such as metal or plastic can be used for the casing. . Further, for the purpose of lowering the electron emission start voltage in the charging element 21, it is preferable to provide a substance that functions to enhance electron conductivity in the atmosphere of ions, electrons, etc. inside the casing. By coating the inner surface and using ultraviolet light, which is generally said to occur when electrons are emitted, by photocatalysis, ions and electrons are emitted to increase the electron carrier content in the atmosphere, thereby increasing electron conductivity. The emission start voltage can be lowered to reduce the amount of ozone generated. In addition, an electrolyte such as NaCl or sodium acetate or an aqueous electrolyte solution in which these electrolytes are dissolved in water is applied to the inner surface of the casing, and the aqueous solution is volatilized by electromagnetic waves, thermal energy, etc. during electron emission to generate ionic mist. Alternatively, it is conceivable to use a method such as applying submicron ionic powder particles to the inner surface of the casing to generate aerosol to increase the content of ions and electron carriers in the atmosphere.

次に、前記のような帯電用素子を用いた実施例の帯電装置を使用した場合、像担持体を所定の表面電位に帯電させるのに、前記の帯電用素子に印加させる電圧を低くしてオゾンの発生を抑制できることを、比較例を挙げて明らかにする。   Next, when the charging device of the embodiment using the charging element as described above is used, the voltage applied to the charging element is lowered to charge the image carrier to a predetermined surface potential. A comparative example will clarify that ozone generation can be suppressed.

ここで、実施例の帯電装置においては、下記のようにして製造した帯電用素子を用いるようにした。   Here, in the charging device of the example, a charging element manufactured as follows was used.

(帯電用素子A1a〜A1c)
帯電用素子A1a〜A1cを製造するにあたっては、
CVD法によって製造されて、直径が4〜11nm、長尺部分の長さが3〜6μm、炭素純度が98%を超えた市販の多層カーボンナノチューブ(シグマ-アルドリッチ社製:SMW200)を1重量部、
1−エチル−3−メチルイミダゾリウムヘキサフルオロフォスフェート(以下、EMIPF6と略す。)を10重量部、
市販のエポキシ樹脂(三菱化学社製:エピコート828)を89重量部
の割合で用いるようにした。
(Charging elements A1a to A1c)
In manufacturing the charging elements A1a to A1c,
1 part by weight of a commercially available multi-walled carbon nanotube (Sigma-Aldrich: SMW200) manufactured by CVD method, having a diameter of 4 to 11 nm, a length of 3 to 6 μm, and a carbon purity exceeding 98% ,
10 parts by weight of 1-ethyl-3-methylimidazolium hexafluorophosphate (hereinafter abbreviated as EMIPF6),
A commercially available epoxy resin (manufactured by Mitsubishi Chemical Corporation: Epicoat 828) was used at a ratio of 89 parts by weight.

そして、前記の10重量部のEMIPF6に対して、前記の1重量部の多層カーボンナノチューブを少量ずつ乳棒でかき混ぜながら1時間かけて添加した後、更に、ビーズミルにより15℃に冷却しながら1時間、撹拌させて、カーボンナノチューブ分散液を得た。次いで、このカーボンナノチューブ分散液に対して、前記のエポキシ樹脂を89重量部加え、これらを乳化機により25℃で15分間混合・撹拌させて、素子層用塗液Aを得た。   Then, after adding 1 part by weight of the multi-walled carbon nanotubes to the 10 parts by weight of EMIPF 6 over a period of 1 hour while stirring with a pestle, and further cooling to 15 ° C. with a bead mill for 1 hour, Stirring was performed to obtain a carbon nanotube dispersion. Next, 89 parts by weight of the epoxy resin was added to the carbon nanotube dispersion, and these were mixed and stirred at 25 ° C. for 15 minutes by an emulsifier to obtain an element layer coating solution A.

そして、得られた素子層用塗液Aを、長さが330mm、幅が11mm、厚みが0.1mmになったSUS304製の導電性基板の上に塗布するようにした。   The obtained device layer coating liquid A was applied onto a conductive substrate made of SUS304 having a length of 330 mm, a width of 11 mm, and a thickness of 0.1 mm.

ここで、前記の素子層用塗液Aをこの導電性基板の上に塗布するにあたり、帯電用素子A1aにおいては、長さが320mm、幅が1mm、厚みが0.1mmになるように塗布し、帯電用素子A1bにおいては、長さが320mm、幅が5mm、厚みが0.1mmになるように塗布し、帯電用素子A1cにおいては、長さが320mm、幅が10mm、厚みが0.1mmになるように塗布した。   Here, in applying the element layer coating liquid A onto the conductive substrate, the charging element A1a is applied so that the length is 320 mm, the width is 1 mm, and the thickness is 0.1 mm. The charging element A1b is applied so that the length is 320 mm, the width is 5 mm, and the thickness is 0.1 mm. The charging element A1c is 320 mm in length, the width is 10 mm, and the thickness is 0.1 mm. It applied so that it might become.

そして、前記のようにして導電性基板の上に素子層用塗液Aを塗布した後、前記の導電性基板と帯電用素子との間に100Vの電圧を印加させて電界を作用させながら、130℃で3時間かけて硬化させ、さらに、このように硬化された各素子層の表面を、それぞれミクロトームにより数ミクロンの範囲で均一に削り取り、帯電用素子A1a〜A1cを作製した。   And after apply | coating the coating liquid A for element layers on an electroconductive board | substrate as mentioned above, applying the voltage of 100V between the said electroconductive board | substrate and the charging element, and acting an electric field, Curing was performed at 130 ° C. for 3 hours, and the surface of each of the element layers thus cured was uniformly shaved in a range of several microns with a microtome to produce charging elements A1a to A1c.

ここで、前記のように導電性基板と帯電用素子との間に電界を作用させながら素子層用塗液を硬化させると、素子層中におけるカーボンナノチューブが分散された状態で、その長尺部分が導電性基板からこの導電性基板と反対側における素子層の面に向って配向されるようになる。また、前記のように硬化された素子層の表面を数ミクロンの範囲で均一に削り取ると、前記のように分散された状態で、導電性基板と反対側における素子層の面に向って配向されたカーボンナノチューブの長尺部分の端部が素子層の面に露出されて、前記の樹脂とカーボンナノチューブとが素子層の面においてミクロドメイン状になった。   Here, as described above, when the coating liquid for the device layer is cured while applying an electric field between the conductive substrate and the charging device, the elongated portion of the carbon nanotube is dispersed in the device layer. Is oriented from the conductive substrate toward the surface of the element layer opposite to the conductive substrate. Further, when the surface of the element layer cured as described above is evenly scraped within a range of several microns, the element layer is oriented toward the surface of the element layer on the side opposite to the conductive substrate in a dispersed state as described above. The ends of the long portions of the carbon nanotubes were exposed on the surface of the element layer, and the resin and the carbon nanotubes became microdomains on the surface of the element layer.

(帯電用素子A2)
帯電用素子A2を製造するにあたっては、前記の帯電用素子A1a〜A1cを製造する場合と同様に、前記の素子層用塗液Aを用い、この素子層用塗液Aを長さが330mm、幅が11mm、厚みが0.1mmになったSUS304製の導電性基板の上に、長さが320mm、幅が5mm、厚みが0.1mmになるように塗布した。その後、前記の導電性基板と帯電用素子との間に100Vの電圧を印加させて電界を作用させながら、前記の素子層用塗液Aを130℃で3時間かけて硬化させて帯電用素子A2を作製した。なお、この帯電用素子A2においては、素子層の表面を削り取って、カーボンナノチューブの長尺部分の端部を露出させる動作は行わないようにした。
(Charging element A2)
In manufacturing the charging element A2, as in the case of manufacturing the charging elements A1a to A1c, the element layer coating liquid A is used, and the element layer coating liquid A is 330 mm in length. On a conductive substrate made of SUS304 having a width of 11 mm and a thickness of 0.1 mm, coating was performed so that the length was 320 mm, the width was 5 mm, and the thickness was 0.1 mm. Thereafter, the device layer coating liquid A is cured at 130 ° C. for 3 hours while applying an electric field by applying a voltage of 100 V between the conductive substrate and the charging device to charge the charging device. A2 was produced. In the charging element A2, the surface of the element layer was scraped off so that the end of the long part of the carbon nanotube was not exposed.

(帯電用素子A3)
帯電用素子A3を製造するにあたっては、前記の帯電用素子A1a〜A1cを製造する場合と同様に、前記の素子層用塗液Aを用い、この素子層用塗液Aを長さが330mm、幅が11mm、厚みが0.1mmになったSUS304製の導電性基板の上に、長さが320mm、幅が5mm、厚みが0.1mmになるように塗布した。そして、前記の導電性基板と帯電用素子との間に電界を作用させないようにして、前記の素子層用塗液Aを130℃で3時間かけて硬化させた後、このように硬化された素子層の表面を、それぞれミクロトームにより数ミクロンの範囲で均一に削り取って帯電用素子A3を作製した。
(Charging element A3)
In producing the charging element A3, as in the case of producing the charging elements A1a to A1c, using the element layer coating liquid A, the element layer coating liquid A has a length of 330 mm, On a conductive substrate made of SUS304 having a width of 11 mm and a thickness of 0.1 mm, coating was performed so that the length was 320 mm, the width was 5 mm, and the thickness was 0.1 mm. Then, the element layer coating liquid A was cured at 130 ° C. for 3 hours without applying an electric field between the conductive substrate and the charging element, and then cured in this way. The surface of the element layer was uniformly shaved in the range of several microns with a microtome to produce a charging element A3.

(帯電用素子A4)
帯電用素子A4を製造するにあたっては、前記の帯電用素子A1a〜A1cを製造する場合と同様に、前記の素子層用塗液Aを用い、この素子層用塗液Aを長さが330mm、幅が11mm、厚みが0.1mmになったSUS304製の導電性基板の上に、前記の素子層用塗液Aを長さが320mm、幅が2mm、厚みが0.1mmになるように塗布した。そして、前記の導電性基板と帯電用素子との間に電界を作用させないようにして、前記の素子層用塗液Aを130℃で3時間かけて硬化させて帯電用素子A4を作製した。また、この帯電用素子A4においては、素子層の表面を削り取って、カーボンナノチューブの長尺部分の端部を露出させる動作は行わないようにした。
(Charging element A4)
In manufacturing the charging element A4, similarly to the case of manufacturing the charging elements A1a to A1c, using the element layer coating liquid A, the element layer coating liquid A has a length of 330 mm, The element layer coating liquid A is applied to a length of 320 mm, a width of 2 mm, and a thickness of 0.1 mm on a conductive substrate made of SUS304 having a width of 11 mm and a thickness of 0.1 mm. did. Then, the element layer coating liquid A was cured at 130 ° C. for 3 hours so that an electric field was not applied between the conductive substrate and the charging element, thereby producing a charging element A4. Further, in this charging element A4, the operation of scraping the surface of the element layer to expose the end of the long part of the carbon nanotube was not performed.

(帯電用素子B)
帯電用素子Bを製造するにあたっては、直径が10〜40nm、長尺部分の長さが1〜10μm、炭素純度が95%を超えた多層カーボンナノチューブを、溶媒エピコート828にカーボンナノチューブ含有率が10wt%になるように加えた多層CNT高含有率分散エピコート828ペースト(名城ナノカーボン社製:MWNT M−10H)95重量部に、2−エチル−4−メチルイミダゾール(2E4MZ)を5重量部加え、これを乳化機により60℃で15分間混合・撹拌させて、素子層用塗液Bを得た。
(Charging element B)
In manufacturing the charging element B, a multi-walled carbon nanotube having a diameter of 10 to 40 nm, a length of a long portion of 1 to 10 μm, and a carbon purity of more than 95% is used. % Of multi-walled CNT high content dispersion Epicoat 828 paste (manufactured by Meijo Nanocarbon Co., Ltd .: MWNT M-10H) was added to 95 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ), This was mixed and stirred at 60 ° C. for 15 minutes by an emulsifier to obtain a coating liquid B for element layer.

そして、長さが330mm、幅が11mm、厚みが0.1mmになったSUS304製の導電性基板の上に、前記の素子層用塗液Bを長さが320mm、幅が5mm、厚みが0.1mmになるように塗布した。   On the conductive substrate made of SUS304 having a length of 330 mm, a width of 11 mm, and a thickness of 0.1 mm, the element layer coating liquid B is 320 mm in length, 5 mm in width, and 0 mm in thickness. It was applied so as to be 1 mm.

次いで、前記の導電性基板と帯電用素子との間に電界を作用させないようにして、前記の素子層用塗液Bを110℃で1時間かけて硬化させて帯電用素子Bを作製した。なお、帯電用素子Bにおいても、素子層の表面を削り取って、カーボンナノチューブの長尺部分の端部を露出させる動作は行わないようにした。   Next, without applying an electric field between the conductive substrate and the charging element, the element layer coating liquid B was cured at 110 ° C. for 1 hour to produce a charging element B. In the charging element B as well, the operation of scraping the surface of the element layer to expose the ends of the long portions of the carbon nanotubes was not performed.

ここで、前記のようにして製造した帯電用素子A1a〜A1c、帯電用素子A2〜A4及び帯電用素子Bにおいて、前記の素子層中におけるカーボンナノチューブ(CNT)の含有率(wt%)は、下記の表1に示すように、帯電用素子A1a〜A1c及び帯電用素子A2〜A4では1wt%になっており、帯電用素子Bでは9.5wt%になっていた。   Here, in the charging elements A1a to A1c, the charging elements A2 to A4, and the charging element B manufactured as described above, the carbon nanotube (CNT) content (wt%) in the element layer is As shown in Table 1 below, the charging elements A1a to A1c and the charging elements A2 to A4 were 1 wt%, and the charging element B was 9.5 wt%.

また、前記のようにして製造した帯電用素子A1a〜A1c、帯電用素子A2〜A4及び帯電用素子Bについて、それぞれ各素子層をミクロトームによりカットし、電界放出形透過電子顕微鏡(日立ハイテクノロジーズ社製:HF−3300)を用いたTEM画像に基づき、カーボンナノチューブの分散性及び配向性を調べ、その結果を下記の表1に示した。ここで、分散性については、10カ所のTEM画像中においてカーボンナノチューブの凝集物は確認されなかった場合を1、10カ所のTEM画像中において確認されたカーボンナノチューブの凝集物が3個以下の場合を2、10カ所のTEM画像中において確認されたカーボンナノチューブの凝集物が10個以下の場合を3として評価し、またカーボンナノチューブの配向性については、配向性の有無を評価した。   For the charging elements A1a to A1c, charging elements A2 to A4 and charging element B manufactured as described above, each element layer was cut with a microtome, and a field emission transmission electron microscope (Hitachi High-Technologies Corporation). Based on a TEM image using HF-3300), the dispersibility and orientation of the carbon nanotubes were examined, and the results are shown in Table 1 below. Here, with respect to dispersibility, the case where no aggregates of carbon nanotubes were confirmed in 10 TEM images was 1, and the case where there were 3 or less aggregates of carbon nanotubes confirmed in 10 TEM images. Was evaluated as 3 when the number of aggregates of carbon nanotubes confirmed in 2 or 10 TEM images was 10 or less, and the orientation of carbon nanotubes was evaluated for the presence or absence of orientation.

また、前記のようにして製造した帯電用素子A1a〜A1c、帯電用素子A2〜A4及び帯電用素子Bについて、導電性基板と反対側における素子層の表面を電界放出形走査電子顕微鏡(日立ハイテクノロジーズ社製:SU8020)により観察し、カーボンナノチューブの長尺部分の端部が素子層の表面に露出しているかを調べ、その結果を、下記の表1に合わせて示した。   For the charging elements A1a to A1c, charging elements A2 to A4, and charging element B manufactured as described above, the surface of the element layer on the side opposite to the conductive substrate was subjected to a field emission scanning electron microscope (Hitachi Observed by Technologies, Inc .: SU8020), it was examined whether the end of the long part of the carbon nanotube was exposed on the surface of the element layer, and the results are shown in Table 1 below.

Figure 2017015948
Figure 2017015948

この結果、素子層中におけるカーボンナノチューブの含有率が9.5wt%と多い帯電用素子Bは、カーボンナノチューブの含有率が1wt%になった帯電用素子A1a〜A1c及び帯電用素子A2〜A4に比べて、カーボンナノチューブの凝集が多くなって分散性が悪くなっていた。   As a result, the charging element B having a high carbon nanotube content of 9.5 wt% in the element layer is different from the charging elements A1a to A1c and charging elements A2 to A4 in which the carbon nanotube content is 1 wt%. In comparison, the aggregation of carbon nanotubes increased and the dispersibility deteriorated.

また、帯電用素子A1a〜A1c及び帯電用素子A2〜A4を比較すると、導電性基板と帯電用素子との間に電界を作用させながら素子層用塗液を硬化させて素子層を得た帯電用素子A1a〜A1c、帯電用素子A2は、電界を作用させないで素子層用塗液を硬化させて素子層を得た帯電用素子A3,A4に比べて、カーボンナノチューブの分散性及び配向性がさらによくなっていた。   Further, when the charging elements A1a to A1c and the charging elements A2 to A4 are compared, the element layer coating liquid is cured while applying an electric field between the conductive substrate and the charging element to obtain the element layer. The elements A1a to A1c and the charging element A2 have a carbon nanotube dispersibility and orientation compared to the charging elements A3 and A4 obtained by curing the element layer coating liquid without applying an electric field. It was even better.

また、硬化された素子層の表面を数ミクロンの範囲で均一に削り取るようにした帯電用素子A1a〜A1c、帯電用素子A3においては、素子層の表面にカーボンナノチューブの長尺部分の端部が露出していたのに対して、素子層の表面を削り取っていない帯電用素子A2,A4及び帯電用素子Bにおいては、素子層の表面にカーボンナノチューブの長尺部分の端部が露出していなかった。   Further, in the charging elements A1a to A1c and the charging element A3 in which the surface of the cured element layer is uniformly scraped within a range of several microns, the end portion of the long part of the carbon nanotube is formed on the surface of the element layer. In the charging elements A2 and A4 and the charging element B in which the surface of the element layer was not removed, the end portions of the long portions of the carbon nanotubes were not exposed on the surface of the element layer. It was.

次に、市販の複写機(コニカミノルタ社製:Bizhub 554e)に使用されているドラムカートリッジを改造し、本発明の実施例における帯電装置を用い、像担持体に対する帯電特性及びオゾンの発生状態を調べるようにした。   Next, a drum cartridge used in a commercially available copying machine (manufactured by Konica Minolta: Bizhub 554e) is remodeled, and the charging characteristics in the image carrier and the generation state of ozone are determined using the charging device in the embodiment of the present invention. I tried to check.

ここで、実施例1〜7の各帯電装置においては、下記の表2に示すように、前記の帯電用素子A1a〜A1c、帯電用素子A2〜A4及び帯電用素子Bを用いると共に、引出電極としては、前記の複写機に使用されているメッシュの線径が0.1mm、メッシュの線間が1mmになったSUS304製のグリッド電極を利用するようにした。   Here, in each of the charging devices of Examples 1 to 7, as shown in Table 2 below, the charging elements A1a to A1c, the charging elements A2 to A4, and the charging element B are used, and the extraction electrode is used. For example, a grid electrode made of SUS304 having a mesh wire diameter of 0.1 mm and a mesh wire distance of 1 mm used in the copying machine is used.

そして、実施例1〜7の帯電装置においては、前記の各帯電用素子における導電性基板と前記の引出電極との間隔d1(mm)と、引出電極と像担持体の表面との間隔d2(mm)を下記の表2に示すように設定し、温度23±2℃、相対湿度60±5%の環境下において、像担持体の表面電位Voが−500V±5Vになるように帯電させる場合に、前記の引出電極に印加させる引出用電圧(Vex)及び各帯電用素子における帯電素子電流(Iem)を求め、その結果を下記の表2に示した。   In the charging devices of Examples 1 to 7, the distance d1 (mm) between the conductive substrate and the extraction electrode in each of the charging elements, and the distance d2 between the extraction electrode and the surface of the image carrier ( mm) is set as shown in Table 2 below, and charging is performed so that the surface potential Vo of the image carrier becomes −500 V ± 5 V in an environment of a temperature of 23 ± 2 ° C. and a relative humidity of 60 ± 5%. The extraction voltage (Vex) to be applied to the extraction electrode and the charging element current (Iem) in each charging element were determined, and the results are shown in Table 2 below.

また、実施例1〜7の各帯電装置をそれぞれ前記の複写機に使用し、温度23±2℃、相対湿度60±5%の環境下において、B/W比が10%のハーフトーン画像を連続印刷させ、運転開始後30分経過後から10分間のオゾンの平均濃度をオゾン濃度計(ダイレック社製:MODEL−1200)により測定し、その結果を、実施例1〜7の各帯電装置におけるオゾン発生量(ppm)として下記の表2に示した。   Further, each of the charging devices of Examples 1 to 7 was used in the copying machine, and a halftone image having a B / W ratio of 10% was obtained in an environment of a temperature of 23 ± 2 ° C. and a relative humidity of 60 ± 5%. Continuous printing was performed, and the average concentration of ozone for 10 minutes after 30 minutes from the start of operation was measured with an ozone densitometer (manufactured by Direc Co., Ltd .: MODEL-1200). The ozone generation amount (ppm) is shown in Table 2 below.

Figure 2017015948
Figure 2017015948

また、比較例1においては、前記の実施例における帯電用素子を設けないようにし、前記の引出電極として使用した前記の複写機におけるグリッド電極だけを使用した帯電装置を用いるようにした。   In Comparative Example 1, the charging element in the above-described embodiment is not provided, and a charging device using only the grid electrode in the copying machine used as the extraction electrode is used.

また、比較例2の帯電装置としては、前記の複写機に使用されているスコロトロン式の帯電装置をそのまま用いるようにした。   Further, as the charging device of Comparative Example 2, the scorotron type charging device used in the copying machine is used as it is.

また、比較例3の帯電装置としては、市販の複写機(コニカミノルタ社製:Bizhub C3850)に使用されている帯電ローラーを用いるようにした。   Further, as the charging device of Comparative Example 3, a charging roller used in a commercially available copying machine (manufactured by Konica Minolta, Inc .: Bizhub C3850) was used.

そして、前記の比較例1〜3の帯電装置を用い、温度23±2℃、相対湿度60±5%の環境下において、像担持体の表面電位Voが−500V±5Vになるように帯電させる場合に、比較例1においては、前記のグリッド電極に印加させるグリッド電圧(Vg)を求め、比較例2においては、グリッド電極に印加させるグリッド電圧(Vg)と鋸歯状の帯電電極に印加させる帯電電圧(Vc)とこの帯電電極に流れる帯電電流(Ic)とを求め、比較例3においては、帯電ローラーに印加させる帯電電圧(Vc)を求め、これらの結果を下記の表3に示した。   Then, using the charging device of Comparative Examples 1 to 3, charging is performed so that the surface potential Vo of the image carrier becomes −500 V ± 5 V in an environment of a temperature of 23 ± 2 ° C. and a relative humidity of 60 ± 5%. In Comparative Example 1, the grid voltage (Vg) applied to the grid electrode is obtained, and in Comparative Example 2, the grid voltage (Vg) applied to the grid electrode and the charging applied to the sawtooth charging electrode. The voltage (Vc) and the charging current (Ic) flowing through the charging electrode were determined. In Comparative Example 3, the charging voltage (Vc) applied to the charging roller was determined. The results are shown in Table 3 below.

また、前記の比較例1〜3の各帯電装置についても、前記の実施例1〜7の帯電装置の場合と同様にして、それぞれオゾン発生量(ppm)を測定し、その結果を下記の表3示した。   For each of the charging devices of Comparative Examples 1 to 3, the ozone generation amount (ppm) was measured in the same manner as in the charging devices of Examples 1 to 7, and the results are shown in the following table. 3 shown.

Figure 2017015948
Figure 2017015948

前記の表2及び表3の結果から明らかなように、樹脂中にカーボンナノチューブが分散された素子層を像担持体と対向する導電性基板の面に設けた帯電用素子を使用した実施例1〜7の帯電装置においては、グリッド電極だけを使用した比較例1の帯電装置や、スコロトロン式の比較例2の帯電装置や、帯電ローラーを用いた比較例3の帯電装置に比べて、像担持体を所定の表面電位に帯電させるために、前記の各帯電用素子に印加させる電圧を低くすることができ、オゾンの発生量を低減させることができた。   As is apparent from the results of Tables 2 and 3, Example 1 using a charging element in which an element layer in which carbon nanotubes are dispersed in a resin is provided on the surface of a conductive substrate facing the image carrier. Compared with the charging device of Comparative Example 1 using only the grid electrode, the charging device of Comparative Example 2 of the scorotron type, and the charging device of Comparative Example 3 using the charging roller in the charging devices of ˜7. In order to charge the body to a predetermined surface potential, the voltage applied to each of the charging elements can be lowered, and the amount of ozone generated can be reduced.

また、実施例1〜7の帯電装置を比較した場合、特に、素子層中におけるカーボンナノチューブが分散された状態で、その長尺部分が像担持体と対向する素子層の面に向って配向されると共に、像担持体と対向する素子層の面においてカーボンナノチューブの長尺部分の端部が露出された帯電用素子A1a〜A1cを用いた実施例1〜3の帯電装置は、素子層中に含有させるカーボンナノチューブの量を少なくした場合においても、帯電用素子に印加させる電圧を低くして、像担持体を所定の表面電位に帯電させることができた。   Further, when the charging devices of Examples 1 to 7 are compared, in particular, in a state in which the carbon nanotubes are dispersed in the element layer, the elongated portion is oriented toward the surface of the element layer facing the image carrier. In addition, the charging devices of Examples 1 to 3 using the charging elements A1a to A1c in which the end portions of the long portions of the carbon nanotubes are exposed on the surface of the element layer facing the image carrier are provided in the element layer. Even when the amount of carbon nanotubes to be contained was reduced, the voltage applied to the charging element could be lowered to charge the image carrier to a predetermined surface potential.

10 :画像形成装置
11 :像担持体(被帯電体)
12 :潜像形成装置
13 :現像装置
14 :転写装置
15 :定着装置
16 :クリーニング装置
20 :帯電装置
21 :帯電用素子
21a :導電性基板
21b :素子層
22 :引出電極
23 :帯電用電源
S :記録シート
d1 :帯電用素子と引出電極との間の距離
d2 :引出電極と被帯電体との間の距離
10: Image forming apparatus 11: Image carrier (charged body)
12: latent image forming device 13: developing device 14: transfer device 15: fixing device 16: cleaning device 20: charging device 21: charging element 21a: conductive substrate 21b: element layer 22: extraction electrode 23: charging power source S : Recording sheet d1: Distance between charging element and extraction electrode d2: Distance between extraction electrode and object to be charged

Claims (10)

電界の作用により電子を放出して被帯電体を帯電させる帯電用素子において、被帯電体と対向する導電性基板の面に、樹脂中にカーボンナノチューブが分散された素子層が設けられていることを特徴とする帯電用素子。   In a charging element that discharges electrons by the action of an electric field to charge the object to be charged, an element layer in which carbon nanotubes are dispersed in resin is provided on the surface of the conductive substrate facing the object to be charged. An element for charging. 請求項1に記載の帯電用素子において、前記の素子層における樹脂中に、カーボンナノチューブの長尺部分が前記の被帯電体に向かうように配向されて分散されていることを特徴とする帯電用素子。   2. The charging element according to claim 1, wherein a long part of the carbon nanotube is oriented and dispersed in the resin in the element layer so as to face the charged body. element. 請求項1又は請求項2に記載の帯電用素子において、前記のカーボンナノチューブの長尺部分の端部が、被帯電体と対向する素子層の面において露出されていることを特徴とする帯電用素子。   3. The charging device according to claim 1, wherein an end portion of the long portion of the carbon nanotube is exposed on a surface of an element layer facing a member to be charged. element. 導電性基板の面にカーボンナノチューブを分散させた樹脂を塗布し、電界を作用させながら前記の樹脂を硬化させて、樹脂中にカーボンナノチューブが分散された素子層を設けることを特徴とする帯電用素子の製造方法。   Applying a resin in which carbon nanotubes are dispersed on the surface of a conductive substrate, curing the resin while applying an electric field, and providing an element layer in which carbon nanotubes are dispersed in the resin Device manufacturing method. 請求項4に記載の帯電用素子の製造方法において、カーボンナノチューブを分散させた樹脂を硬化させるにあたり、カーボンナノチューブの長尺部分が前記の被帯電体に向かうように電界を作用させて、カーボンナノチューブの長尺部分が被帯電体に向かうように配向させたことを特徴とする帯電用素子の製造方法。   5. The method of manufacturing a charging element according to claim 4, wherein an electric field is applied so that a long portion of the carbon nanotube is directed to the charged body when the resin in which the carbon nanotube is dispersed is cured. A method for producing a charging element, characterized in that a long portion of the substrate is oriented so as to be directed to a member to be charged. 請求項4又は請求項5に記載の帯電用素子の製造方法において、カーボンナノチューブを分散させた樹脂を硬化させた後、前記の被帯電体と対向する素子層の面を表面処理して、カーボンナノチューブの長尺部分の端部を、被帯電体と対向する素子層の面において露出させたことを特徴とする帯電用素子の製造方法。   6. The method for manufacturing a charging element according to claim 4 or 5, wherein after the resin in which carbon nanotubes are dispersed is cured, the surface of the element layer facing the object to be charged is surface-treated. A method for manufacturing a charging element, wherein an end of a long part of a nanotube is exposed on a surface of an element layer facing a member to be charged. 請求項4〜請求項6の何れか1項に記載の帯電用素子の製造方法において、前記の樹脂に熱硬化性エポキシ樹脂を用いると共に、この熱硬化性エポキシ樹脂にイミダゾリウム塩を含有させたことを特徴とする帯電用素子の製造方法。   In the manufacturing method of the element for charging according to any one of claims 4 to 6, a thermosetting epoxy resin is used for the resin, and an imidazolium salt is contained in the thermosetting epoxy resin. A method for manufacturing a charging element, characterized in that: 請求項1〜請求項3の何れか1項に記載の帯電用素子を用いた帯電装置において、前記の帯電用素子と被帯電体との間に、帯電用素子から電界の作用により電子を放出させる引出電極を設けたことを特徴とする帯電装置。   4. The charging device using the charging element according to claim 1, wherein electrons are emitted from the charging element by an action of an electric field between the charging element and a member to be charged. 5. A charging device comprising an extraction electrode to be provided. 請求項8に記載の帯電装置において、前記の帯電用素子と引出電極との間の距離d1と、引出電極と被帯電体との間の距離d2とが、d1≦d2の関係を満たすことを特徴とする帯電装置。   9. The charging device according to claim 8, wherein a distance d1 between the charging element and the extraction electrode and a distance d2 between the extraction electrode and the member to be charged satisfy a relationship of d1 ≦ d2. Characteristic charging device. 請求項8又は請求項9に記載の帯電装置によって像担持体の表面を帯電させることを特徴とする画像形成装置。   An image forming apparatus, wherein the surface of the image carrier is charged by the charging device according to claim 8.
JP2015132991A 2015-07-01 2015-07-01 Element for charging, manufacturing method of element for charging, charger, and image forming apparatus Pending JP2017015948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132991A JP2017015948A (en) 2015-07-01 2015-07-01 Element for charging, manufacturing method of element for charging, charger, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132991A JP2017015948A (en) 2015-07-01 2015-07-01 Element for charging, manufacturing method of element for charging, charger, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2017015948A true JP2017015948A (en) 2017-01-19

Family

ID=57829144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132991A Pending JP2017015948A (en) 2015-07-01 2015-07-01 Element for charging, manufacturing method of element for charging, charger, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2017015948A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090809A (en) * 1998-09-09 2000-03-31 Toshiba Corp Electric field emission cathode, electron emission element, and manufacture for electric field emission cathode
JP2001250467A (en) * 2000-03-03 2001-09-14 Ricoh Co Ltd Electron emission element using carbon nanotube, electrifier and image recorder
JP2002148901A (en) * 2000-11-13 2002-05-22 Ricoh Co Ltd Electrifying device
JP2002279885A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Electron emission apparatus, charging device and image forming apparatus
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
JP2005316395A (en) * 2004-03-31 2005-11-10 Ricoh Co Ltd Image forming apparatus
JP2006323366A (en) * 2005-04-19 2006-11-30 Ricoh Co Ltd Charging device, image forming apparatus, and process cartridge
US20090123185A1 (en) * 2007-11-14 2009-05-14 Liang-Bih Lin Imaging device components comprised of hydrophobic carbon nanotubes
WO2012033167A1 (en) * 2010-09-08 2012-03-15 国立大学法人九州大学 Process for producing film containing oriented nanotubes or nanoparticles, and the film
JP2014114420A (en) * 2012-12-12 2014-06-26 Panasonic Corp Conductive resin composition, conductive cured product, wiring, electronic component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090809A (en) * 1998-09-09 2000-03-31 Toshiba Corp Electric field emission cathode, electron emission element, and manufacture for electric field emission cathode
JP2001250467A (en) * 2000-03-03 2001-09-14 Ricoh Co Ltd Electron emission element using carbon nanotube, electrifier and image recorder
JP2002148901A (en) * 2000-11-13 2002-05-22 Ricoh Co Ltd Electrifying device
JP2002279885A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Electron emission apparatus, charging device and image forming apparatus
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
JP2005316395A (en) * 2004-03-31 2005-11-10 Ricoh Co Ltd Image forming apparatus
JP2006323366A (en) * 2005-04-19 2006-11-30 Ricoh Co Ltd Charging device, image forming apparatus, and process cartridge
US20090123185A1 (en) * 2007-11-14 2009-05-14 Liang-Bih Lin Imaging device components comprised of hydrophobic carbon nanotubes
WO2012033167A1 (en) * 2010-09-08 2012-03-15 国立大学法人九州大学 Process for producing film containing oriented nanotubes or nanoparticles, and the film
JP2014114420A (en) * 2012-12-12 2014-06-26 Panasonic Corp Conductive resin composition, conductive cured product, wiring, electronic component

Similar Documents

Publication Publication Date Title
JP5893432B2 (en) Ion conductive resin and electrophotographic conductive member
US20130281276A1 (en) Electrically conductive member, process cartridge and electrophotographic apparatus
JP5875416B2 (en) Conductive member for electrophotography
KR101216263B1 (en) Charging roller, process cartridge and electrophotographic device
WO2015045365A1 (en) Conductive roller and method for manufacturing same
JP6641828B2 (en) Charging member, image forming apparatus and process cartridge
JP4877749B2 (en) Charging device, image forming apparatus, and process cartridge
JP6769062B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2017015948A (en) Element for charging, manufacturing method of element for charging, charger, and image forming apparatus
JP6070643B2 (en) Wet development apparatus and wet image forming apparatus
JP6971807B2 (en) Charging rollers and electrophotographic equipment
CN1873547A (en) Semiconductive rubber member for electronic photograph
JP6769063B2 (en) Charging member, charging device, process cartridge, and image forming device
CN1940746A (en) Image forming apparatus and image forming method
JP2020160444A (en) Charging member, charging device, process cartridge, and image forming apparatus
JP2001356568A (en) Electrifying device and device for image formation
JP2017214505A (en) Thermoplastic resin composition, and coating composition
JP6779675B2 (en) Charging member, process cartridge and electrophotographic image forming apparatus
JP2010002867A (en) Electrification controller, electrifying device and image forming apparatus
US9201332B2 (en) Charger, ion generator, image forming apparatus, and process cartridge
JP2003295583A (en) Electrostatic charging member, method for forming surface of electrostatic charging member, electrostatic charging device, and image forming apparatus
JP2000347478A (en) Contact type electrifying device and image recorder
JP2004271823A (en) Contactless proximity electrostatic charging roller and method for forming its surface
JP6480707B2 (en) Charging roller and image forming apparatus
JP5836734B2 (en) Conductive member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903