JP2015163028A - Pole number change rotary electric machine - Google Patents

Pole number change rotary electric machine Download PDF

Info

Publication number
JP2015163028A
JP2015163028A JP2014038785A JP2014038785A JP2015163028A JP 2015163028 A JP2015163028 A JP 2015163028A JP 2014038785 A JP2014038785 A JP 2014038785A JP 2014038785 A JP2014038785 A JP 2014038785A JP 2015163028 A JP2015163028 A JP 2015163028A
Authority
JP
Japan
Prior art keywords
poles
pole
armature
slots
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014038785A
Other languages
Japanese (ja)
Other versions
JP6473567B2 (en
Inventor
堺 和人
Kazuto Sakai
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2014038785A priority Critical patent/JP6473567B2/en
Publication of JP2015163028A publication Critical patent/JP2015163028A/en
Application granted granted Critical
Publication of JP6473567B2 publication Critical patent/JP6473567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a pole number change rotary electric machine that can reduce iron loss by reducing the number of poles by pole number change during operation at a high-speed rotation region, can reduce torque pulsation, output pulsation, and cogging torque by increasing the number of poles by pole number change during operation at a low-speed rotation region, and does not require coil switchover.SOLUTION: The present invention is a pole number change rotary electric machine 1 in which the number of slots 12 of a stator armature iron core 11 is a fractional slot, and which can change the number of poles by the number of particular fractional slots and the number of poles of a revolving magnetic field without switching connection of armature coils 13, and does not need to switch coils. An armature 10 has coil arrangement of forming a revolving magnetic field having a plurality of the numbers of poles which are the number of slots±1, and the number of slots±1+the number of slots×2×n (n is a positive integer).

Description

本発明は、巻線切替不要の極数変換回転電機に関する。   The present invention relates to a pole conversion rotating electrical machine that does not require winding switching.

環境とエネルギー問題からプラグインハイブリッド車や電気自動車の実用化が急速に進められており、低消費電力量で高出力、全運転領域で高効率のモータが必要とされている。希土類元素の永久磁石は従来の数十倍の磁力を生じるため高出力で高効率のモータが得られる。そのようなモータでは、電源電圧の制限下で中〜高速回転域でモータを駆動するため、インバータ制御を用い、弱め磁束制御と言われる永久磁石の磁力(磁束)と逆方向の磁力を形成して磁力(電圧)を制御している。そして、埋め込み型永久磁石式モータ(IPMモータ)はこの制御が効果的に作用する磁気的構造を持つ永久磁石式モータである。   Due to environmental and energy issues, plug-in hybrid vehicles and electric vehicles are rapidly being put into practical use, and there is a need for low power consumption, high output, and high efficiency motors in all operating areas. Rare earth element permanent magnets generate a magnetic force several tens of times that of conventional magnets, so that a high output and high efficiency motor can be obtained. In such a motor, in order to drive the motor in the middle to high speed rotation range under the limitation of the power supply voltage, inverter control is used to form a magnetic force in the opposite direction to the magnetic force (magnetic flux) of the permanent magnet, which is called weak magnetic flux control. The magnetic force (voltage) is controlled. The embedded permanent magnet motor (IPM motor) is a permanent magnet motor having a magnetic structure in which this control is effective.

しかしながら、弱め磁束制御により可変速運転すると、高速回転域では高周波電圧で駆動するために鉄損が著しく増大して効率が低下する。また、低速回転域ではトルク脈動、出力脈動、コギングトルク(無負荷時の保持トルク)が問題となる。例えば、自動車駆動用モータでは坂道発進時や徐行運転時など、風力発電機では始動時のコギングトルクや低速での発電時の出力脈動などが問題となっていた。   However, when the variable speed operation is performed by the magnetic flux weakening control, the iron loss is remarkably increased and the efficiency is lowered because the motor is driven by the high frequency voltage in the high speed rotation range. In the low-speed rotation region, torque pulsation, output pulsation, and cogging torque (holding torque at no load) become problems. For example, in a motor for driving an automobile, when starting a hill or driving slowly, a wind power generator has problems such as cogging torque at start-up and output pulsation during power generation at low speed.

堺和人、湯澤成彰、「巻線切り替え無し極数変換磁石モータの基礎研究」、平成25年電気学会全国大会、5−008(2013年)Kazuhito Tsuji and Shigeaki Yuzawa, “Basic Research on Pole Conversion Magnet Motor without Winding Switching”, 2013 Annual Conference of the Institute of Electrical Engineers of Japan, 5-008 (2013) 松井信行編著、「省レアアース・脱レアアースモータ」、日刊工業新聞社(2013年)Edited by Nobuyuki Matsui, “Reduced Rare Earth / Derare Earth Motor”, Nikkan Kogyo Shimbun (2013)

本発明は、このような従来技術の課題に鑑みてなされたもので、高速回転域での運転には極数変換により極数を少なくすることにより鉄損を低減でき、また低速回転域での運転には極数変換により極数を多くすることによりトルク脈動や出力脈動、コギングトルクを小さくできる巻線切替不要の極数変換回転電機を提供することを目的とする。   The present invention has been made in view of the problems of the prior art as described above. For operation in the high-speed rotation range, iron loss can be reduced by reducing the number of poles by pole conversion, and in the low-speed rotation range. It is an object of the present invention to provide a pole number-converting rotating electrical machine that does not require coil switching and can reduce torque pulsation, output pulsation, and cogging torque by increasing the number of poles by pole number conversion.

本発明は、固定子電機子鉄心のスロット数を分数スロットとし、特定の分数スロット数と回転磁界の極数で、電機子巻線の接続切替をすることもなく極数変換ができる巻線切替不要の極数変換回転電機を特徴とする。   The present invention relates to a coil switching method in which the number of slots of the stator armature core is a fractional slot and the number of poles can be changed without switching the connection of the armature windings with a specific number of fractional slots and the number of poles of the rotating magnetic field. Features an unnecessary pole conversion rotating electrical machine.

また本発明は、3の倍数の奇数のスロット数を有する電機子鉄心とスロット内の導体が巻かれた電機子巻線から成る電機子と、前記電機子内に配置された回転子とを備え、前記電機子は、スロット数±1、スロット数±1+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置とした極数変換回転電機を特徴とする。   The present invention also includes an armature composed of an armature core having an odd number of slots that is a multiple of three, an armature winding around which a conductor in the slot is wound, and a rotor disposed in the armature. The armature is a pole number conversion rotating electrical machine having a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers of slot number ± 1, slot number ± 1 + slot number × 2 × n (n is a positive integer). Features.

さらに本発明は、3の倍数の偶数のスロット数を有する電機子鉄心とスロット内に導体が巻かれた電機子巻線から成る電機子と、前記電機子内に配置された回転子とを備え、前記電機子は、スロット数±2、スロット数±2+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置とした極数変換回転電機を特徴とする。   The present invention further includes an armature including an armature core having an even number of slots that is a multiple of three, an armature winding having a conductor wound in the slot, and a rotor disposed in the armature. The armature is a pole number conversion rotating electric machine having a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers of slot number ± 2, slot number ± 2 + slot number × 2 × n (n is a positive integer). Features.

本発明によれば、電機子巻線の接続切替をすることもなく極数変換ができ、高速回転時には極数変換により極数を少なくすることによって鉄損を低減でき、また、低速回転時にはより多くの極数に変換することによってトルク脈動や出力脈動、コギングトルクを小さくできる。   According to the present invention, the pole number can be converted without switching the connection of the armature winding, the iron loss can be reduced by reducing the number of poles by the pole number conversion at high speed rotation, and more at the low speed rotation. By converting to a large number of poles, torque pulsation, output pulsation, and cogging torque can be reduced.

本発明の第1の実施の形態の永久磁石モータの断面図。Sectional drawing of the permanent magnet motor of the 1st Embodiment of this invention. 上記第1の実施の形態の永久磁石モータの巻線(コイル)配置を示す断面図。Sectional drawing which shows the coil | winding (coil) arrangement | positioning of the permanent magnet motor of the said 1st Embodiment. 実施例1の永久磁石モータの諸元説明図。FIG. 3 is an explanatory diagram of specifications of the permanent magnet motor according to the first embodiment. 実施例1の永久磁石モータの解析に用いた巻線(コイル)配置A〜Dの説明図。Explanatory drawing of winding (coil) arrangement | positioning AD used for the analysis of the permanent magnet motor of Example 1. FIG. 実施例1の永久磁石モータの解析に用いた極数と巻線(コイル)配置との対応関係を示す説明図。Explanatory drawing which shows the correspondence of the number of poles used for the analysis of the permanent magnet motor of Example 1, and winding (coil) arrangement | positioning. 実施例1の永久磁石モータの平均トルク解析結果のグラフ。6 is a graph of an average torque analysis result of the permanent magnet motor of Example 1. 実施例1の永久磁石モータのトルクリプル解析結果のグラフ。The graph of the torque ripple analysis result of the permanent magnet motor of Example 1. FIG. 本発明の第2の実施の形態の永久磁石モータの断面図。Sectional drawing of the permanent magnet motor of the 2nd Embodiment of this invention. 上記第2の実施の形態の永久磁石モータの巻線(コイル)配置を示す断面図。Sectional drawing which shows winding (coil) arrangement | positioning of the permanent magnet motor of the said 2nd Embodiment. 実施例2の永久磁石モータの諸元説明図。FIG. 9 is an explanatory diagram of specifications of the permanent magnet motor according to the second embodiment. 実施例2の永久磁石モータの解析に用いた巻線(コイル)配置A〜Dの説明図。Explanatory drawing of winding (coil) arrangement | positioning AD used for the analysis of the permanent magnet motor of Example 2. FIG. 実施例2の永久磁石モータの解析に用いた極数と巻線(コイル)配置との対応関係を示す説明図。Explanatory drawing which shows the correspondence of the number of poles used for the analysis of the permanent magnet motor of Example 2, and winding (coil) arrangement | positioning. 実施例2の永久磁石モータの平均トルク解析結果のグラフ。6 is a graph of an average torque analysis result of the permanent magnet motor of Example 2. 実施例2の永久磁石モータのトルクリプル解析結果のグラフ。The graph of the torque ripple analysis result of the permanent magnet motor of Example 2. FIG. 本発明の第3の実施の形態の永久磁石モータの断面図。Sectional drawing of the permanent magnet motor of the 3rd Embodiment of this invention. 上記第3の実施の形態の永久磁石モータの巻線(コイル)配置を示す断面図。Sectional drawing which shows winding (coil) arrangement | positioning of the permanent magnet motor of the said 3rd Embodiment. 実施例3の永久磁石モータの諸元説明図。FIG. 9 is an explanatory diagram of specifications of the permanent magnet motor of the third embodiment. 実施例3の永久磁石モータの解析に用いた巻線(コイル)配置A〜Eの説明図。Explanatory drawing of winding (coil) arrangement | positioning AE used for the analysis of the permanent magnet motor of Example 3. FIG. 実施例3の永久磁石モータの解析に用いた極数と巻線(コイル)配置との対応関係を示す説明図。Explanatory drawing which shows the correspondence of the number of poles used for the analysis of the permanent magnet motor of Example 3, and winding (coil) arrangement | positioning. 実施例3の永久磁石モータの平均トルク解析結果のグラフ。10 is a graph of an average torque analysis result of the permanent magnet motor of Example 3. 実施例3の永久磁石モータのトルクリプル解析結果のグラフ。10 is a graph of torque ripple analysis results of the permanent magnet motor of Example 3.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
図1に示す第1の実施の形態の極数変換回転電機は、3の倍数の奇数のスロット数を有する電機子鉄心11とスロット12内の導体が巻かれた電機子巻線13から成る固定子電機子10と、当該電機子10内に配置された永久磁石型回転子20とを備え、電機子10は、スロット数±1、スロット数±1+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置とした極数変換の永久磁石モータ1である。
[First Embodiment]
The pole conversion rotating electrical machine according to the first embodiment shown in FIG. 1 is composed of an armature core 11 having an odd number of slots that is a multiple of 3 and an armature winding 13 around which a conductor in the slot 12 is wound. The armature 10 is provided with a permanent magnet type rotor 20 disposed in the armature 10, and the armature 10 has the number of slots ± 1, the number of slots ± 1 + the number of slots × 2 × n (n is a positive number) This is a permanent magnet motor 1 with a pole number conversion in a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers.

ここで、図1に示す第1の実施の形態では、電機子鉄心11のスロット12の数を、3の倍数の奇数として9スロットとしている。また、巻線配置は図2に示すものであり、このような巻線配置にすることにより、8極、10極(スロット数±1)、26極、28極(n=1で、スロット数±1+スロット数×2)、44極、46極(n=2で、スロット数±1+スロット数×4)に対して3相の相配列が各相の60°相帯に入るように3相の巻線導体13U,13W,13Vをこの相順に配置している。   Here, in the first embodiment shown in FIG. 1, the number of slots 12 of the armature core 11 is nine slots as an odd number that is a multiple of three. Further, the winding arrangement is as shown in FIG. 2. By adopting such a winding arrangement, 8 poles, 10 poles (slot number ± 1), 26 poles, 28 poles (n = 1, number of slots) ± 1 + slot number x 2), 44 poles, 46 poles (n = 2, slot number ± 1 + slot number x 4) Winding conductors 13U, 13W, and 13V are arranged in this phase order.

上記の回転子20は大きな外部磁界を瞬間的に受けることによりその外部磁界を受けた部分が磁界の方向に不可逆的に磁化される低保磁力の永久磁石21を、回転子鉄心22の表面に固定した表面磁石型の構成である。   The rotor 20 receives on the surface of the rotor core 22 a low coercive force permanent magnet 21 in which a portion receiving the external magnetic field is instantaneously magnetized irreversibly in the direction of the magnetic field. It is a fixed surface magnet type configuration.

このような構成の永久磁石モータ1では、電機子巻線12に瞬間的なパルス電流を通電し、電流で生じる磁界で永久磁石21を磁化させ、磁界に応じた磁極を形成する。   In the permanent magnet motor 1 having such a configuration, an instantaneous pulse current is passed through the armature winding 12 and the permanent magnet 21 is magnetized by a magnetic field generated by the current to form a magnetic pole corresponding to the magnetic field.

これにより、この永久磁石モータ1は、永久磁石21の磁極と同数の回転磁界の磁極が同期して回転し、出力を発生することができる。このとき、極数変換するときの周波数と極数で決まる回転磁界と近い回転数で同期して駆動する。または、以下の様に構成すると確実にその極数で磁化されて極数変換して駆動できる。極数変換の極数の多い多極とより極数の少ない少極において、少極の極数と同一の個数の保磁力の大きな永久磁石(前記電機子電流が形成する磁界によって永久磁石の磁化が変化しない程度の保磁力を有する永久磁石であり、ここでは固定磁力磁石と称す)を回転子に等配に配置し、その間には低保磁力の永久磁石(電機子電流が形成する磁界によって永久磁石の磁化が変化する程度の保磁力の可変磁力磁石)を配置する。8極にする場合は8極のd軸方向を基準として、変換前が26極であれば26極の逆位相になる角度だけ位相をシフトした角度に8極のd軸磁界を形成するように磁化するための電機子電流を通電する。これにより回転子20に8極の磁極が形成できる。逆に8極から26極に変化させる場合は、8極とは逆位相の磁界を形成する電機子電流の位相を基準にして26極と同相になる位相だけさらにシフトした位置に磁界を形成するように電機子電流の位相を決定してインバータから電機子電流を流して回転子の磁石を磁化させる。変化するのは可変磁力磁石のみなので、回転子に26極がほぼ形成できる。   As a result, the permanent magnet motor 1 can generate an output by rotating the same number of rotating magnetic poles as the magnetic poles of the permanent magnet 21 in synchronization. At this time, the driving is performed synchronously at a rotational speed close to a rotating magnetic field determined by the frequency and the number of poles when the number of poles is converted. Or if it comprises as follows, it will be reliably magnetized by the pole number, and it can drive by pole number conversion. The number of poles in the multipole with a large number of poles and the number of poles with a smaller number of poles, the same number of permanent magnets as the number of poles with a large coercive force (the magnetization of the permanent magnet by the magnetic field generated by the armature current) Is a permanent magnet with a coercive force that does not change, and is called a fixed-magnet magnet here. The permanent magnet has a low coercive force (a magnetic field generated by an armature current). A variable magnetic force magnet having a coercive force enough to change the magnetization of the permanent magnet is disposed. In the case of 8 poles, an 8-pole d-axis magnetic field is formed at an angle that is shifted in phase by an angle that is the opposite phase of 26 poles if the pre-conversion is 26 poles with reference to the 8-pole d-axis direction. An armature current for magnetizing is applied. As a result, eight magnetic poles can be formed on the rotor 20. Conversely, when changing from 8 poles to 26 poles, a magnetic field is formed at a position that is further shifted by a phase that is in phase with the 26 poles with reference to the phase of the armature current that forms a magnetic field that is opposite in phase to the 8 poles. Thus, the phase of the armature current is determined and the armature current is supplied from the inverter to magnetize the rotor magnet. Since only the variable magnetic magnet changes, 26 poles can be formed on the rotor.

尚、このような表面永久磁石型に代えて、上記の低保磁力の永久磁石21を回転子鉄心22内に埋め込んで構成した埋め込み永久磁石型を採用することもできる。また、上記実施の形態で用いている固定子電機子10を誘導機に適用する場合、上記構成の永久磁石型回転子20に代えて、回転子鉄心と回転子鉄心のスロットに銅バーを挿入して構成される回転子を使用することにより磁極可変回転電機を構成できる。誘導機の極数変換は、極数変換するときの周波数と極数で決まる回転磁界に近いすべりが小さくなる回転数で動作しようとする。したがって、任意の回転数に対して、前記の様な小さなすべりの動作点になるように周波数を決定すると自動的に極数変換できる。   Instead of such a surface permanent magnet type, an embedded permanent magnet type configured by embedding the low coercivity permanent magnet 21 in the rotor core 22 may be employed. In addition, when the stator armature 10 used in the above embodiment is applied to an induction machine, a copper bar is inserted into the rotor core and the slots of the rotor core instead of the permanent magnet type rotor 20 having the above configuration. A magnetic pole variable rotating electrical machine can be configured by using a rotor configured as described above. The pole number conversion of the induction machine tries to operate at a rotation speed at which slip near a rotating magnetic field determined by the frequency and the number of pole conversion is small. Therefore, the pole number can be automatically converted by determining the frequency so that the operating point of the small slip as described above is obtained for an arbitrary rotation number.

図3の諸元の表面磁石型モータについて、2極〜48極の各極数の得られる巻線配置を求めた。図4にその巻線配置A〜Dを示し、図5に各極数とその極数が得られる巻線配置との対応を示す。この各極数の表面磁石型モータについて、基本特性の磁界解析を行った。   With respect to the surface magnet type motor having the specifications shown in FIG. 3, the winding arrangement for obtaining the number of poles of 2 to 48 poles was obtained. FIG. 4 shows the winding arrangements A to D, and FIG. 5 shows the correspondence between the number of poles and the winding arrangement for obtaining the number of poles. A magnetic field analysis of basic characteristics was performed on the surface magnet type motor having each pole number.

18極と36極は三相モータとして構成が不可能であった。その他の極数について、多極になるにつれ第5、第7高調波の減少が認められた。図6に平均トルク、図7にトルクリプルを示す。平均トルクが大きい極数は8極、10極であり、トルクリプル(脈動成分)が小さい極数は26極、28極である。そして、発生トルクが大きく、かつトルクリプルが小さい極数は8極、10極、26極、28極、44極、46極である。これらの極数はみな巻線配置Dである。このことから配置Dは平均トルク、トルクリプルの特性が良いことがわかった。尚、6極と12極はトルクは大きいが、トルクリプルも大きいのでモータとしての特性はよくない。   18 poles and 36 poles could not be configured as a three-phase motor. Regarding the other pole numbers, the fifth and seventh harmonics decreased as the number of poles increased. FIG. 6 shows average torque, and FIG. 7 shows torque ripple. The number of poles with a large average torque is 8 and 10. The number of poles with a small torque ripple (pulsation component) is 26 and 28. The number of poles with a large generated torque and a small torque ripple is 8, 10, 26, 28, 44, and 46 poles. All of these pole numbers are the winding arrangement D. From this, it was found that the arrangement D has good characteristics of average torque and torque ripple. The 6-pole and 12-pole have a large torque, but the torque ripple is also large, so the characteristics as a motor are not good.

このように、2極から48極において同一の巻線配置で運転が可能な極数の組み合わせが複数確認された。この結果より、巻線切替無しで極数を変換できる永久磁石モータの可能性が確認された。また、極数変換によりトルクリプルを大幅に低減できることがわかった。   In this way, a plurality of combinations of the number of poles that can be operated with the same winding arrangement from 2 to 48 poles were confirmed. From this result, the possibility of a permanent magnet motor capable of changing the number of poles without switching the winding was confirmed. It was also found that torque ripple can be greatly reduced by pole number conversion.

[第2の実施の形態]
図8に、第2の実施の形態の極数変換回転電機を示す。本実施の形態の極数変換回転電機は、3の倍数の偶数のスロット数を有する電機子鉄心11とスロット12内に導体が巻かれた電機子巻線13から成る電機子10と、電機子10内に配置された永久磁石型回転子20とを備え、電機子10は、スロット数±2、スロット数±2+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置とした永久磁石モータ1Aである。
[Second Embodiment]
FIG. 8 shows a pole conversion rotating electrical machine according to the second embodiment. The pole conversion rotating electrical machine of the present embodiment includes an armature 10 including an armature core 11 having an even number of slots that is a multiple of 3 and an armature winding 13 having a conductor wound in the slot 12, and an armature. 10, and the armature 10 is rotated by a plurality of poles of slot number ± 2, slot number ± 2 + slot number × 2 × n (n is a positive integer). A permanent magnet motor 1A having a winding arrangement for forming a magnetic field.

本実施の形態の場合、電機子鉄心11のスロット12の数は3の倍数の偶数のスロット数で12スロットとしている。また、巻線配置は図9に示すものであり、このような巻線配置にすることにより、10極、14極(スロット数±2)、34極、38極(n=2で、スロット数±2+スロット数×2)に対して3相の相配列が各相の60°相帯に入るように3相の巻線導体13U,13W,13Vをこの相順に配置している。   In the case of this embodiment, the number of slots 12 of the armature core 11 is an even number of slots that is a multiple of 3 and is 12 slots. Further, the winding arrangement is as shown in FIG. 9. By adopting such a winding arrangement, 10 poles, 14 poles (slot number ± 2), 34 poles, 38 poles (n = 2, number of slots) The three-phase winding conductors 13U, 13W, and 13V are arranged in this phase order so that the three-phase arrangement is within the 60 ° phase band of each phase with respect to ± 2 + slot number × 2).

上記の回転子20も、大きな外部磁界を瞬間的に受けることによりその外部磁界を受けた部分が磁界の方向に不可逆的に磁化される低保磁力の永久磁石21を、回転子鉄心22の表面に固定した表面磁石型の構成である。   The rotor 20 also has a low coercive force permanent magnet 21 whose portion receiving the external magnetic field is irreversibly magnetized in the direction of the magnetic field by instantaneously receiving a large external magnetic field. It is the structure of the surface magnet type fixed to.

このような構成の永久磁石モータ1Aでも第1の実施の形態と同様、電機子巻線12に瞬間的なパルス電流を通電し、電流で生じる磁界で永久磁石21を磁化させ、磁界に応じた磁極を形成する。   Even in the permanent magnet motor 1A having such a configuration, as in the first embodiment, an instantaneous pulse current is applied to the armature winding 12, and the permanent magnet 21 is magnetized by the magnetic field generated by the current. Form magnetic poles.

これにより、この永久磁石モータ1は、永久磁石21の磁極と同数の回転磁界の磁極が同期して回転し、出力を発生することができる。   As a result, the permanent magnet motor 1 can generate an output by rotating the same number of rotating magnetic poles as the magnetic poles of the permanent magnet 21 in synchronization.

尚、本実施の形態にあっても、第1の実施の形態と同様、このような表面永久磁石型に代えて、上記の低保磁力の永久磁石21を回転子鉄心22内に埋め込んで構成した埋め込み永久磁石型を採用することもできる。また、本実施の形態で用いている固定子電機子10を誘導機に適用する場合、上記構成の永久磁石型回転子20に代えて、回転子鉄心と回転子鉄心のスロットに銅バーを挿入して構成される回転子を使用することにより磁極可変回転電機を構成できる。   Even in the present embodiment, the low coercivity permanent magnet 21 is embedded in the rotor core 22 in place of the surface permanent magnet type as in the first embodiment. An embedded permanent magnet type can also be employed. Further, when the stator armature 10 used in the present embodiment is applied to an induction machine, a copper bar is inserted into the rotor core and the slots of the rotor core instead of the permanent magnet type rotor 20 having the above configuration. A magnetic pole variable rotating electrical machine can be configured by using a rotor configured as described above.

図10の諸元の表面磁石型モータについて、2極〜48極の各極数の得られる巻線配置を求めた。図11にその巻線配置A〜Dを示し、図12に各極数とその極数が得られる巻線配置との対応を示す。   For the surface magnet type motor having the specifications shown in FIG. 10, the winding arrangement for obtaining the number of poles of 2 to 48 poles was obtained. FIG. 11 shows the winding arrangements A to D, and FIG. 12 shows the correspondence between the number of poles and the winding arrangement for obtaining the number of poles.

この各極数の表面磁石型モータについて、基本特性の磁界解析を行った。6極とその倍数極の極数は三相モータとして構成が不可能であった。図13に平均トルク、図14にトルクリプルを示す。平均トルクが大きい極数は10極、14極、16極であり、トルクリプルが小さい極数は34極、38極である。これらのうち、10極、14極、34極、38極の極数はみな巻線配置Dである。このことから配置Dは平均トルク、トルクリプルの特性が良いことがわかった。尚、16極はトルクは大きいが、トルクリプルも大きいのでモータとしての特性はよくない。   A magnetic field analysis of basic characteristics was performed on the surface magnet type motor having each pole number. Six poles and multiple poles thereof could not be configured as a three-phase motor. FIG. 13 shows the average torque, and FIG. 14 shows the torque ripple. The number of poles with a large average torque is 10 poles, 14 poles and 16 poles, and the number of poles with a small torque ripple is 34 poles and 38 poles. Among these, the number of poles of 10 poles, 14 poles, 34 poles and 38 poles is the winding arrangement D. From this, it was found that the arrangement D has good characteristics of average torque and torque ripple. Although the 16 poles have a large torque, the torque ripple is also large, so the characteristics as a motor are not good.

このように、実施例2によっても、2極から48極において同一の巻線配置で運転が可能な極数の組み合わせが複数確認された。この結果より、巻線切替無しで極数を変換できる永久磁石モータの可能性が確認された。また、極数変換によりトルクリプルを大幅に低減できることがわかった。   Thus, also in Example 2, a plurality of combinations of the number of poles that can be operated with the same winding arrangement from 2 to 48 poles were confirmed. From this result, the possibility of a permanent magnet motor capable of changing the number of poles without switching the winding was confirmed. It was also found that torque ripple can be greatly reduced by pole number conversion.

[第3の実施の形態]
図15に、第3の実施の形態の極数変換回転電機を示す。本実施の形態の極数変換回転電機は、3の倍数の奇数のスロット数を有する電機子鉄心11とスロット12内に導体が巻かれた電機子巻線13から成る電機子10と、電機子10内に配置された永久磁石型回転子20とを備え、電機子10は、スロット数±1、スロット数±1+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置としたもう一つの永久磁石モータ1Bである。
[Third Embodiment]
FIG. 15 shows a pole conversion rotating electrical machine according to the third embodiment. The pole conversion rotating electrical machine according to the present embodiment includes an armature 10 including an armature core 11 having an odd number of slots that is a multiple of 3 and an armature winding 13 having a conductor wound in the slot 12, and an armature. 10, and the armature 10 rotates at a plurality of poles of slot number ± 1, slot number ± 1 + slot number × 2 × n (n is a positive integer). This is another permanent magnet motor 1B having a winding arrangement for forming a magnetic field.

ここで、図15の実施の形態では、電機子鉄心11のスロット12の数を、3の倍数の奇数として15スロットとしている。また、巻線配置は図16に示すものであり、このような巻線配置にすることにより、14極、16極(スロット数±1)、44極、46極(n=1で、スロット数±1+スロット数×2)に対して3相の相配列が各相の60°相帯に入るように3相の巻線導体13U,13W,13Vをこの相順に配置している。   Here, in the embodiment of FIG. 15, the number of slots 12 of the armature core 11 is set to 15 slots as an odd number that is a multiple of 3. Further, the winding arrangement is as shown in FIG. 16. By adopting such a winding arrangement, 14 poles, 16 poles (slot number ± 1), 44 poles, 46 poles (n = 1, number of slots) The three-phase winding conductors 13U, 13W, and 13V are arranged in this phase order so that the three-phase arrangement is within the 60 ° phase band of each phase with respect to ± 1 + slot number × 2).

上記の回転子20は大きな外部磁界を瞬間的に受けることによりその外部磁界を受けた部分が磁界の方向に不可逆的に磁化される低保磁力の永久磁石21を、回転子鉄心22の表面に固定した表面磁石型の構成である。   The rotor 20 receives on the surface of the rotor core 22 a low coercive force permanent magnet 21 in which a portion receiving the external magnetic field is instantaneously magnetized irreversibly in the direction of the magnetic field. It is a fixed surface magnet type configuration.

このような構成の永久磁石モータ1Bでは、電機子巻線12に瞬間的なパルス電流を通電し、電流で生じる磁界で永久磁石21を磁化させ、磁界に応じた磁極を形成する。   In the permanent magnet motor 1B having such a configuration, an instantaneous pulse current is supplied to the armature winding 12, and the permanent magnet 21 is magnetized by a magnetic field generated by the current, thereby forming a magnetic pole corresponding to the magnetic field.

これにより、この永久磁石モータ1Bは、永久磁石21の磁極と同数の回転磁界の磁極が同期して回転し、出力を発生することができる。   Thereby, this permanent magnet motor 1B can generate an output by rotating the same number of magnetic poles of the rotating magnetic field as the magnetic poles of the permanent magnet 21 in synchronization.

尚、このような表面永久磁石型に代えて、上記の低保磁力の永久磁石21を回転子鉄心22内に埋め込んで構成した埋め込み永久磁石型を採用することもできる。また、上記実施の形態で用いている固定子電機子10を誘導機に適用する場合、上記構成の永久磁石型回転子20に代えて、回転子鉄心と回転子鉄心のスロットに銅バーを挿入して構成される回転子を使用することにより磁極可変回転電機を構成できる。   Instead of such a surface permanent magnet type, an embedded permanent magnet type configured by embedding the low coercivity permanent magnet 21 in the rotor core 22 may be employed. In addition, when the stator armature 10 used in the above embodiment is applied to an induction machine, a copper bar is inserted into the rotor core and the slots of the rotor core instead of the permanent magnet type rotor 20 having the above configuration. A magnetic pole variable rotating electrical machine can be configured by using a rotor configured as described above.

図17の諸元の表面磁石型モータについて、2極〜48極の各極数の得られる巻線配置を求めた。図18にその巻線配置A〜Eを示し、図19に各極数とその極数が得られる巻線配置との対応を示す。この各極数の表面磁石型モータについて、基本特性の磁界解析を行った。6極とその倍数極の極数は三相モータとして構成が不可能であった。   With respect to the surface magnet type motor having the specifications shown in FIG. 17, the winding arrangement for obtaining the number of poles of 2 to 48 poles was obtained. FIG. 18 shows the winding arrangements A to E, and FIG. 19 shows the correspondence between the number of poles and the winding arrangement for obtaining the number of poles. A magnetic field analysis of basic characteristics was performed on the surface magnet type motor having each pole number. Six poles and multiple poles thereof could not be configured as a three-phase motor.

図20に平均トルク、図21にトルクリプルを示す。平均トルクが大きい極数は14極、16極であり、トルクリプルが小さい極数は44極、46極である。これらの極数はみな巻線配置Eである。このことから巻線配置Eは平均トルク、トルクリプルの特性が良いことがわかった。尚、10極と20極はトルクは大きいが、トルクリプルも大きいのでモータとしての特性はよくない。   FIG. 20 shows average torque, and FIG. 21 shows torque ripple. The number of poles with a large average torque is 14 or 16, and the number of poles with a small torque ripple is 44 or 46. All of these pole numbers are the winding arrangement E. From this, it was found that the winding arrangement E had good characteristics of average torque and torque ripple. The 10 poles and 20 poles have large torque, but the torque ripple is also large, so the characteristics as a motor are not good.

このように、2極から48極において同一の巻線配置で運転が可能な極数の組み合わせが複数確認された。この結果より、巻線切替無しで極数を変換できる永久磁石モータの可能性が確認された。また、極数変換によりトルクリプルを大幅に低減できることがわかった。   In this way, a plurality of combinations of the number of poles that can be operated with the same winding arrangement from 2 to 48 poles were confirmed. From this result, the possibility of a permanent magnet motor capable of changing the number of poles without switching the winding was confirmed. It was also found that torque ripple can be greatly reduced by pole number conversion.

本発明の極数変換において、少極と多極の極数を比較すると、多極はスロット数の2の倍数だけ少極よりも極数が大きくなる。したがって、極数変換における少極と多極の極数比をスロット数で調整できる。極数変換比を小さくしたければ、毎相毎極当たりのスロット数を1/2以下にし、極数変換比を大きくしたければ1以下にする。尚、毎相毎極当たりのスロット数が1以上では、本発明の毎相毎極当たりのスロット数(分数溝)の帯分数の整数部分が1以上になるだけであり、整数部分を除いた分数部分(真分数)が本発明と同様になり、この真分数の部分で評価すればよい。   In the pole number conversion of the present invention, when the number of poles of a small pole and a multipole is compared, the number of poles of the multipole is larger than the number of poles by a multiple of 2 of the number of slots. Therefore, the pole number ratio between the small pole and the multi pole in the pole number conversion can be adjusted by the number of slots. If the pole conversion ratio is to be reduced, the number of slots per pole per phase is set to 1/2 or less, and if the pole conversion ratio is to be increased, it is set to 1 or less. In addition, when the number of slots per pole per phase is 1 or more, the integer part of the number of slots (fractional groove) per pole per phase of the present invention is only 1 or more, and the integer part is excluded. The fractional part (the exact fraction) becomes the same as that of the present invention, and the evaluation may be performed with this fractional part.

以上により、本発明によれば、3の倍数の奇数のスロット数を有する電機子鉄心とスロット内の導体が巻かれた電機子巻線から成る電機子と、電機子内に配置された回転子とを備え、電機子は、スロット数±1、スロット数±1+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置とした極数変換回転電機、また3の倍数の偶数のスロット数を有する電機子鉄心とスロット内に導体が巻かれた電機子巻線から成る電機子と、前記電機子内に配置された回転子とを備え、電機子は、スロット数±2、スロット数±2+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置とした極数変換回転電機については、巻線切替無しで極数を変換できる大小の極数の組み合わせで、平均トルクが大きくできる小さい極数とトルクリプルが小さくできる大きい極数との組み合わせができ、必要なトルクの出力ができ、しかも極数変換によりトルクリプルを大幅に低減できる極数変換回転電機が実現できる。   As described above, according to the present invention, the armature including the armature core having an odd number of slots that is a multiple of 3 and the armature winding in which the conductor in the slot is wound, and the rotor disposed in the armature And the armature is a pole conversion rotation having a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers of slot number ± 1, slot number ± 1 + slot number × 2 × n (n is a positive integer) An armature comprising an armature core having an even number of slots equal to a multiple of 3; an armature winding having a conductor wound in the slot; and a rotor disposed in the armature. For the pole number conversion rotating electrical machine having a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers of slot number ± 2, slot number ± 2 + slot number × 2 × n (n is a positive integer), A combination of large and small number of poles that can convert the number of poles without switching the line, resulting in a large average torque A combination of a small number of poles that can be made and a large number of poles that can reduce the torque ripple can be achieved, a necessary torque can be output, and a pole conversion rotating electrical machine that can significantly reduce torque ripple by pole number conversion can be realized.

本発明の極数変換回転電機は、交通システムとしてハイブリッド自動車や電気自動車、鉄道に利用でき、エネルギーシステムとして風力発電や海流発電に利用でき、さらに社会システムとしてエレベータやエアコン等家電機器に利用できる。   The pole conversion rotating electrical machine of the present invention can be used for a hybrid vehicle, an electric vehicle, and a railway as a transportation system, can be used for wind power generation and ocean current power generation as an energy system, and can be used for household appliances such as an elevator and an air conditioner as a social system.

1,1A,1B 永久磁石モータ
10 電機子
11 電機子鉄心
12 スロット
13 巻線
20 回転子
21 永久磁石
22 回転子鉄心
1, 1A, 1B Permanent magnet motor 10 Armature 11 Armature core 12 Slot 13 Winding 20 Rotor 21 Permanent magnet 22 Rotor core

Claims (10)

3の倍数の奇数のスロット数を有する電機子鉄心とスロット内の導体が巻かれた電機子巻線から成る電機子と、前記電機子内に配置された回転子とを備え、
前記電機子は、スロット数±1、スロット数±1+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置としたことを特徴とする極数変換回転電機。
An armature composed of an armature core having an odd number of slots that is a multiple of 3 and an armature winding wound with a conductor in the slot; and a rotor disposed in the armature;
The number of poles is characterized in that the armature has a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers of slot number ± 1, slot number ± 1 + slot number × 2 × n (n is a positive integer). Conversion rotating electrical machine.
3の倍数の偶数のスロット数を有する電機子鉄心とスロット内に導体が巻かれた電機子巻線から成る電機子と、前記電機子内に配置された回転子とを備え、
前記電機子は、スロット数±2、スロット数±2+スロット数×2×n(nは正の整数)の複数の極数の回転磁界を形成する巻線配置としたことを特徴とする極数変換回転電機。
An armature composed of an armature core having an even number of slots that is a multiple of 3; an armature winding having a conductor wound in the slot; and a rotor disposed in the armature;
The armature has a winding arrangement that forms a rotating magnetic field having a plurality of pole numbers of slot number ± 2, slot number ± 2 + slot number × 2 × n (n is a positive integer). Conversion rotating electrical machine.
請求項1又は2に記載の極数変換回転電機において、より多極となるスロット数±1+スロット数×2×n(nは正の整数)の極数の時に毎相毎極当たりのスロット数を1以下にしたことを特徴とする極数変換回転電機。   3. The number-of-poles rotating electrical machine according to claim 1 or 2, wherein the number of slots per number of poles per phase when the number of slots becomes more multi-pole ± 1 + number of slots × 2 × n (n is a positive integer). A pole number conversion rotating electrical machine characterized in that the number is 1 or less. 請求項1又は2に記載の極数変換回転電機において、より多極となるスロット数±1+スロット数×2×n(nは正の整数)の極数の時に毎相毎極当たりのスロット数を1/2以下にしたことを特徴とする極数変換回転電機。   3. The number-of-poles rotating electrical machine according to claim 1 or 2, wherein the number of slots per number of poles per phase when the number of slots becomes more multi-pole ± 1 + number of slots × 2 × n (n is a positive integer). Is a pole number conversion rotating electrical machine characterized in that it is reduced to 1/2 or less. 請求項1〜4のいずれかに記載の極数変換回転電機において、前記回転子は導体と鉄心で構成され、極数変換誘導機として使用されることを特徴とする極数変換回転電機。   5. The pole conversion rotating electrical machine according to claim 1, wherein the rotor includes a conductor and an iron core, and is used as a pole conversion induction machine. 請求項1〜4のいずれかに記載の極数変換回転電機において、前記回転子は永久磁石と鉄心で構成され、極数変換永久磁石回転電機として使用されることを特徴とする極数変換回転電機。   5. The pole conversion rotating electric machine according to claim 1, wherein the rotor is composed of a permanent magnet and an iron core, and is used as a pole converting permanent magnet rotating electric machine. Electric. 請求項1〜4、6のいずれかに記載の極数変換回転電機において、外部磁界で前記永久磁石を磁化して前記回転子の極数を可変することを特徴とする極数変換回転電機。   7. The pole number conversion rotating electrical machine according to claim 1, wherein the number of poles of the rotor is varied by magnetizing the permanent magnet with an external magnetic field. 請求項1〜4、6、7のいずれかに記載の極数変換回転電機において、電機子電流で生じる磁界で前記永久磁石を磁化して前記回転子の極数を可変することを特徴とする極数変換回転電機。   The pole number conversion rotating electrical machine according to claim 1, wherein the permanent magnet is magnetized by a magnetic field generated by an armature current to vary the number of poles of the rotor. Pole conversion rotating electrical machine. 請求項1〜8のいずれかに記載の極数変換回転電機において、低速回転域では極数の多い多極にし、高速回転域ではより少ない極数で運転することを特徴とする極数変換回転電機。   The pole conversion rotating electric machine according to any one of claims 1 to 8, wherein a multi-pole with a large number of poles is operated in a low-speed rotation range, and the operation is performed with a smaller number of poles in a high-speed rotation range. Electric. 請求項1〜9のいずれかに記載の極数変換回転電機において、トルク脈動又はコギングトルクが小さいことが要求される運転領域では極数の多い多極にし、前記以外の運転領域ではより少ない極数で運転することを特徴とする極数変換回転電機。   In the pole conversion rotating electrical machine according to any one of claims 1 to 9, a multi-pole with a large number of poles is provided in an operation region where torque pulsation or cogging torque is required to be small, and a smaller number of poles in an operation region other than the above. A pole conversion rotating electrical machine characterized by operating with a number.
JP2014038785A 2014-02-28 2014-02-28 Rotating electric machine Active JP6473567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038785A JP6473567B2 (en) 2014-02-28 2014-02-28 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038785A JP6473567B2 (en) 2014-02-28 2014-02-28 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015163028A true JP2015163028A (en) 2015-09-07
JP6473567B2 JP6473567B2 (en) 2019-02-20

Family

ID=54185786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038785A Active JP6473567B2 (en) 2014-02-28 2014-02-28 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP6473567B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003155A1 (en) * 2016-06-30 2018-01-04 東京モートロニクス株式会社 Motor, and method for manufacturing motor
CN114465434A (en) * 2022-02-23 2022-05-10 山东理工大学 Double-speed permanent magnet synchronous motor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379208A (en) * 1976-12-23 1978-07-13 Toshiba Corp Armature windings
US4403160A (en) * 1980-12-25 1983-09-06 Tokyo Shibaura Denki Kabushiki Kaisha Pole change type motor
JPS6412846A (en) * 1987-07-07 1989-01-17 Toshiba Corp Armature winding
JP2001275315A (en) * 2000-03-24 2001-10-05 Asmo Co Ltd Method and apparatus for magnetizing magnet
JP2007259513A (en) * 2006-03-20 2007-10-04 Asmo Co Ltd Brushless motor
JP2010028957A (en) * 2008-07-17 2010-02-04 Toyota Central R&D Labs Inc Inductor and inductor pole-number switching system
US20100327689A1 (en) * 2008-02-21 2010-12-30 Kabushiki Kaisha Toshiba Permanent-magnet-type rotating electrical machine and permanent magnet motor drive system
JP2013042574A (en) * 2011-08-11 2013-02-28 Toshiba Corp Permanent magnet type rotating electrical machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379208A (en) * 1976-12-23 1978-07-13 Toshiba Corp Armature windings
US4403160A (en) * 1980-12-25 1983-09-06 Tokyo Shibaura Denki Kabushiki Kaisha Pole change type motor
JPS6412846A (en) * 1987-07-07 1989-01-17 Toshiba Corp Armature winding
JP2001275315A (en) * 2000-03-24 2001-10-05 Asmo Co Ltd Method and apparatus for magnetizing magnet
JP2007259513A (en) * 2006-03-20 2007-10-04 Asmo Co Ltd Brushless motor
US20100327689A1 (en) * 2008-02-21 2010-12-30 Kabushiki Kaisha Toshiba Permanent-magnet-type rotating electrical machine and permanent magnet motor drive system
JP2010028957A (en) * 2008-07-17 2010-02-04 Toyota Central R&D Labs Inc Inductor and inductor pole-number switching system
JP2013042574A (en) * 2011-08-11 2013-02-28 Toshiba Corp Permanent magnet type rotating electrical machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003155A1 (en) * 2016-06-30 2018-01-04 東京モートロニクス株式会社 Motor, and method for manufacturing motor
CN114465434A (en) * 2022-02-23 2022-05-10 山东理工大学 Double-speed permanent magnet synchronous motor
CN114465434B (en) * 2022-02-23 2024-03-26 山东理工大学 Double-speed permanent magnet synchronous motor

Also Published As

Publication number Publication date
JP6473567B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
Hasegawa et al. A novel switched reluctance motor with the auxiliary windings and permanent magnets
CN108964396B (en) Stator partition type alternate pole hybrid excitation motor
CN104617726B (en) A kind of permanent magnetism alternating expression axial magnetic field Magneticflux-switching type memory electrical machine
US20130069453A1 (en) Mechanically commutated switched reluctance motor
Kohara et al. Finite-element analysis and experiment of current superimposition variable flux machine using permanent magnet
Yu et al. Design and analysis of a magnetless double-rotor flux switching motor for low cost application
Kashitani et al. Novel slipring-less winding-excited synchronous machine
CN104883019A (en) Stator permanent magnet mixed excitation vernier motor
CN106549547A (en) A kind of mixing magnet steel magnetic flux switching memory electrical machine
US20170077771A1 (en) Steel-magnet embedded mixed excitation motor
CN110838779B (en) Mixed excitation wound rotor and mixed excitation wound synchronous motor
JP6202664B2 (en) Pole conversion permanent magnet type rotating electrical machine and drive system thereof
Baka et al. Design and optimization of a two-pole line-start ferrite assisted synchronous reluctance motor
CN104767336A (en) Single-phase separately-excited magneto-resistive power generator
JP6473567B2 (en) Rotating electric machine
JP6480651B2 (en) Permanent magnet type rotating electrical machine drive system
Shen et al. Investigation of novel multi-tooth linear variable flux reluctance machines
JP5885423B2 (en) Permanent magnet rotating electric machine
Zhang Consequent pole toroidal winding dual rotor permanent magnet synchronous machines
JP6371550B2 (en) Permanent magnet rotating electric machine
Ge et al. Design and comparison of two non-rare-earth permanent magnet synchronous reluctance motors for EV applications
Hasegawa et al. Basic consideration of switched reluctance motor with auxiliary windings and permanent magnets
Yang et al. A novel stator-consequent-pole memory machine
CN112787476B (en) Integrated direct-current induction hybrid excitation brushless motor based on alternating-pole rotor
CN108494211A (en) A kind of axial flux permanent magnet synchronous magnetic resistance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6473567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250