JP2015046963A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2015046963A
JP2015046963A JP2013175329A JP2013175329A JP2015046963A JP 2015046963 A JP2015046963 A JP 2015046963A JP 2013175329 A JP2013175329 A JP 2013175329A JP 2013175329 A JP2013175329 A JP 2013175329A JP 2015046963 A JP2015046963 A JP 2015046963A
Authority
JP
Japan
Prior art keywords
relay
power
self
control element
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175329A
Other languages
Japanese (ja)
Other versions
JP6148117B2 (en
Inventor
幹雄 佐々木
Mikio Sasaki
幹雄 佐々木
幸二郎 大塚
Kojiro Otsuka
幸二郎 大塚
誠一 平田
Seiichi Hirata
誠一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2013175329A priority Critical patent/JP6148117B2/en
Publication of JP2015046963A publication Critical patent/JP2015046963A/en
Application granted granted Critical
Publication of JP6148117B2 publication Critical patent/JP6148117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power converter capable of ensuring safety easily, when switching the AC powers for system interconnection and system independence of output voltages different from each other.SOLUTION: A power converter includes a system interconnection relay 5 outputting an AC power for system interconnection of an inverter circuit 2 by relay on during system interconnection mode, and an independence relay 7 connected in parallel with the system interconnection relay 5, and outputting an AC power for independence of an output voltage different from the system interconnection of the inverter circuit 2 by relay on during independent mode. A protection switch circuit 8 operates to interrupt connection of the system interconnection relay 5 and the independence relay 7, even if the independence relay 7 is operated erroneously relay on, when the system interconnection relay 5 is relay on and the independence relay 7 is relay off.

Description

本発明は、太陽電池から出力される直流電力を交流電力に変換する電力変換装置に関する。   The present invention relates to a power conversion device that converts DC power output from a solar cell into AC power.

従来から、太陽電池のような直流電源から出力される直流電力を、インバータ回路を含む電力変換装置により、商用の交流電力に変換して出力するソーラーシステムが知られている。この一例として、複数の太陽電池パネルを含む太陽電池アレイと、太陽電池アレイの出力を直流から交流に変換し、系統連系用の電力ケーブルに供給する小容量のインバータ回路(電力変換装置)を含むインバータユニットとを有する太陽電池アレイユニットを複数備えた太陽光発電装置が挙げられる(例えば、特許文献1)。   2. Description of the Related Art Conventionally, there is known a solar system that converts DC power output from a DC power source such as a solar cell into commercial AC power by using a power converter including an inverter circuit and outputs the AC power. As an example of this, a solar cell array including a plurality of solar cell panels, and a small-capacity inverter circuit (power conversion device) that converts the output of the solar cell array from direct current to alternating current and supplies it to a power cable for system interconnection A solar power generation device including a plurality of solar cell array units each including an inverter unit is included (for example, Patent Document 1).

ところで、スイッチング(制御)素子による切り替えにより、系統連系用の交流電力を出力するとともに、停電時などにこれと独立した自立用の交流電力を出力する電力変換装置も知られている(例えば、特許文献2)。   By the way, there is also known a power conversion device that outputs AC power for grid interconnection by switching by a switching (control) element and outputs independent AC power independent from this during a power failure or the like (for example, Patent Document 2).

図3は、従来の電力変換装置を示すブロック図である。ソーラーパネルSのような太陽電池の直流電力を交流電力に変換するインバータ回路52、系統連系用の交流電力への変換制御を行う系統連系モードと、これと異なる出力電圧の自立用の交流電力への変換制御を行う自立モードと、に切り替えるモード切替部54、系統連系モード時に、リレーオンでインバータ回路の系統連系用の交流電力を出力させる系統連系リレー55、および、系統連系リレーと並列に接続されて、自立モード時に、リレーオンでインバータ回路52の自立用の交流電力を出力させる自立リレー57を備えている。   FIG. 3 is a block diagram showing a conventional power converter. An inverter circuit 52 that converts DC power of a solar cell such as a solar panel S into AC power, a grid connection mode that controls conversion to AC power for grid connection, and an alternating current for independent output voltage. A mode switching unit 54 for switching to a self-sustaining mode for controlling conversion to electric power, a grid interconnection relay 55 for outputting AC power for grid interconnection of the inverter circuit when the relay is on, and grid interconnection in the grid interconnection mode A self-supporting relay 57 that is connected in parallel with the relay and outputs AC power for self-support of the inverter circuit 52 when the relay is on is provided in the self-support mode.

特開2010−279234号公報JP 2010-279234 A 特開2010−259170号公報JP 2010-259170 A

しかし、系統連系用の出力電圧が例えばAC200Vで、自立用の出力電圧がAC100Vである場合、系統連系リレーがリレーオン、自立リレーがリレーオフで、自立用のコンセントにAC100V規格の電気機器を接続した状態のとき、自立リレーを駆動するトランジスタなど内部部品の故障により、自立リレーがリレーオンになると、AC100V用の電気機器にAC200Vの電圧が供給されることとなり、この電気機器の劣化および焼損や、人身に対する不測の事故を招くおそれがある、という問題があった。   However, if the output voltage for grid connection is, for example, 200 VAC and the output voltage for stand-alone is 100 VAC, the grid-connected relay is relay-on, the stand-alone relay is relay-off, and an AC100V standard electrical device is connected to the stand-alone outlet. When the self-sustained relay is turned on due to a failure of an internal component such as a transistor that drives the self-supporting relay, the AC200V voltage is supplied to the AC100V electrical equipment. There was a problem that it could lead to an unexpected accident.

特に、地震などで停電が頻発した場合、自立用の交流電力の使用が多くなって、自立用のコンセントにAC100V用の電気機器を接続したままであることを失念してしまうケースが多くなると想定され、これに対する安全対策を講じる必要がある。   In particular, when power outages occur frequently due to earthquakes, etc., it is assumed that there will be more cases of forgetting that AC 100V electrical equipment remains connected to an independent outlet because of the increased use of AC power for autonomous use. Therefore, it is necessary to take safety measures against this.

本発明は、太陽電池の直流電力を交流電力に電力変換するインバータ回路を有し、相異なる出力電圧の系統連系用と自立用の交流電力を切り替える場合に、安全性の確保を容易に実現できる電力変換装置を提供することを目的としている。   The present invention has an inverter circuit that converts the DC power of a solar cell into AC power, and easily secures safety when switching between grid output and independent AC power of different output voltages It aims at providing the power converter which can be performed.

上記目的を達成するために、本発明に係る電力変換装置は、太陽電池の直流電力を交流電力に変換するインバータ回路、系統連系用の交流電力への変換制御を行う系統連系モードと、これと異なる出力電圧の自立用の交流電力への変換制御を行う自立モードと、に切り替えるモード切替部、系統連系モード時に、リレーオンでインバータ回路の系統連系用の交流電力を出力させる系統連系リレー、および、系統連系リレーと並列に接続されて、自立モード時に、リレーオンでインバータ回路の自立用の交流電力を出力させる自立リレーを備えている。系統連系リレーがリレーオンで自立リレーがリレーオフのときに、自立リレーがリレーオンに誤作動しても、自立リレーと系統連系リレーとの接続を遮断するように動作する保護スイッチ回路が設けられている。   In order to achieve the above object, a power conversion device according to the present invention includes an inverter circuit that converts DC power of a solar cell into AC power, a grid connection mode that performs conversion control to AC power for grid connection, and A mode switching unit that switches to a stand-alone mode that controls conversion of output voltage to a stand-alone AC power that is different from the above, and a grid connection that outputs AC power for grid connection of the inverter circuit when the relay is on in the grid connection mode. And a self-supporting relay that is connected in parallel to the system relay and the grid-connected relay and outputs AC power for self-supporting of the inverter circuit when the relay is on in the self-supporting mode. When the grid connection relay is relay-on and the self-sustained relay is relay-off, a protective switch circuit is provided that operates to shut off the connection between the self-sustained relay and the grid-connected relay even if the self-sustained relay malfunctions when the relay is on. Yes.

この構成によれば、系統連系リレーがリレーオンで自立リレーがリレーオフのときに、自立リレーがリレーオンに誤作動しても、系統連系リレーと自立リレーとの接続を常に遮断する。したがって、例えば内部部品の故障などが生じて、自立リレーから系統連系リレーの交流電力が出力されようとしても、これをリレー遮断によって阻止することができる。これにより、相異なる出力電圧の系統連系用と自立用の交流電力を切り替える場合に、たとえ自立用のコンセントに自立用の電圧規格の電気機器を装着したままの状態でも、容易に安全性の確保が可能となる。   According to this configuration, when the grid interconnection relay is relay-on and the independent relay is relay-off, the connection between the grid-connected relay and the autonomous relay is always cut off even if the independent relay malfunctions when the relay is on. Therefore, for example, even if an internal component failure occurs and AC power of the grid connection relay is output from the self-supporting relay, this can be prevented by interrupting the relay. As a result, when switching between grid power and independent AC power with different output voltages, it is easy to ensure safety even when the electrical equipment of the independent voltage standard is still installed in the independent outlet. Securement is possible.

好ましくは、前記系統連系リレーは、第1の制御素子のオンに基づいて、インバータ回路の商用の交流電力に接続し、前記自立リレーは、第2の制御素子のオンに基づいて、インバータ回路の非常用の交流電力に接続するものであり、前記保護スイッチ回路は、自立リレーと第2の制御素子の間に直列に接続された第3の制御素子であり、第1の制御素子がオンのとき、自立リレーと第2の制御素子との間を常に遮断するものである。この場合、自立リレーを駆動する第2の制御素子が故障しても、簡単な構成で安全性を確保できる。   Preferably, the grid interconnection relay is connected to commercial AC power of the inverter circuit based on the first control element being turned on, and the self-supporting relay is connected to the inverter circuit based on the second control element being turned on. The protective switch circuit is a third control element connected in series between the self-supporting relay and the second control element, and the first control element is turned on. In this case, the self-supporting relay and the second control element are always cut off. In this case, safety can be secured with a simple configuration even if the second control element that drives the self-supporting relay fails.

また、好ましくは、前記インバータ回路が、複数の太陽電池に並列接続される。したがって、複数の太陽電池から所望電力を得ることができる。   Preferably, the inverter circuit is connected in parallel to a plurality of solar cells. Therefore, desired power can be obtained from a plurality of solar cells.

本発明では、系統連系リレーがリレーオンで自立リレーがリレーオフのときに、自立リレーがリレーオンに誤作動しても、自立リレーと系統連系リレーとの接続を常に遮断するので、相異なる出力電圧の系統連系用と自立用の交流電力を切り替える場合に、容易に安全性の確保が可能となる。   In the present invention, when the grid connection relay is relay-on and the self-sustained relay is relay-off, even if the self-sustained relay malfunctions when the relay is on, the connection between the self-sustained relay and the grid-connected relay is always cut off. Safety can be easily ensured when switching between AC power for grid connection and independent AC power.

本発明の一実施形態に係る電力変換装置を示すブロック図である。It is a block diagram which shows the power converter device which concerns on one Embodiment of this invention. 図1の電力変換装置の一部を示す回路図である。It is a circuit diagram which shows a part of power converter device of FIG. 従来の電力変換装置を示すブロック図である。It is a block diagram which shows the conventional power converter device.

図1は本発明の一実施形態に係る電力変換装置1を示すブロック図である。ソーラーパネルからなる太陽電池Sの例えば2kWの直流電力を交流電力に変換するインバータ回路2を含むものである。この電力変換装置1と複数の太陽電池Sを複数並列に接続し、集電箱にそれぞれ配線した設備を複数集合することにより、所望電圧の電力を出力するソーラーシステムを構成することができる。   FIG. 1 is a block diagram showing a power converter 1 according to an embodiment of the present invention. The inverter circuit 2 which converts, for example, 2 kW DC power of the solar cell S made of a solar panel into AC power is included. A solar system that outputs electric power of a desired voltage can be configured by connecting a plurality of the power converters 1 and a plurality of solar cells S in parallel and collecting a plurality of facilities respectively wired to a current collection box.

図1の電力変換装置1は、トランジスタのような制御素子(図示せず)のスイッチング動作により電力変換を行うインバータ回路2、インバータ回路2および装置全体を制御する制御部3を備えている。制御部3は、インバータ回路2の制御モードである、系統連系用の交流電力に変換される系統連系モードとこれと異なる出力電圧の自立用の交流電力に変換される自立モードとに切り替えるモード切替部4を有している。例えば、系統連系用の交流電力の出力電圧はAC200Vで、自立用の交流電力の出力電圧はAC100Vである。   A power conversion device 1 in FIG. 1 includes an inverter circuit 2 that performs power conversion by a switching operation of a control element (not shown) such as a transistor, an inverter circuit 2, and a control unit 3 that controls the entire device. The control unit 3 switches between a grid connection mode that is a control mode of the inverter circuit 2 that is converted into AC power for grid connection and a self-sustained mode that is converted into AC power for independent use with a different output voltage. A mode switching unit 4 is provided. For example, the output voltage of AC power for grid connection is AC200V, and the output voltage of AC power for stand-alone is AC100V.

電力変換装置1は、系統連系モード時に、リレーオンでインバータ回路2の系統連系用の交流電力を出力させる系統連系リレー5と、系統連系リレー5と並列に接続されて、自立モード時に、リレーオンでインバータ回路2の自立用の交流電力を出力させる自立リレー7とを備えている。   The power conversion device 1 is connected in parallel with the grid interconnection relay 5 and the grid interconnection relay 5 that output AC power for grid interconnection of the inverter circuit 2 when the relay is turned on in the grid interconnection mode. And a self-supporting relay 7 that outputs AC power for self-support of the inverter circuit 2 when the relay is on.

系統連系リレー5がリレーオンで自立リレー7がリレーオフのときに、自立リレー7がリレーオンに誤作動しても、系統連系リレー5と自立リレー7との接続を遮断するように動作する保護スイッチ回路8が設けられている。   Protective switch that operates to cut off the connection between the grid interconnection relay 5 and the self-sustained relay 7 even if the self-reliant relay 7 malfunctions when the relay is on when the grid interconnection relay 5 is relay-on and the self-sustained relay 7 is relay-off A circuit 8 is provided.

図2は、図1の電力変換装置の一部を示す回路図である。系統連系リレー5は、第1の制御素子T1と第4の制御素子T4のオンに基づいて、インバータ回路2の系統連系用の交流電力に接続し、自立リレー7は、第2の制御素子T2のオンに基づいて、インバータ回路2の自立用の交流電力に接続するものである。保護スイッチ回路8は、自立リレー7と第2の制御素子T2の間に直列に接続された第3の制御素子T3であり、第1の制御素子T1がオンのとき、自立リレー7と第2の制御素子T2との間を常に遮断する。この場合、簡単な構成で安全を確保できる。   FIG. 2 is a circuit diagram showing a part of the power conversion apparatus of FIG. The grid interconnection relay 5 is connected to the grid interconnection AC power of the inverter circuit 2 based on the first control element T1 and the fourth control element T4 being turned on, and the self-sustaining relay 7 is connected to the second control element. Based on the ON state of the element T2, the inverter circuit 2 is connected to the AC power for self-supporting. The protection switch circuit 8 is a third control element T3 connected in series between the self-supporting relay 7 and the second control element T2, and when the first control element T1 is on, Is always disconnected from the control element T2. In this case, safety can be ensured with a simple configuration.

系統連系リレースイッチ11と12がオンのとき、フォトカプラPCを介して第1の制御素子T1と第4の制御素子T4がオンとなり、系統連系リレー5がリレーオンとなり、AC200Vの系統連系の交流電力が出力される。   When the grid connection relay switches 11 and 12 are turned on, the first control element T1 and the fourth control element T4 are turned on via the photocoupler PC, the grid connection relay 5 is turned on, and the AC 200V grid connection is established. AC power is output.

自立リレースイッチ13がオンのとき、フォトカプラPCを介して第2の制御素子T2のオンとなり、自立リレー7がリレーオンとなる。保護スイッチ回路8における、自立リレー7と第2の制御素子T2の間に直列に接続された第3の制御素子T3により、第1の制御素子T1がオンのとき、このオン信号に基づき遮断状態となり、自立リレー7と第2の制御素子T2との間が常に遮断される。   When the self-supporting relay switch 13 is turned on, the second control element T2 is turned on via the photocoupler PC, and the self-supporting relay 7 is turned on. When the first control element T1 is turned on by the third control element T3 connected in series between the self-supporting relay 7 and the second control element T2 in the protection switch circuit 8, the cut-off state is based on this on signal. Thus, the independent relay 7 and the second control element T2 are always disconnected.

上記構成では、系統連系リレー5がリレーオンで自立リレー7がリレーオフのときに、自立リレー7がリレーオンに誤作動しても、第3の制御素子T3は自立リレー7と第2の制御素子T2との間を遮断して、系統連系リレー5と自立リレー7との接続を遮断するように動作する。したがって、従来のように、系統連系リレー5がリレーオンのとき、系統連系用のAC200Vの出力電圧が自立リレー7から出力されることがないので、AV100V規格の電気機器が自立リレー7のコンセントに接続されたままであっても、AC200Vが印加されることがなく、電気機器の劣化および焼損や、人身に対する不測の事故を招くおそれがない。   In the above configuration, when the grid connection relay 5 is relay-on and the self-sustained relay 7 is relay-off, even if the self-sustained relay 7 malfunctions to relay-on, the third control element T3 is independent from the self-sustained relay 7 and the second control element T2. And the connection between the grid interconnection relay 5 and the self-supporting relay 7 is cut off. Therefore, unlike the conventional case, when the grid connection relay 5 is relay-on, the output voltage of AC 200 V for grid connection is not output from the self-sustaining relay 7, so that the AV100V standard electrical device is connected to the outlet of the self-sustaining relay 7. Even if it remains connected, AC200V is not applied, and there is no possibility of deteriorating and burning electrical equipment or causing unexpected accidents to the human body.

こうして、本発明では、系統連系リレーがリレーオンで自立リレーがリレーオフのときに、自立リレーがリレーオンに誤作動しても、系統連系リレーと自立リレーとの接続を常に遮断する。したがって、例えば内部部品の故障などが生じて、自立リレーから系統連系リレーの交流電力が出力されようとしても、これをリレー遮断によって阻止することができる。これにより、相異なる出力電圧の系統連系用と自立用の交流電力を切り替える場合に、たとえ自立用のコンセントに自立用の電圧規格の電気機器を装着したままの状態でも、容易に安全性の確保が可能となる。   Thus, in the present invention, when the grid connection relay is relay-on and the self-sustained relay is relay-off, the connection between the grid-connected relay and the self-supporting relay is always cut off even if the self-supporting relay malfunctions when the relay is on. Therefore, for example, even if an internal component failure occurs and AC power of the grid connection relay is output from the self-supporting relay, this can be prevented by interrupting the relay. As a result, when switching between grid power and independent AC power with different output voltages, it is easy to ensure safety even when the electrical equipment of the independent voltage standard is still installed in the independent outlet. Securement is possible.

なお、保護スイッチ回路8は、第1の制御素子T1に代えて、第4の制御素子T4のオン信号に基づいて第3の制御素子T3を遮断状態とし、自立リレー7と第2の制御素子T2との間を遮断するようにしてもよい。   Note that the protection switch circuit 8 turns off the third control element T3 based on the ON signal of the fourth control element T4 instead of the first control element T1, and sets the self-supporting relay 7 and the second control element. You may make it interrupt | block between T2.

1:電力変換装置
2:インバータ回路
3:制御部
4:モード切替部
5:系統連系リレー
7:自立リレー
8:保護スイッチ回路
T1:第1の制御素子
T2:第2の制御素子
T3:第3の制御素子
T4:第4の制御素子
S:太陽電池
1: Power conversion device 2: Inverter circuit 3: Control unit 4: Mode switching unit 5: Grid interconnection relay 7: Stand-alone relay 8: Protection switch circuit T1: First control element T2: Second control element T3: Second Third control element T4: Fourth control element S: Solar cell

Claims (3)

太陽電池の直流電力を交流電力に変換するインバータ回路、
系統連系用の交流電力への変換制御を行う系統連系モードと、これと異なる出力電圧の自立用の交流電力への変換制御を行う自立モードと、に切り替えるモード切替部、
系統連系モード時に、リレーオンでインバータ回路の系統連系用の交流電力を出力させる系統連系リレー、および
系統連系リレーと並列に接続されて、自立モード時に、リレーオンでインバータ回路の自立用の交流電力を出力させる自立リレーを備え、
系統連系リレーがリレーオンで自立リレーがリレーオフのときに、自立リレーがリレーオンに誤作動しても、系統連系リレーと自立リレーとの接続を遮断するように動作する保護スイッチ回路が設けられている、電力変換装置。
An inverter circuit that converts the DC power of the solar cell into AC power;
A mode switching unit that switches between a grid interconnection mode that performs conversion control to AC power for grid interconnection and a self-sustained mode that performs conversion control to AC power for independent output voltage different from this,
Connected in parallel with the grid interconnection relay that outputs AC power for grid interconnection of the inverter circuit when the relay is turned on in the grid interconnection mode, and connected to the grid interconnection relay in the autonomous mode. Equipped with a self-supporting relay that outputs AC power,
When the grid connection relay is relay-on and the self-sustained relay is relay-off, a protective switch circuit is provided that operates to disconnect the grid-connected relay and the self-sustained relay even if the self-sustained relay malfunctions when the relay is on. The power converter.
請求項1において、
前記系統連系リレーは、第1の制御素子のオンに基づいて、インバータ回路の系統連系用の交流電力に接続し、前記自立リレーは、第2の制御素子のオンに基づいて、インバータ回路の自立用の交流電力に接続するものであり、
前記保護スイッチ回路は、自立リレーと第2の制御素子の間に直列に接続された第3の制御素子であり、第1の制御素子がオンのとき、自立リレーと第2の制御素子との間を常に遮断するものである、電力変換装置。
In claim 1,
The grid interconnection relay is connected to AC power for grid interconnection of the inverter circuit based on turning on of the first control element, and the self-supporting relay is connected to the inverter circuit based on turning on of the second control element. Connected to independent AC power
The protection switch circuit is a third control element connected in series between the self-supporting relay and the second control element. When the first control element is on, the protection switch circuit is connected to the self-supporting relay and the second control element. A power converter that always cuts the gap.
請求項1または2において、
前記インバータ回路が、複数の太陽電池に並列接続される、電力変換装置。

In claim 1 or 2,
A power conversion device in which the inverter circuit is connected in parallel to a plurality of solar cells.

JP2013175329A 2013-08-27 2013-08-27 Power converter Active JP6148117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175329A JP6148117B2 (en) 2013-08-27 2013-08-27 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175329A JP6148117B2 (en) 2013-08-27 2013-08-27 Power converter

Publications (2)

Publication Number Publication Date
JP2015046963A true JP2015046963A (en) 2015-03-12
JP6148117B2 JP6148117B2 (en) 2017-06-14

Family

ID=52672054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175329A Active JP6148117B2 (en) 2013-08-27 2013-08-27 Power converter

Country Status (1)

Country Link
JP (1) JP6148117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131062A (en) * 2016-01-21 2017-07-27 ヤンマー株式会社 Monitoring device and power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169661A (en) * 1997-08-13 1999-03-09 Matsushita Electric Works Ltd Solar light power generation system
JP2007272639A (en) * 2006-03-31 2007-10-18 Kyocera Corp Photovoltaic power generator
JP2012196024A (en) * 2011-03-15 2012-10-11 Omron Corp Electric power controller and electric power control method
JP2013123343A (en) * 2011-12-12 2013-06-20 Shindengen Electric Mfg Co Ltd Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169661A (en) * 1997-08-13 1999-03-09 Matsushita Electric Works Ltd Solar light power generation system
JP2007272639A (en) * 2006-03-31 2007-10-18 Kyocera Corp Photovoltaic power generator
JP2012196024A (en) * 2011-03-15 2012-10-11 Omron Corp Electric power controller and electric power control method
JP2013123343A (en) * 2011-12-12 2013-06-20 Shindengen Electric Mfg Co Ltd Power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131062A (en) * 2016-01-21 2017-07-27 ヤンマー株式会社 Monitoring device and power conversion device

Also Published As

Publication number Publication date
JP6148117B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6162835B2 (en) Power distribution system and electrical system
JP5646751B2 (en) Power conditioner, control method, and power generation system
US20120091810A1 (en) Automatic system for synchronous enablement-disablement of solar photovoltaic panels of an energy production plant with distributed dc/dc conversion
AU2011328285A8 (en) Method for operation of a photovoltaic installation for feeding electrical power into a medium-voltage power supply grid
KR101830666B1 (en) Power conversion apparatus
JP6478470B2 (en) Output control device
IN2014DN10977A (en)
JP2011019312A (en) Power conversion device
JP5820972B2 (en) Power converter
JP6077225B2 (en) Grid interconnection power converter
JP5596102B2 (en) Grid connection device for power purchase system capable of responding to abnormal situation of power system at the time of disaster, and method for emergency output of power at the time of emergency evacuation such as disaster using the grid interconnection device for power purchase system
KR101430577B1 (en) Voltage sag protector for three phase servo driver
JP6148117B2 (en) Power converter
AU2010297272B2 (en) Circuit assembly having a converter part comprising a central control unit
JP2013013174A (en) Power supply system
CN104377809A (en) Intelligent control device of communication station low-voltage distribution system
JP2014168346A (en) Single-phase three-wire power supply system
CN203645346U (en) Photovoltaic power generation inverter
CN111264011A (en) Emergency shut-off energy supply device
KR20200072747A (en) An micro-grid system with un-interrutable power supply
CN107370175B (en) Elevator auxiliary system
JP5931346B2 (en) Uninterruptible power supply system
JP2013085411A (en) System interconnection power conditioner
JP2015211494A (en) Power supply system
JP6402602B2 (en) Inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170518

R150 Certificate of patent or registration of utility model

Ref document number: 6148117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350