JP2016056491A - Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body - Google Patents

Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body Download PDF

Info

Publication number
JP2016056491A
JP2016056491A JP2015135513A JP2015135513A JP2016056491A JP 2016056491 A JP2016056491 A JP 2016056491A JP 2015135513 A JP2015135513 A JP 2015135513A JP 2015135513 A JP2015135513 A JP 2015135513A JP 2016056491 A JP2016056491 A JP 2016056491A
Authority
JP
Japan
Prior art keywords
fiber
reinforced resin
yarn
fiber reinforced
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135513A
Other languages
Japanese (ja)
Inventor
伊藤 正道
Masamichi Ito
正道 伊藤
歴 堀本
Reki Horimoto
歴 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Publication of JP2016056491A publication Critical patent/JP2016056491A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fiber sheet for a fiber-reinforced resin, which enhances wettability with a matrix resin and reduces voids, and a production method of the same, and a molded body using the same and a production method of the molded body.SOLUTION: In a fiber sheet (1) for a fiber-reinforced resin, a large number of fiber bundles (2) are formed by sewing shape-retaining yarns (3) into fiber layers arranged in a direction or with a predetermined angle, in which the shape-retaining yarn (3) has been subjected to at least one surface treatment selected from a group of ozone oxidation, ultraviolet irradiation of light with a wavelength of 400 nm or less, and plasma treatment such that an advancing contact angle and a receding contact angle of the shape-retaining yarn (3) to water are reduced.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂の含浸性を高めた繊維強化樹脂用繊維シートとその製造方法及びこれを用いた成形体とその製造方法に関する。   The present invention relates to a fiber sheet for fiber reinforced resin with improved resin impregnation, a method for producing the same, a molded body using the same, and a method for producing the same.

炭素繊維強化樹脂(CFRP:Carbon Fiber Reinforced Plastics)は、高強度、軽量等の特色を生かして、ゴルフクラブのシャフト、釣竿等の各種スポーツ用品、航空機、自動車、圧力容器などに広く応用されおり、今後の応用も期待されている。繊維強化樹脂の一般的な成形方法として、例えばハンドレイアップ法、スプレーアップ法などの接触圧成形法、フィラメント・ワインディング(FW)法、引き抜き法、連続積層法などの連続成形法などを使用して目的の成形物に成形している。使用されるマトリックス樹脂は、エポキシ樹脂等の熱硬化性樹脂が使用されている。マトリックス樹脂との結合力を高めるため、マトリックス樹脂に応じたサイジング剤を強化用繊維表面に付着させている(以上、非特許文献1)。   Carbon fiber reinforced plastics (CFRP: Carbon Fiber Reinforced Plastics) are widely used in various sports equipment such as golf club shafts, fishing rods, aircraft, automobiles, pressure vessels, etc. Future applications are also expected. As a general molding method of fiber reinforced resin, for example, a contact pressure molding method such as a hand lay-up method or a spray-up method, a continuous molding method such as a filament winding (FW) method, a drawing method or a continuous lamination method is used. To the desired molded product. As the matrix resin to be used, a thermosetting resin such as an epoxy resin is used. In order to increase the bonding strength with the matrix resin, a sizing agent corresponding to the matrix resin is attached to the reinforcing fiber surface (Non-Patent Document 1).

従来技術として、アクリル基とエポキシ基を有する炭素繊維用サイジング剤を使用する提案がある(特許文献1)。また、サイジング剤を付着させる前の炭素繊維表面をオゾン酸化させる提案もある(特許文献2)。さらにエポキシ基を有する炭素繊維用サイジング剤を使用する提案がある(特許文献3〜4)。   As a prior art, there is a proposal to use a sizing agent for carbon fiber having an acrylic group and an epoxy group (Patent Document 1). There is also a proposal for ozone oxidation of the carbon fiber surface before the sizing agent is attached (Patent Document 2). Furthermore, there is a proposal of using a carbon fiber sizing agent having an epoxy group (Patent Documents 3 to 4).

特開2000−355884号公報JP 2000-355884 A 特開2009−79344号公報JP 2009-79344 A 特開平7−279040号公報JP-A-7-279040 特開2005−146429号公報JP 2005-146429 A

繊維学会編「第3版繊維便覧」,丸善,2004年12月15日,598−601頁,614−615頁Textile Society edition, “Third edition fiber manual”, Maruzen, December 15, 2004, 598-601, 614-615

しかし、従来技術の強化用繊維シートは、マトリックス樹脂が含浸しにくいという問題があった。とくに、一方向または所定角度に配列された繊維層に保形糸で一体化されている繊維強化樹脂用繊維シートは、マトリックス樹脂を注入したときに、マトリックス樹脂が含浸しにくいという問題があった。さらに、特に繊維層を複数枚積層して成形体を作成した場合、成形体内部の保形糸の存在する部分にボイド(空洞)が発生するという問題があった。   However, the conventional reinforcing fiber sheet has a problem that it is difficult to impregnate the matrix resin. In particular, the fiber sheet for fiber reinforced resin integrated with the shape-retaining yarn in the fiber layer arranged in one direction or at a predetermined angle has a problem that the matrix resin is difficult to be impregnated when the matrix resin is injected. . Further, particularly when a molded body is produced by laminating a plurality of fiber layers, there is a problem that voids (cavities) are generated in a portion where the shape retaining yarn is present inside the molded body.

本発明は、前記従来の問題を解決するため、マトリックス樹脂との濡れ性を高め、強化樹脂繊維間にマトリックス樹脂が含浸しやすく、内部ボイドの発生を低減した繊維強化樹脂用繊維シートとその製造方法及びこれを用いた成形体とその製造方法を提供する。   In order to solve the above conventional problems, the present invention improves the wettability with the matrix resin, facilitates the impregnation of the matrix resin between the reinforced resin fibers, and reduces the generation of internal voids, and the production thereof. A method, a molded body using the method, and a method for producing the same are provided.

本発明の繊維強化樹脂用繊維シートの製造方法は、一方向または所定角度に配列された繊維層が保形糸で一体化されている繊維強化樹脂用繊維シートの製造方法であって、前記保形糸は、オゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理がされていることを特徴とする。   The method for producing a fiber sheet for fiber reinforced resin according to the present invention is a method for producing a fiber sheet for fiber reinforced resin in which fiber layers arranged in one direction or at a predetermined angle are integrated with a shape-retaining yarn. The shape yarn is subjected to at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less, and plasma treatment.

本発明の繊維強化樹脂用繊維シートは、一方向または所定角度に配列された繊維層が保形糸で一体化されている繊維強化樹脂用繊維シートであって、前記保形糸は、水に対する前進動的接触角が75°以下、後退動的接触角が30°以下であることを特徴とする。   The fiber sheet for fiber-reinforced resin of the present invention is a fiber sheet for fiber-reinforced resin in which fiber layers arranged in one direction or at a predetermined angle are integrated with a shape-retaining yarn, and the shape-retaining yarn is against water. The advancing dynamic contact angle is 75 ° or less, and the receding dynamic contact angle is 30 ° or less.

本発明の繊維強化樹脂成形体は、前記の製造方法により得られる繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形した繊維強化樹脂成形体であって、成形体内部の気泡が0.2面積%以下であることを特徴とする。   The fiber reinforced resin molded article of the present invention is a fiber formed by laminating a plurality of fiber reinforced resin fiber sheets obtained by the above production method and impregnating a matrix resin into the fiber reinforced resin fiber sheet by injection molding. It is a reinforced resin molded product, wherein bubbles inside the molded product are 0.2 area% or less.

本発明の繊維強化樹脂成形体は、前記の繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形した繊維強化樹脂成形体であって、成形体内部の気泡が0.2面積%以下であることを特徴とする。   The fiber reinforced resin molded body of the present invention is a fiber reinforced resin molded body formed by laminating a plurality of the fiber reinforced resin fiber sheets and impregnating a matrix resin into the fiber reinforced resin fiber sheet by injection molding. And the bubble inside a molded object is 0.2 area% or less, It is characterized by the above-mentioned.

本発明の繊維強化樹脂用成形体の製造方法は、前記の繊維強化樹脂用成形体を製造する方法であって、保形糸に、糸状態又は繊維シートの状態でオゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理を行い、前記保形糸を含む繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形体を成形することを特徴とする。   The method for producing a molded product for fiber reinforced resin according to the present invention is a method for producing the molded product for fiber reinforced resin, wherein the shape-retaining yarn is subjected to ozone oxidation in a yarn state or a fiber sheet state, and has a wavelength of 400 nm or less. At least one surface treatment selected from the group consisting of ultraviolet irradiation and plasma treatment is performed, a plurality of fiber reinforced resin fiber sheets containing the shape-retaining yarn are laminated, and a matrix is formed in the fiber reinforced resin fiber sheet by injection molding. A molded article is molded by impregnating a resin.

本発明は、保形糸にオゾン酸化等の活性化処理をすることにより、マトリックス樹脂との濡れ性を高め、繊維間にマトリックス樹脂が含浸しやすい繊維強化樹脂用繊維シートを提供できる。とくに、一方向または所定角度に配列された繊維層が保形糸で一体化された繊維強化樹脂用繊維シートを複数枚積層して注入成形したときに、マトリックス樹脂が含浸しやすい繊維強化樹脂用繊維シートを提供できる。これは保形糸が活性化処理されてマトリックス樹脂との濡れ性が高くなっていることと、保形糸が編み糸である場合、編み糸のステッチ穴からマトリックス樹脂が拡散しやすい構造となっていること、と考えられる。   INDUSTRIAL APPLICABILITY The present invention can provide a fiber sheet for a fiber reinforced resin that is easy to impregnate a matrix resin between fibers by increasing the wettability with the matrix resin by subjecting the shape retaining yarn to an activation treatment such as ozone oxidation. Especially for fiber reinforced resins that are easily impregnated with matrix resin when multiple fiber sheets for fiber reinforced resin, in which fiber layers arranged in one direction or at a predetermined angle are integrated with shape-retaining yarns, are laminated and injection molded. A fiber sheet can be provided. This is because the shape retention yarn is activated so that the wettability with the matrix resin is high, and when the shape retention yarn is a knitting yarn, the matrix resin easily diffuses from the stitch hole of the knitting yarn. It is thought that.

図1Aは本発明の一実施形態の繊維強化樹脂用繊維シートの表面の平面図、図1Bは同裏面を示す平面図である。FIG. 1A is a plan view of the surface of a fiber sheet for fiber reinforced resin according to an embodiment of the present invention, and FIG. 1B is a plan view showing the back surface thereof. 図2は本発明の別の実施形態を示す多軸挿入たて編物の概念斜視図である。FIG. 2 is a conceptual perspective view of a multi-axis inserted warp knitted fabric showing another embodiment of the present invention. 図3は本発明のさらに別の実施形態の繊維強化樹脂用繊維シートの表面の平面図である。FIG. 3 is a plan view of the surface of a fiber sheet for fiber-reinforced resin according to still another embodiment of the present invention. 図4は本発明のさらに別の実施形態の繊維強化樹脂用繊維シートの表面の平面図である。FIG. 4 is a plan view of the surface of a fiber sheet for fiber-reinforced resin according to still another embodiment of the present invention. 図5は本発明の一実施形態のインフュージョン成形を説明する模式図である。FIG. 5 is a schematic view for explaining infusion molding according to an embodiment of the present invention.

本発明は、保形糸自体又は繊維強化樹脂用繊維シートに組み込まれている保形糸に対してオゾン酸化、エキシマランプ照射や低圧水銀ランプ照射等の波長400nm以下の紫外線照射及びプラズマ照射からなる群から選ばれる少なくとも一つの表面処理をすることにより、保形糸の水に対する接触角を低減し、結果としてマトリックス樹脂との濡れ性を高め、強化繊維間にマトリックス樹脂が含浸しやすい繊維シートを提供できる。強化繊維間にマトリックス樹脂が含浸しやすいと成形体の欠点は少なくなり、かつ含浸作業工程を短縮化できるメリットがある。   The present invention consists of ozone irradiation, ultraviolet irradiation with a wavelength of 400 nm or less such as irradiation with an excimer lamp and low pressure mercury lamp, and plasma irradiation on the shape retaining yarn itself or the shape retaining yarn incorporated in the fiber sheet for fiber reinforced resin. By performing at least one surface treatment selected from the group, the contact angle of the shape-retaining yarn with respect to water is reduced, and as a result, the wettability with the matrix resin is improved, and a fiber sheet that is easily impregnated with the matrix resin between the reinforcing fibers. Can be provided. If the matrix resin is easily impregnated between the reinforcing fibers, there are advantages that the molded body has fewer defects and that the impregnation process can be shortened.

保形糸を、オゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理することにより、水に対する接触角を低減できる。なお、糸の接触角については、糸を水に挿入する際の前進動的接触角及び後退動的接触角で測定するが、吸水性糸のように前進動的接触角及び後退動的接触角で測定することが好ましくない場合は他の方法、たとえば同材質の樹脂を用いてフィルムを作成し、フィルム上に水を滴下し接触角を図るのでも良い。   The contact angle with water can be reduced by subjecting the shape-retaining yarn to at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less, and plasma treatment. The yarn contact angle is measured by the forward dynamic contact angle and the backward dynamic contact angle when the yarn is inserted into water. If it is not preferable to measure the thickness of the film by another method, for example, a film may be prepared using a resin of the same material, and the contact angle may be increased by dropping water on the film.

保形糸は、前進動的接触角を75°以下、後退動的接触角を30°以下とするのが好ましい。保形糸がポリエステル糸の場合、表面処理なしでは前進動的接触角が79°であり、後退動的接触角は35°であるから、表面処理すると親水性になることが分かる。これはマトリックス樹脂との濡れ性を上げるために重要である。保形糸の水に対する前進動的接触角は、50〜75°、後退動的接触角は3〜30°が好ましく、さらに好ましくは前進動的接触角65〜72°、後退動的接触角5〜20°である。保形糸の好ましい繊度は1〜30texであり、好ましくは2〜25tex、さらに好ましくは3〜20texである。前記の範囲であれば保形糸による縫製工程の生産効率性が高い。   The shape retaining yarn preferably has a forward dynamic contact angle of 75 ° or less and a backward dynamic contact angle of 30 ° or less. When the shape retaining yarn is a polyester yarn, the advancing dynamic contact angle is 79 ° without the surface treatment, and the receding dynamic contact angle is 35 °. This is important for increasing the wettability with the matrix resin. The advancing dynamic contact angle of the shape retaining yarn with respect to water is preferably 50 to 75 °, and the receding dynamic contact angle is preferably 3 to 30 °, more preferably the advancing dynamic contact angle 65 to 72 °, and the receding dynamic contact angle 5 ~ 20 °. The preferred fineness of the shape retaining yarn is 1 to 30 tex, preferably 2 to 25 tex, more preferably 3 to 20 tex. If it is the said range, the production efficiency of the sewing process by a shape-retaining thread is high.

保形糸は編み糸、織り糸又はスクリムが好ましい。編み糸は一軸又は多軸挿入たて編み物で使用され、織り糸は織物に使用され、スクリムは例えばネット材による熱接着により、各々多数の繊維シートを形成するのに使用される。保形糸は熱融着糸であっても良いし、熱融着糸を含んでいても良い。通常、保形糸はポリエステル糸又はナイロン糸である。このようにすると樹脂含浸性をさらに高めることができる。また、補助的な糸としてガラス糸が用いられる。   The shape retaining yarn is preferably a knitting yarn, a weaving yarn or a scrim. Knitting yarns are used in uniaxial or multi-axially inserted warp knitting, weaving yarns are used in woven fabrics, and scrims are used to form a large number of fiber sheets, for example by thermal bonding with a net material. The shape retention yarn may be a heat fusion yarn or may include a heat fusion yarn. Usually, the shape retaining yarn is a polyester yarn or a nylon yarn. If it does in this way, resin impregnation property can further be improved. Glass yarn is used as an auxiliary yarn.

繊維強化樹脂用繊維には炭素繊維、ガラス繊維又はアラミド繊維が使用でき、その中でも炭素繊維又はガラス繊維が好ましい。他にスーパー繊維と呼ばれている強化用繊維にも使用できる。繊維強化樹脂用繊維シートの目付は50〜2500g/m2が好ましく、さらに好ましくは150〜2000g/m2であり、とくに好ましくは400〜1500g/m2である。 Carbon fiber, glass fiber, or aramid fiber can be used as the fiber for fiber reinforced resin, and carbon fiber or glass fiber is preferable among them. It can also be used for reinforcing fibers called super fibers. The basis weight of the fiber sheet for fiber reinforced resin is preferably 50 to 2500 g / m 2 , more preferably 150 to 2000 g / m 2 , and particularly preferably 400 to 1500 g / m 2 .

次にそれぞれの表面処理について説明する。
(1)オゾン酸化
オゾンの発生方法としては、無声放電方式、沿面放電方式、紫外線照射方式、電気分解方式などがある。大容量のオゾン生成には効率の面から、主に無声放電方式が利用されている。現在、放電型オゾナイザとして最も一般的に用いられている放電方式である。一対の平行電極の一方または両方に誘電体(主にガラスやセラミックス)の層を設け、両電極間に交流高電圧が印加されると無声放電が生じる。オゾン濃度の好ましい一例として、40000ppmとする。処理時間は2〜60分間が好ましくさらに好ましくは5〜40分間である。オゾンは処理空間に均一に拡散することから、繊維強化樹脂用繊維シートの処理に好適である。すなわち、繊維強化樹脂用繊維シートの表面だけではなく内部まで均一に処理できる。
Next, each surface treatment will be described.
(1) Ozone oxidation Methods for generating ozone include a silent discharge method, a creeping discharge method, an ultraviolet irradiation method, and an electrolysis method. The silent discharge method is mainly used for generating large-volume ozone from the viewpoint of efficiency. At present, this is the most commonly used discharge method as a discharge type ozonizer. When a dielectric (mainly glass or ceramics) layer is provided on one or both of the pair of parallel electrodes and an alternating high voltage is applied between the two electrodes, silent discharge occurs. A preferable example of the ozone concentration is 40000 ppm. The treatment time is preferably 2 to 60 minutes, more preferably 5 to 40 minutes. Since ozone diffuses uniformly into the treatment space, it is suitable for the treatment of the fiber sheet for fiber reinforced resin. That is, not only the surface of the fiber sheet for fiber reinforced resin but also the inside can be treated uniformly.

(2)エキシマランプ照射
エキシマランプとは、誘電体バリア放電の短時間放電が多数生じる特徴を生かして、希ガス原子や、希ガス原子とハロゲン原子によって形成されるエキシマからの光を放射する放電ランプのことである。エキシマランプの代表的放射波長には、Ar2*(126nm)、Kr2*(146nm)、Xe2*(172nm)、KrCl*(222nm)、XeCl*(308nm)などがある。ランプは石英ガラスの二重構造になっており、内管の内側には金属電極、外管の外側には金属網電極がそれぞれ施され、石英ガラス管内には放電ガスが充填されている。電極に交流の高電圧を印加すると、2つの誘電体の間で細い針金状の放電プラズマ(誘電体バリア放電)が多数発生する。この放電プラズマは高エネルギーの電子を包含しており、かつ、瞬時に消滅するという特徴を持っている。この放電プラズマにより、放電ガスの原子が励起され、瞬間的にエキシマ状態となる。このエキシマ状態から元の状態(基底状態)に戻るときに、そのエキシマ特有のスペクトルを発光(エキシマ発光)する。発光スペクトルは、充填された放電ガスによって設定することができる。好ましい照射条件は波長によって異なる。波長172nmの場合、光強度は例えば5〜6mW/cm2とすると、照射時間は0.5〜30分程度が好ましい。波長222nmの場合、光強度は例えば40〜60mW/cm2とすると、照射時間は2〜30分程度が好ましい。ランプと被処理物との間に空気層(ギャップ)があると、波長172nmの場合、空気中の酸素が光エネルギーを吸収してオゾンが発生するので、オゾンによる酸化作用も起きる。
(2) Excimer lamp irradiation An excimer lamp is a discharge that emits light from a rare gas atom or an excimer formed by a rare gas atom and a halogen atom, taking advantage of the fact that a large number of dielectric barrier discharges occur for a short time. It is a lamp. Typical emission wavelengths of excimer lamps include Ar2 * (126 nm), Kr2 * (146 nm), Xe2 * (172 nm), KrCl * (222 nm), XeCl * (308 nm), and the like. The lamp has a double structure of quartz glass. A metal electrode is applied to the inside of the inner tube, a metal mesh electrode is applied to the outside of the outer tube, and a discharge gas is filled in the quartz glass tube. When an alternating high voltage is applied to the electrodes, a large number of thin wire-like discharge plasmas (dielectric barrier discharges) are generated between the two dielectrics. This discharge plasma contains high-energy electrons and has the feature of disappearing instantaneously. The discharge plasma excites the atoms of the discharge gas and instantaneously enters an excimer state. When returning from the excimer state to the original state (ground state), the excimer-specific spectrum is emitted (excimer emission). The emission spectrum can be set by the filled discharge gas. Preferred irradiation conditions vary depending on the wavelength. In the case of a wavelength of 172 nm, when the light intensity is 5 to 6 mW / cm 2 , for example, the irradiation time is preferably about 0.5 to 30 minutes. In the case of a wavelength of 222 nm, if the light intensity is 40 to 60 mW / cm 2 , for example, the irradiation time is preferably about 2 to 30 minutes. If there is an air layer (gap) between the lamp and the object to be processed, in the case of a wavelength of 172 nm, oxygen in the air absorbs light energy to generate ozone, so that an oxidizing action by ozone also occurs.

(3)低圧水銀ランプ照射
低圧水銀ランプ(低圧UVランプ)は、点灯中の水銀圧力が100Pa以下の水銀蒸気中のアーク放電の発光を利用する。発光管にはアルゴンガスなどの希ガスと、水銀又はそのアマルガムが封入されている。波長185nm,254nmなどの紫外放射のランプがある。光強度は例えば40〜60mW/cm2とする。照射時間は2〜30分程度が好ましい。
(3) Low-pressure mercury lamp irradiation Low-pressure mercury lamps (low-pressure UV lamps) use arc discharge in mercury vapor with a mercury pressure of 100 Pa or less during operation. The arc tube is filled with a rare gas such as argon gas and mercury or its amalgam. There are lamps of ultraviolet radiation with wavelengths of 185nm and 254nm. The light intensity is, for example, 40 to 60 mW / cm 2 . The irradiation time is preferably about 2 to 30 minutes.

(4)プラズマ照射処理
プラズマは一般的には気体を構成する分子が部分的に又は完全に電離し、陽イオンと電子に分かれて自由に運動している状態のものである。プラズマ処理装置を使用して炭素繊維にプラズマ照射する条件は、照射量としてワット密度(W・分/m2)で表現すると、1000〜50000W・分/m2が好ましい。また、窒素ガス又は窒素+酸素ガス雰囲気で処理速度(被処理物移動速度)0.05〜1m/minが好ましい。
(4) Plasma irradiation treatment In general, plasma is in a state where molecules constituting a gas are partially or completely ionized, and are freely moving into cations and electrons. Conditions using a plasma processing apparatus for plasma irradiation to carbon fibers, when expressed in watt density (W · min / m 2) as the amount of irradiation, preferably 1000~50000W · min / m 2. Further, a treatment speed (workpiece moving speed) of 0.05 to 1 m / min is preferable in an atmosphere of nitrogen gas or nitrogen + oxygen gas.

上記の表面処理は単独でも任意に組み合わせても良い。これらの表面処理により、保形糸表面を活性化し、マトリックス樹脂との濡れ性を良好にして含浸性をさらに高めることができる。また、上記の表面処理のうちでもオゾン酸化が最も好ましい。オゾン酸化は気相で処理できるため、繊維シートの表面だけではなく内部まで均一に処理できるからである。   The above surface treatments may be used alone or in any combination. By these surface treatments, the shape-retaining yarn surface can be activated, the wettability with the matrix resin can be improved, and the impregnation property can be further enhanced. Of the above surface treatments, ozone oxidation is most preferable. This is because ozone oxidation can be processed in the gas phase, so that not only the surface of the fiber sheet but also the inside can be uniformly processed.

複数本の繊維はシート状に形成されている。このような繊維としては、例えば構成繊維を一方向に揃えたスダレ状基材、織物、編み物、組物又は多軸挿入たて編み物等がある。繊維シートを構成する繊維の単繊維繊度はいかなる繊度であっても良い。   The plurality of fibers are formed in a sheet shape. Examples of such fibers include a suede-like base material in which constituent fibers are aligned in one direction, a woven fabric, a knitted fabric, a braid, a multi-axis inserted warp knitted fabric, and the like. The single fiber fineness of the fibers constituting the fiber sheet may be any fineness.

本発明の成形体は繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって成形した繊維強化樹脂成形体であって、成形体内部の気泡が0.2面積%以下である。注入成形としてはインフュージョン成形、RTM成形などが例示される。インフュージョン成形は上型にフィルムを使用し、下型とフィルムの気密性を保ち、真空圧によって樹脂を充填し、含浸させるクローズドモールド成形法である。前記成形体内部の気泡は、X線透過CTスキャンにより測定するのが好ましい。通常、繊維強化樹脂用繊維シートの積層枚数は3〜300枚が用いられる。積層枚数が少ない場合は、もともとの空洞が生じにくいので、本発明のボイドの発生を低減させる効果として、より有効な積層枚数は20〜300枚であり、特に効果が有効である積層枚数は50〜300枚である。この成形体の一例として、風力発電用ブレード、船艇、スポーツ用品などがある。   The molded body of the present invention is a fiber reinforced resin molded body obtained by laminating a plurality of fiber sheets for fiber reinforced resin and molded by injection molding, and the bubbles inside the molded body are 0.2 area% or less. Examples of injection molding include infusion molding and RTM molding. Infusion molding is a closed mold molding method in which a film is used for the upper mold, the lower mold and the film are kept airtight, and the resin is filled and impregnated by vacuum pressure. The bubbles inside the molded body are preferably measured by an X-ray transmission CT scan. Usually, the number of laminated fiber sheets for fiber reinforced resin is 3 to 300. When the number of stacked layers is small, the original void is unlikely to occur. Therefore, as an effect of reducing the generation of voids according to the present invention, the more effective number of stacked layers is 20 to 300, and the number of stacked layers that is particularly effective is 50. ~ 300. Examples of this molded body include a blade for wind power generation, a boat, and sports equipment.

本発明の繊維強化樹脂用繊維シートには、汎用性の高いエポキシ樹脂サイジング剤を炭素繊維表面に付着させたものを使用するのが好ましい。サイジング剤の好ましい付着量は0.1〜5.0重量%であり、さらに好ましくは0.2〜3.0重量%である。   For the fiber sheet for fiber-reinforced resin of the present invention, it is preferable to use a sheet having a highly versatile epoxy resin sizing agent attached to the carbon fiber surface. The preferable adhesion amount of the sizing agent is 0.1 to 5.0% by weight, more preferably 0.2 to 3.0% by weight.

マトリックス樹脂は、熱硬化性樹脂が好ましく、例としてエポキシ、不飽和ポリエステル、フェノール、ビニルエステルなどの樹脂がある。   The matrix resin is preferably a thermosetting resin, and examples thereof include resins such as epoxy, unsaturated polyester, phenol, and vinyl ester.

次に図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1Aは本発明の一実施形態の繊維強化樹脂用繊維シート1の表面の平面図、図1Bは同裏面を示す平面図である。この繊維シート1の表面側はポリエステルフィラメント糸の編み糸3がジグザグ状に編み込まれ、多数の繊維束2がタテ方向に配列している。強化繊維層としては1層である。この繊維シート1の裏面側は編み糸3がタテ方向に編み込まれ、ヨコ方向にはガラス繊維フィラメント糸4が繊維束2と共に編み糸3により編み込まれている。   Next, it demonstrates using drawing. In the following drawings, the same symbols indicate the same items. FIG. 1A is a plan view of the surface of the fiber sheet 1 for fiber-reinforced resin according to one embodiment of the present invention, and FIG. 1B is a plan view showing the back surface thereof. On the surface side of the fiber sheet 1, polyester yarn yarns 3 are knitted in a zigzag shape, and a large number of fiber bundles 2 are arranged in the vertical direction. The reinforcing fiber layer is a single layer. On the back side of the fiber sheet 1, a knitting yarn 3 is knitted in the vertical direction, and a glass fiber filament yarn 4 is knitted together with the fiber bundle 2 with the knitting yarn 3 in the horizontal direction.

図2は本発明の別の実施形態を示す多軸挿入たて編物10の概念斜視図である。この多軸挿入たて編物10はヨコ方向に配列された強化用繊維層5と、タテ方向に配列された強化用繊維層6を編針7に掛けられた保形糸8,9によって厚さ方向に縫製し、一体化する。このような多軸挿入たて編み物を繊維シート10とし、マトリックス樹脂と一体成形する。この多軸状の積層シートは、多方向の補強効果に優れた繊維強化樹脂を得ることが可能となる。保形糸はポリエステル糸の代わりに、熱融着糸を使用するか又は併用しても良い。   FIG. 2 is a conceptual perspective view of a multi-axis inserted warp knitted fabric 10 showing another embodiment of the present invention. The multi-axis inserted warp knitted fabric 10 is formed in a thickness direction by reinforcing fiber layers 5 arranged in the horizontal direction and shape retaining yarns 8 and 9 hung on the knitting needle 7 by reinforcing fiber layers 6 arranged in the vertical direction. And sew together. Such a multi-axis inserted warp knitted fabric is used as the fiber sheet 10 and is integrally formed with the matrix resin. This multiaxial laminate sheet can obtain a fiber reinforced resin excellent in multidirectional reinforcement effect. As the shape retention yarn, a heat fusion yarn may be used instead of the polyester yarn, or a combination thereof may be used.

図3は本発明のさらに別の実施形態の繊維強化樹脂用繊維シート11の表面の平面図である。この繊維強化樹脂用繊維シート11は、ヨコ糸に保形糸13を織り込み、多数の繊維束12がタテ方向に配列している。   FIG. 3 is a plan view of the surface of a fiber sheet 11 for fiber-reinforced resin according to still another embodiment of the present invention. In the fiber sheet 11 for fiber reinforced resin, the shape retaining yarn 13 is woven into the weft yarn, and a large number of fiber bundles 12 are arranged in the vertical direction.

図4は本発明のさらに別の実施形態の繊維強化樹脂用繊維シート14の表面の平面図である。この繊維強化樹脂用繊維シート14は、ネット状にスクリム16を用いて熱接着により保形されている。   FIG. 4 is a plan view of the surface of a fiber sheet 14 for fiber-reinforced resin according to still another embodiment of the present invention. The fiber sheet 14 for fiber reinforced resin is retained by heat bonding using a scrim 16 in a net shape.

以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   The present invention will be specifically described below with reference to examples. In addition, this invention is not limited to the following Example.

<保形糸と水との動的接触角の測定>
保形糸とマトリックス樹脂との含浸性は、保形糸と水との親和性に相関すると考え、保形糸と水との動的接触角の測定をした。測定機器と測定方法は次のとおりである。
(a)測定機器(表面張力計)
メーカー:Biolin Scientific社(日本販売代理店:アルテック社)
測定機器:Sigma700
(b)測定方法
保形糸の動的接触角(前進接触角及び後退接触角)はヒステリシスを測定することで算出した。まず、3本の保形糸を並列に並べてアルミ箔に貼り付け、水(蒸留水)と垂直になるように3本の保形糸を同時に水にある一定の深さまで含浸させ、引き抜く操作を3サイクル実施した。この3サイクルのヒステリシスを測定し、前進接触角及び後退接触角を計算した。
(c)測定条件
Speed up: 5 mm/min
Speed down: 5 mm/min
Start depth: -1 mm
Immersion depth: 3 mm
Ignore first: 0 mm
Wait when up: 0 sec
Wait when down: 0 sec
Sample interval: 0 sec
Detect range: 5 mN/m
Return position: 5 mm
Return speed: 40 mm/min
R(周長) *3本換算: 0.14 mm
(d)計算方法
前進接触角及び後退接触角をヒステリシス測定と次式で算出する。
Wetting force = γLVRcosθ (γLV:溶液の表面張力、R:試料の周長、θ:接触角)
なお、計算ソフトは表面張力計に組み込まれている。
<Measurement of dynamic contact angle between shape-retaining yarn and water>
The impregnation between the shape retaining yarn and the matrix resin was considered to correlate with the affinity between the shape retaining yarn and water, and the dynamic contact angle between the shape retaining yarn and water was measured. Measuring instruments and measuring methods are as follows.
(a) Measuring equipment (surface tension meter)
Manufacturer: Biolin Scientific (Distributor in Japan: Altech)
Measuring instrument: Sigma700
(b) Measuring method The dynamic contact angles (advancing contact angle and receding contact angle) of the shape retaining yarn were calculated by measuring hysteresis. First, three shape-retaining yarns are juxtaposed in parallel and attached to aluminum foil, and the three shape-retaining yarns are simultaneously impregnated in water to a certain depth so that they are perpendicular to water (distilled water), and then pulled out. Three cycles were performed. The hysteresis of these three cycles was measured, and the advancing contact angle and the receding contact angle were calculated.
(c) Measurement conditions
Speed up: 5 mm / min
Speed down: 5 mm / min
Start depth: -1 mm
Immersion depth: 3 mm
Ignore first: 0 mm
Wait when up: 0 sec
Wait when down: 0 sec
Sample interval: 0 sec
Detect range: 5 mN / m
Return position: 5 mm
Return speed: 40 mm / min
R (circumference length) * 3 conversion: 0.14 mm
(d) Calculation method The advancing contact angle and receding contact angle are calculated by hysteresis measurement and the following formula.
Wetting force = γLVRcosθ (γLV: surface tension of solution, R: circumference of sample, θ: contact angle)
Calculation software is incorporated in the surface tension meter.

<X線透過CTによるボイド割合の測定>
東芝社製、型式“TOSCANER-30000”のX線透過CT装置を使用し、管電圧180kV,管電流140μA,64μm/画素(画面サイズ)の条件で一画面上の観察面積、ボイド面積及びボイドの面積%を画像処理によって求めた。画像処理の方法はこのX線透過CT装置に組み込まれている。
<Measurement of void fraction by X-ray transmission CT>
Using an X-ray transmission CT system manufactured by Toshiba, model "TOSCANER-30000", the observation area, void area and void on one screen under the conditions of tube voltage 180kV, tube current 140μA, 64μm / pixel (screen size) Area% was determined by image processing. The image processing method is incorporated in this X-ray transmission CT apparatus.

(実施例1)
強化用繊維としてSGL社製炭素繊維(50K)、形状:ラージトゥフィラメント、単繊維繊度7μm、トータル繊度3300texを使用した。この炭素繊維を保形糸としてポリエチレンテレフタレートマルチフィラメント糸(繊度:8.3tex,単位面積当たりの質量:9.3g/m2,ゲージ数:5/inchi,トリコット編み,幅:約5.08mm,ジグザグピッチ約1.7mm)を使用し、裏面のヨコ糸としてガラスフィラメント糸(繊度:34tex,単位面積当たりの質量:10g/m2,ゲージ数:7.5/inchi)を使用して図1A−Bに示す繊維シート1を作成した。1つの繊維束2の幅は約5mmであった。この繊維シートは一方向基材である。
(Example 1)
Carbon fiber (50K) manufactured by SGL, shape: large toe filament, single fiber fineness 7 μm, total fineness 3300 tex was used as the reinforcing fiber. Polyethylene terephthalate multifilament yarn (fineness: 8.3 tex, mass per unit area: 9.3 g / m 2 , gauge number: 5 / inch, tricot knitting, width: about 5.08 mm) A zigzag pitch of about 1.7 mm) and a glass filament yarn (fineness: 34 tex, mass per unit area: 10 g / m 2 , gauge number: 7.5 / inch) as the weft on the back surface is shown in FIG. The fiber sheet 1 shown to -B was created. The width of one fiber bundle 2 was about 5 mm. This fiber sheet is a unidirectional substrate.

得られた繊維シートをオゾン酸化処理した。繊維シート(1枚の繊維シートの大きさ:タテ、ヨコ各200mm,厚さ約0.9mm)をチャンバーに入れ、オゾン雰囲気(濃度40000ppm)に30分間接触させてオゾン酸化処理した。オゾン発生器は三菱電機社製、オゾン発生量:50g/h、最大オゾン濃度:4万ppm、生成方法:無声放電を使用した。   The obtained fiber sheet was subjected to ozone oxidation treatment. A fiber sheet (size of one fiber sheet: vertical and horizontal 200 mm, thickness of about 0.9 mm) was placed in a chamber and contacted with an ozone atmosphere (concentration 40000 ppm) for 30 minutes for ozone oxidation treatment. The ozone generator was manufactured by Mitsubishi Electric Corporation, ozone generation amount: 50 g / h, maximum ozone concentration: 40,000 ppm, generation method: silent discharge.

オゾン酸化処理後の繊維シートから保形糸を取り出して動的接触角を測定したところ、前進動的接触角は69°、後退動的接触角は7°であった。   When the shape retention yarn was taken out of the fiber sheet after the ozone oxidation treatment and the dynamic contact angle was measured, the forward dynamic contact angle was 69 ° and the backward dynamic contact angle was 7 °.

得られたオゾン酸化処理後の繊維シート(一方向基材)をガラス板上にタテ、ヨコ各200mmの大きさで並べ、同じ方向に22枚積層して単位面積当たりの質量約15.9kg/m2の繊維基材とした。これを図5に示すインフュージョン成形方法に従って成形した。20はインフュージョン成形装置であり、ガラス基台21の上のガラスマット22上に繊維基材23をのせ、その上に剥離布24と樹脂分散板25をのせ、その上から樹脂フィルム(vacuum bag)26を被せ、周囲をシーラント27a,27bでシールした。樹脂フィルム(vacuum bag)26の一方の端にはシール部31でシールされた排気管33が接続されており、この排気管33から矢印方向へ真空引きした。その後、樹脂フィルム(vacuum bag)26の上部にシール部30によってシールされて固定されている樹脂供給管29の弁32を開き、マトリックス樹脂28を繊維基材23に供給した。マトリックス樹脂28が繊維基材23に供給されると繊維基材23は濡れてくるので、ガラスマット22の下面から観察し、マトリックス樹脂がガラスマットのいずれか一部分に到着するまでの時間を測定した。マトリックス樹脂は下記のエポキシ系樹脂(HUNTSMAN社製)を混合して使用した(粘度200〜320mPa・s(25℃))。
主剤:Araldaite LY1564SP:100重量部
硬化剤:Aradur 3416:34重量部
The obtained fiber sheet (one-way substrate) after the ozone oxidation treatment is arranged on a glass plate in a size of 200 mm each of length and width, and 22 sheets are laminated in the same direction, and the mass per unit area is about 15.9 kg / The fiber base material was m 2 . This was molded according to the infusion molding method shown in FIG. Reference numeral 20 denotes an infusion molding apparatus. A fiber base material 23 is placed on a glass mat 22 on a glass base 21, a release cloth 24 and a resin dispersion plate 25 are placed thereon, and a resin film (vacuum bag) is placed thereon. ) 26 and the periphery was sealed with sealants 27a and 27b. An exhaust pipe 33 sealed by a seal portion 31 is connected to one end of a resin film (vacuum bag) 26, and vacuum was drawn from the exhaust pipe 33 in the direction of the arrow. After that, the valve 32 of the resin supply pipe 29 that was sealed and fixed to the upper part of the resin film (vacuum bag) 26 by the seal portion 30 was opened, and the matrix resin 28 was supplied to the fiber base material 23. When the matrix resin 28 is supplied to the fiber base material 23, the fiber base material 23 gets wet, so that the time until the matrix resin arrives at any part of the glass mat is measured by observing from the lower surface of the glass mat 22. . The matrix resin used was mixed with the following epoxy resin (manufactured by HUNTSMAN) (viscosity 200 to 320 mPa · s (25 ° C.)).
Main agent: Araldaite LY1564SP: 100 parts by weight Curing agent: Aradur 3416: 34 parts by weight

(比較例1)
オゾン酸化処理をしなかった以外は実施例1と同様に実験した。
(Comparative Example 1)
The experiment was performed in the same manner as in Example 1 except that the ozone oxidation treatment was not performed.

以上の実施例1と比較例1の動的接触角を表1にまとめて示す。   The dynamic contact angles of Example 1 and Comparative Example 1 are summarized in Table 1.

Figure 2016056491
Figure 2016056491

次に、実施例1及び比較例1の繊維基材を複数枚積層し、インフュージョン成形における繊維基材の裏面まで含浸される時間を測定した結果を表2にまとめて示す。実施例1の基材を用いた成形体は、比較例1の基材を用いた成形品より、内部のボイドが減少していた。なお、含浸されるまでの時間というのはマトリックス樹脂がガラスマットのいずれか一部分に到着するまでの時間である。   Next, Table 2 summarizes the results obtained by laminating a plurality of fiber substrates of Example 1 and Comparative Example 1 and measuring the time for impregnation to the back surface of the fiber substrate in infusion molding. The molded body using the base material of Example 1 had a lower internal void than the molded product using the base material of Comparative Example 1. The time until impregnation is the time until the matrix resin arrives at any part of the glass mat.

Figure 2016056491
Figure 2016056491

(実施例2及び比較例2)
繊維基材の積層枚数を50枚に変更した点を除いて、その他の条件を実施例1及び比較例1に合わせて繊維強化樹脂成形体を作製した。当該成形体に対し、X線透過CTスキャンによるボイド割合の測定を実施し、測定結果を表3にまとめて示す。なお、ボイド割合の測定については、下記のとおりである。まず、成形体切断断面のX線透過CTスキャン断層写真に対して、膨張収縮処理のようなモルフォロジー処理等を用いて、ノイズを除去し周辺に比べて暗い点をボイド部として抽出する。続いて0〜255の濃度に対して閾値レベル80で2値化処理を行う。さらに白黒画像を反転させることにより、白をボイド部として表現し、ボイド部の面積(ボイド部の画素数)と断面トータル面積すなわち観察面積(観察面積の画素数)とを用いて、ボイド割合を測定した。
(Example 2 and Comparative Example 2)
Except for the point that the number of laminated fiber bases was changed to 50, a fiber reinforced resin molded article was prepared by matching other conditions with Example 1 and Comparative Example 1. The molded body was subjected to measurement of the void ratio by X-ray transmission CT scan, and the measurement results are summarized in Table 3. In addition, it is as follows about the measurement of a void ratio. First, with respect to an X-ray transmission CT scan tomographic photograph of a cut section of a molded body, noise is removed by using a morphological process such as an expansion / contraction process, and a dark spot is extracted as a void part compared with the surrounding area. Subsequently, binarization processing is performed at a threshold level 80 on the density of 0 to 255. Furthermore, by reversing the black-and-white image, white is expressed as a void part, and the void ratio is calculated using the area of the void part (number of pixels in the void part) and the total cross-sectional area, that is, the observation area (number of pixels in the observation area). It was measured.

Figure 2016056491
Figure 2016056491

以上の結果から次のことが分かる。
(1)オゾン酸化処理をすると保形糸は水との動的接触が低くなり、保形糸の動的接触角が低いと繊維基材(積層繊維シート)はマトリックス樹脂と濡れやすくなり、繊維基材内にマトリックス樹脂が含浸しやすく、含浸時間が短縮できる。
(2)繊維基材の保形糸をオゾン酸化するとインフュージョン成形の際に、繊維基材内にマトリックス樹脂が含浸しやすく、ボイドが少ない良質な成形体が得られる。
The following can be understood from the above results.
(1) When the ozone oxidation treatment is performed, the shape retention yarn has a low dynamic contact with water, and when the shape retention yarn has a low dynamic contact angle, the fiber base material (laminated fiber sheet) is easily wetted with the matrix resin. The matrix resin is easily impregnated in the base material, and the impregnation time can be shortened.
(2) When the shape-retaining yarn of the fiber base is subjected to ozone oxidation, a good-quality molded body with few voids can be obtained because the matrix resin is easily impregnated in the fiber base during infusion molding.

本発明の繊維強化樹脂用繊維シート及びこれを用いた成形体は、風力発電に使用するブレード、船艇、ゴルフクラブのシャフト、釣竿等の各種スポーツ用品、航空機、自動車、圧力容器などに広く応用できる。   The fiber sheet for fiber reinforced resin of the present invention and a molded body using the same are widely applied to various sports equipment such as blades, boats, golf club shafts, fishing rods, etc. used in wind power generation, aircraft, automobiles, pressure vessels, etc. it can.

1,11,14 繊維強化樹脂用繊維シート
2,12,15 繊維束
3,8,9,16 保形糸
4 ガラス繊維フィラメント糸
5,6 強化用繊維層
7 編針
10 多軸挿入たて編物
20 インフュージョン成形装置
21 ガラス基台
22 ガラスマット
23 繊維基材
24 剥離布
25 樹脂分散板
26 樹脂フィルム(vacuum bag)
27a,27b シーラント
28 マトリックス樹脂
29 樹脂供給管
30,31 シール部
32 弁
33 排気管
1, 11, 14 Fiber sheet for fiber reinforced resin 2, 12, 15 Fiber bundle 3, 8, 9, 16 Shape retaining yarn 4 Glass fiber filament yarn 5, 6 Reinforcing fiber layer 7 Knitting needle 10 Multi-axis inserted warp knitted fabric 20 Infusion molding apparatus 21 Glass base 22 Glass mat 23 Fiber substrate 24 Peeling cloth 25 Resin dispersion plate 26 Resin film (vacuum bag)
27a, 27b Sealant 28 Matrix resin 29 Resin supply pipes 30, 31 Seal part 32 Valve 33 Exhaust pipe

Claims (11)

一方向または所定角度に配列された繊維層が保形糸で一体化されている繊維強化樹脂用繊維シートの製造方法であって、
前記保形糸は、オゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理がされていることを特徴とする繊維強化樹脂用繊維シートの製造方法。
A method for producing a fiber sheet for fiber reinforced resin in which fiber layers arranged in one direction or at a predetermined angle are integrated with a shape-retaining yarn,
The method for producing a fiber sheet for fiber reinforced resin, wherein the shape retaining yarn is subjected to at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less, and plasma treatment.
前記保形糸は、前記表面処理により水に対する接触角が低減されている請求項1に記載の繊維強化樹脂用繊維シートの製造方法。   The method for producing a fiber sheet for fiber reinforced resin according to claim 1, wherein the shape retention yarn has a contact angle with water reduced by the surface treatment. 前記保形糸は、前記表面処理により水に対する前進動的接触角及び後退動的接触角が低減されている請求項1又は2に記載の繊維強化樹脂用繊維シートの製造方法。   The method for producing a fiber sheet for fiber reinforced resin according to claim 1 or 2, wherein the shape retention yarn has a forward dynamic contact angle and a backward dynamic contact angle with water reduced by the surface treatment. 前記保形糸の水に対する前進動的接触角が75°以下、後退動的接触角が30°以下である請求項3に記載の繊維強化樹脂用繊維シートの製造方法。   The method for producing a fiber sheet for fiber-reinforced resin according to claim 3, wherein the forward dynamic contact angle of the shape retaining yarn with respect to water is 75 ° or less and the backward dynamic contact angle is 30 ° or less. 前記保形糸は編み糸、織り糸及びスクリムから選ばれる少なくとも一つである請求項1〜4のいずれかに記載の繊維強化樹脂用繊維シートの製造方法。   The method for producing a fiber sheet for fiber reinforced resin according to any one of claims 1 to 4, wherein the shape retaining yarn is at least one selected from knitting yarn, woven yarn, and scrim. 前記繊維強化樹脂用繊維は炭素繊維及びガラス繊維からなる群から選ばれる少なくとも一つである請求項1〜5のいずれかに記載の繊維強化樹脂用繊維シートの製造方法。   The method for producing a fiber sheet for fiber reinforced resin according to any one of claims 1 to 5, wherein the fiber for fiber reinforced resin is at least one selected from the group consisting of carbon fiber and glass fiber. 一方向または所定角度に配列された繊維層が保形糸で一体化されている繊維強化樹脂用繊維シートであって、
前記保形糸は、水に対する前進動的接触角が75°以下、後退動的接触角が30°以下であることを特徴とする繊維強化樹脂用繊維シート。
A fiber sheet for fiber reinforced resin in which fiber layers arranged in one direction or at a predetermined angle are integrated with a shape-retaining yarn,
The shape-retaining yarn has a forward dynamic contact angle with respect to water of 75 ° or less and a backward dynamic contact angle of 30 ° or less.
前記保形糸は、オゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理により、水に対する前進動的接触角が75°以下、後退動的接触角が30°以下とされている請求項7記載の繊維強化樹脂用繊維シート。   The shape retaining yarn has an advancing dynamic contact angle of 75 ° or less and a receding dynamic contact angle of 30 ° or less with respect to water by at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less, and plasma treatment. The fiber sheet for fiber reinforced resin according to claim 7, wherein the fiber sheet is set to ° or less. 請求項1〜6のいずれかに記載の製造方法により得られる繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形した繊維強化樹脂成形体であって、
成形体内部の気泡が0.2面積%以下であることを特徴とする繊維強化樹脂成形体。
A fiber reinforcement formed by laminating a plurality of fiber sheets for fiber reinforced resin obtained by the production method according to claim 1 and impregnating a matrix resin into the fiber sheet for fiber reinforced resin by injection molding. A resin molded body,
A fiber-reinforced resin molded product, wherein the air bubbles in the molded product are 0.2% by area or less.
請求項7又は8のいずれかに記載の繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形した繊維強化樹脂成形体であって、
成形体内部の気泡が0.2面積%以下であることを特徴とする繊維強化樹脂成形体。
A fiber reinforced resin molded article obtained by laminating a plurality of fiber sheets for fiber reinforced resin according to claim 7 or 8 and impregnating a matrix resin into the fiber sheet for fiber reinforced resin by injection molding. And
A fiber-reinforced resin molded product, wherein the air bubbles in the molded product are 0.2% by area or less.
成形体内部の気泡が0.2面積%以下である繊維強化樹脂用成形体を製造する方法であって、
保形糸に、糸状態又は繊維シートの状態でオゾン酸化、波長400nm以下の紫外線照射及びプラズマ処理からなる群から選ばれる少なくとも一つの表面処理を行い、
前記保形糸を含む繊維強化樹脂用繊維シートを複数枚積層し、注入成形によって前記繊維強化樹脂用繊維シート内にマトリックス樹脂を含浸させて成形体を成形することを特徴とする繊維強化樹脂成形体の製造方法。
A method for producing a molded article for fiber reinforced resin in which the bubbles inside the molded article are 0.2 area% or less,
The shape-retaining yarn is subjected to at least one surface treatment selected from the group consisting of ozone oxidation, ultraviolet irradiation with a wavelength of 400 nm or less and plasma treatment in the yarn state or fiber sheet state,
A fiber reinforced resin molding characterized by laminating a plurality of fiber reinforced resin fiber sheets including the shape retaining yarn, and impregnating a matrix resin into the fiber reinforced resin fiber sheet by injection molding to form a molded body. Body manufacturing method.
JP2015135513A 2014-09-11 2015-07-06 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body Pending JP2016056491A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185663 2014-09-11
JP2014185663 2014-09-11

Publications (1)

Publication Number Publication Date
JP2016056491A true JP2016056491A (en) 2016-04-21

Family

ID=55757804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135513A Pending JP2016056491A (en) 2014-09-11 2015-07-06 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body

Country Status (1)

Country Link
JP (1) JP2016056491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225271A1 (en) * 2017-06-09 2018-12-13 日産自動車株式会社 Method for molding composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183575A (en) * 1988-01-19 1989-07-21 Osaka Gas Co Ltd Method for treating surface of carbon fiber
JPH05416A (en) * 1990-11-08 1993-01-08 Hitachi Chem Co Ltd Manufacture of prepreg
JPH11209484A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Prepreg and laninate
JP2011058117A (en) * 2009-09-09 2011-03-24 Du Pont Toray Co Ltd Method for producing surface-hydrophilized high-strength fiber yarn
JP2011236321A (en) * 2010-05-10 2011-11-24 Kurabo Ind Ltd Fiber-reinforced plastic
JP2013155379A (en) * 2006-08-07 2013-08-15 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183575A (en) * 1988-01-19 1989-07-21 Osaka Gas Co Ltd Method for treating surface of carbon fiber
JPH05416A (en) * 1990-11-08 1993-01-08 Hitachi Chem Co Ltd Manufacture of prepreg
JPH11209484A (en) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd Prepreg and laninate
JP2013155379A (en) * 2006-08-07 2013-08-15 Toray Ind Inc Prepreg and carbon fiber-reinforced composite material
JP2011058117A (en) * 2009-09-09 2011-03-24 Du Pont Toray Co Ltd Method for producing surface-hydrophilized high-strength fiber yarn
JP2011236321A (en) * 2010-05-10 2011-11-24 Kurabo Ind Ltd Fiber-reinforced plastic
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225271A1 (en) * 2017-06-09 2018-12-13 日産自動車株式会社 Method for molding composite material
JPWO2018225271A1 (en) * 2017-06-09 2019-12-26 日産自動車株式会社 Composite material molding method
US11046028B2 (en) 2017-06-09 2021-06-29 Nissan Motor Co., Ltd. Method for molding composite material

Similar Documents

Publication Publication Date Title
JP6286112B1 (en) Method for producing carbon fiber spread sheet
JP5960081B2 (en) Manufacturing method of fiber for fiber reinforced resin
US20160024282A1 (en) Fibers for use in fiber-reinforced resin, and production method thereof
KR102041989B1 (en) Fiber-reinforced composite material and process for producing fiber-reinforced composite material
JP2004050574A (en) Prepreg and method for producing fiber-reinforced composite material using prepreg
Lim et al. Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites
WO2014013737A1 (en) Stitched carbon fiber base material and wet prepreg using same
Wang et al. Fabrication of continuous carbon fiber mesh for lightning protection of large-scale wind-turbine blade by electron beam cured printing
JP2016056491A (en) Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body
JP2016169469A (en) Method for producing fiber for fiber-reinforced resin
US20170044709A1 (en) Methods for treating reinforcing fiber and treated reinforcing fibers
JP6373155B2 (en) Fiber sheet for fiber reinforced resin and molded body using the same
Wu et al. Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification
Wang et al. Enhance the thermal conductivity and mechanical properties of CF/PPBESK thermoplastic composites by growth ZnO nanowires with tunable length and diameter on prepreg
RU2009115212A (en) METHOD FOR PRODUCING SUPERPROOF LIGHT COMPOSITE MATERIAL
JP2014101605A (en) Method of manufacturing carbon fiber
WO2019049921A1 (en) Carbon fiber composite material and method for manufacturing same, and carbon fiber composite material manufacturing device, prepreg, and carbon fiber-reinforced resin composite material
JP2011025626A (en) Method for producing fiber-reinforced resin composite material
JP2013208726A (en) Method of producing carbon fiber-reinforced composite material
JP2010195844A (en) Partially impregnated prepreg, manufacturing method therefor, and manufacturing method for fiber-reinforced composite material using the same
JP6261275B2 (en) Method for producing laminated ceramic-based ceramic textile composite material
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
JP2009091668A (en) Method for removing sizing agent, and yarn, fiber body and prepreg
JP6014550B2 (en) Carbon fiber for fiber reinforced resin and method for producing the same
JP2016141913A (en) Method for producing fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200124