JP2015002598A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2015002598A
JP2015002598A JP2013125398A JP2013125398A JP2015002598A JP 2015002598 A JP2015002598 A JP 2015002598A JP 2013125398 A JP2013125398 A JP 2013125398A JP 2013125398 A JP2013125398 A JP 2013125398A JP 2015002598 A JP2015002598 A JP 2015002598A
Authority
JP
Japan
Prior art keywords
power
voltage
reactive power
load
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013125398A
Other languages
Japanese (ja)
Inventor
規夫 大羽
Norio Oba
規夫 大羽
裕司 尾川
Yuji Ogawa
裕司 尾川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRINCIPAL TECHNOLOGY CO Ltd
Original Assignee
PRINCIPAL TECHNOLOGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRINCIPAL TECHNOLOGY CO Ltd filed Critical PRINCIPAL TECHNOLOGY CO Ltd
Priority to JP2013125398A priority Critical patent/JP2015002598A/en
Publication of JP2015002598A publication Critical patent/JP2015002598A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and compact non-contact power transmission device, capable of stable power transmission by controlling a voltage to be applied to a load to a predetermined value, and capable of stable power transmission to a variety of loads.SOLUTION: A non-contact power transmission device includes reactive power generation means for generating a reactive power connected in parallel to power reception means and an AC load. The reactive power generation means controls a magnitude of the reactive power in such a manner that an effective value of an AC voltage to be applied to the AC load becomes a predetermined value.

Description

この発明は、電磁誘導現象または静電誘導現象を利用して非接触で電力を伝送する非接触電力伝送装置に関するものである。   The present invention relates to a non-contact power transmission apparatus that transmits electric power in a non-contact manner using an electromagnetic induction phenomenon or an electrostatic induction phenomenon.

従来より、電磁誘導現象または静電誘導現象を利用して非接触で電力を伝送する非接触電力伝送装置が、提案されている。図5に示す非接触電力伝送装置は、電磁誘導を利用した非接触電力伝送装置の一般的な構成図である。図5の従来の非接触電力伝送装置3は、交流電源100、給電コイル210、受電コイル220及び交流負荷300で構成されている。非接触電力伝送装置3は、交流電源100の出力に応じて給電コイル210が磁界を発生させ、給電コイル210が発生した磁界から電磁誘導によって受電コイル220に起電力が生じ、受電コイル220において電磁誘導によって得られた電力を、交流負荷300が消費することになる。すなわち、磁気的に結合した給電コイル210と受電コイル220との間の電磁誘導によって交流電源100の電力が交流負荷300に供給される。   Conventionally, a non-contact power transmission apparatus that transmits power in a non-contact manner using an electromagnetic induction phenomenon or an electrostatic induction phenomenon has been proposed. The non-contact power transmission apparatus shown in FIG. 5 is a general configuration diagram of a non-contact power transmission apparatus using electromagnetic induction. The conventional non-contact power transmission device 3 of FIG. 5 includes an AC power source 100, a power feeding coil 210, a power receiving coil 220, and an AC load 300. In the non-contact power transmission device 3, the feeding coil 210 generates a magnetic field according to the output of the AC power supply 100, and an electromotive force is generated in the receiving coil 220 by electromagnetic induction from the magnetic field generated by the feeding coil 210. The AC load 300 consumes the electric power obtained by induction. That is, the power of the AC power supply 100 is supplied to the AC load 300 by electromagnetic induction between the power supply coil 210 and the power reception coil 220 that are magnetically coupled.

従来の非接触電力伝送装置では、給電コイル210と受電コイル220との間の距離が変化したり、交流負荷300のインピーダンスが変化したりして、安定した電力伝送が困難な場合がある。このため、例えば、特許文献1や特許文献2に示されるように、受電コイルと交流負荷との間に制御可能な可変インピーダンスを挿入し、その可変インピーダンスの値を調整することで安定した電力を伝送できるようにしている。   In the conventional non-contact power transmission device, the distance between the feeding coil 210 and the power receiving coil 220 may change, or the impedance of the AC load 300 may change, and stable power transmission may be difficult. For this reason, for example, as shown in Patent Document 1 and Patent Document 2, a variable impedance that can be controlled is inserted between the power receiving coil and the AC load, and the value of the variable impedance is adjusted to obtain stable power. It can be transmitted.

特許文献1においては、安定した電力を伝送するために、受電コイルと負荷との間に挿入された可変コンデンサのインピーダンスを制御装置が変更する方法が提案されており、モータのような機械的な駆動手段により可変コンデンサのインピーダンスを変更するようにしている。   In patent document 1, in order to transmit stable electric power, the method by which a control apparatus changes the impedance of the variable capacitor inserted between the receiving coil and the load is proposed, and it is mechanical like a motor. The impedance of the variable capacitor is changed by the driving means.

また、特許文献2においては、負荷のインピーダンスを調整する方法が提案されている。   Patent Document 2 proposes a method for adjusting the impedance of a load.

特開2010−141977号公報JP 2010-141977 A 特開2012−182980号公報JP 2012-182980 A

しかしながら、特許文献1に示されるような非接触電力伝送装置では、可変コンデンサのインピーダンスを変更するためには、モータのような機械的な駆動手段が必要となるのが一般的であり大型で高コストであるという課題がある。また、特許文献2に示されるような非接触電力伝送装置では、通常の負荷のインピーダンスは負荷の特性であらかじめ決まっていて任意に調整ができないため、この負荷のインピーダンスを調整する方法が適用できるシステムは実用的には非常に少ないという課題がある。   However, in the non-contact power transmission apparatus as disclosed in Patent Document 1, in order to change the impedance of the variable capacitor, a mechanical driving means such as a motor is generally required, which is large and expensive. There is a problem of cost. Moreover, in the non-contact power transmission apparatus as shown in Patent Document 2, since the impedance of a normal load is determined in advance by the characteristics of the load and cannot be arbitrarily adjusted, a system to which this load impedance adjusting method can be applied There is a problem that there are very few in practical use.

本発明は、このような事情に鑑みてなされたもので、負荷に印加される電圧を所定の値に制御して安定的な電力伝送を実現することができ、また、多様な負荷に対して安定した電力伝送が可能で安価かつ小型な非接触電力伝送装置を提供することにある。   The present invention has been made in view of such circumstances, and can control the voltage applied to the load to a predetermined value to realize stable power transmission. An object of the present invention is to provide an inexpensive and small non-contact power transmission device capable of stable power transmission.

請求項1の非接触電力伝送装置は、受電手段及び交流負荷と並列に設けられ、無効電力を生成する無効電力発生手段を備え、無効電力発生手段が、交流負荷に印加される交流電圧の実効値が所定の値となるように、無効電力の大きさを制御することを特徴とする。   The non-contact power transmission apparatus according to claim 1 includes a reactive power generation unit that is provided in parallel with the power reception unit and the AC load, and generates reactive power, and the reactive power generation unit is configured to determine an effective AC voltage applied to the AC load. The magnitude of reactive power is controlled so that the value becomes a predetermined value.

請求項2の非接触電力伝送装置は、受電手段と整流手段との間に設けられ、無効電力を生成する無効電力発生手段とを備え、整流手段の交流側の交流電圧の実効値が所定の値となるように、無効電力の大きさを制御することを特徴とする。   The non-contact power transmission apparatus according to claim 2 is provided between the power receiving means and the rectifying means, and includes a reactive power generating means for generating reactive power, and an effective value of the AC voltage on the AC side of the rectifying means is a predetermined value. The reactive power magnitude is controlled so as to be a value.

本願発明によれば、受電手段に無効電力発生装置を接続し、無効電力発生装置が発生する無効電力を調整することで負荷に印加される電圧を所定の値に制御して安定的な電力伝送を実現することができ、また、多様な負荷に対して安定した電力伝送が可能である非接触電力伝送装置が、安価かつ小型にできる。   According to the present invention, the reactive power generator is connected to the power receiving means, and the reactive power generated by the reactive power generator is adjusted so that the voltage applied to the load is controlled to a predetermined value and stable power transmission is possible. In addition, a non-contact power transmission device that can stably transmit power to various loads can be made inexpensive and small.

本発明に係る非接触電力伝送装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the non-contact electric power transmission apparatus which concerns on this invention. 本発明に係る非接触電力伝送装置の第1の実施例における無効電力発生装置を示す構成図である。It is a block diagram which shows the reactive power generator in the 1st Example of the non-contact electric power transmission apparatus which concerns on this invention. 本発明に係る非接触電力伝送装置の第2の実施例における無効電力発生装置を示す構成図である。It is a block diagram which shows the reactive power generator in the 2nd Example of the non-contact electric power transmission apparatus which concerns on this invention. 本発明に係る非接触電力伝送装置の第3の実施例の構成を示す構成図である。It is a block diagram which shows the structure of the 3rd Example of the non-contact electric power transmission apparatus which concerns on this invention. 従来の非接触電力伝送装置の構成を示す構成図である。It is a block diagram which shows the structure of the conventional non-contact electric power transmission apparatus.

図1に示す本発明に係る非接触電力伝送装置1は、給電手段である給電コイル210と受電手段である受電コイル220との間の電磁誘導現象によって、非接触にて、給電コイル210から送られた交流電力を受電コイルに接続された交流負荷300へ伝達するものである。尚、静電誘導現象によって非接触で電力を伝達する場合、給電手段としては給電電極を用い、受電手段としては受電電極を用いることになる。以下の説明では、給電コイル210及び受電コイル220を用いた電磁誘導現象による場合を説明するが、静電誘導現象による場合も無効電力発生手段の動作は、電磁誘導現象による場合と同様なので、説明を省略する。   The non-contact power transmission device 1 according to the present invention shown in FIG. 1 transmits power from the feeding coil 210 in a non-contact manner due to an electromagnetic induction phenomenon between the feeding coil 210 as the feeding means and the receiving coil 220 as the power receiving means. The AC power thus transmitted is transmitted to the AC load 300 connected to the power receiving coil. When electric power is transmitted in a non-contact manner by the electrostatic induction phenomenon, a power feeding electrode is used as the power feeding means, and a power receiving electrode is used as the power receiving means. In the following description, the case of the electromagnetic induction phenomenon using the feeding coil 210 and the power receiving coil 220 will be described. However, the operation of the reactive power generating means is the same as that of the electromagnetic induction phenomenon even when the electrostatic induction phenomenon is used. Is omitted.

そして、非接触電力伝送装置1は、交流電源100、給電コイル210、受電コイル220、無効電力発生装置400(401)及び交流負荷300を備えている。交流電源100の出力に応じて磁界を給電コイル210が磁界を発生し、受電コイル220において、給電コイル210が発生した磁界から電磁誘導によって起電力が発生し、その電力が交流負荷300に伝送される。   The non-contact power transmission device 1 includes an AC power supply 100, a power feeding coil 210, a power receiving coil 220, a reactive power generation device 400 (401), and an AC load 300. The feeding coil 210 generates a magnetic field according to the output of the AC power supply 100, and an electromotive force is generated by electromagnetic induction from the magnetic field generated by the feeding coil 210 in the power receiving coil 220, and the power is transmitted to the AC load 300. The

交流電源100は、交流電圧を発生する電圧源として動作する電源である。交流電源100の電圧及び周波数は、非接触電力伝送装置1全体の構成に応じて所望の電力伝送特性が得られるように適切に選び、電圧波形は正弦波以外の複数の高調波成分を含む任意の波形でよく例えば矩形波としてもよい。   The AC power source 100 is a power source that operates as a voltage source that generates an AC voltage. The voltage and frequency of the AC power supply 100 are appropriately selected so as to obtain desired power transmission characteristics in accordance with the overall configuration of the non-contact power transmission device 1, and the voltage waveform includes an arbitrary number of harmonic components other than a sine wave. For example, a rectangular wave may be used.

ここで、無効電力発生装置400(401)は、受電コイル220及び交流負荷300に並列に接続されている。無効電力発生装置400(401)は、無効電力を生成する無効電力発生手段であり、交流負荷300に印加される交流電圧の実効値が所定の値となるように、無効電力の大きさを制御するものである。尚、無効電力発生装置400,401には各種の形態があるので、以下、実施例で具体的に説明する。   Here, reactive power generator 400 (401) is connected in parallel to power receiving coil 220 and AC load 300. The reactive power generation device 400 (401) is reactive power generation means for generating reactive power, and controls the magnitude of reactive power so that the effective value of the AC voltage applied to the AC load 300 becomes a predetermined value. To do. The reactive power generators 400 and 401 have various forms, and will be specifically described below in the examples.

図2は、本発明に係る非接触電力伝送装置の第1の実施例における無効電力発生装置を示す構成図である。無効電力発生装置400は、トランジスタやIGBT等で構成され半導体スイッチングデバイス411,412、コンデンサ421,422、リアクトル430、受電コイル220が受電する受電電圧を検出する受電電圧センサ440、受電電圧の位相を検出する受電電圧位相検出回路492、半導体スイッチングデバイス411,412をオン/オフするためのゲート指令を生成するゲート指令生成回路480、受電電圧の位相を考慮しつつ電気信号として予め設定され指示される受電電圧の目標値である受電電圧指令と受電電圧センサ440が検出する受電電圧との偏差がゼロになるようにゲート指令生成回路480へ無効電力指令を出力する無効電力制御回路460、電気信号として予め設定され指示されるコンデンサ421,422間の直流電圧の目標値である直流電圧指令と直流電圧センサ450が検出する該直流電圧との偏差がゼロなるようにゲート指令生成回路480へ有効電力指令を出力する有効電力制御回路470を備えている。   FIG. 2 is a configuration diagram showing the reactive power generation device in the first embodiment of the contactless power transmission device according to the present invention. The reactive power generation device 400 includes transistors, IGBTs, and the like, and includes semiconductor switching devices 411 and 412, capacitors 421 and 422, a reactor 430, a power reception voltage sensor 440 that detects a power reception voltage received by the power reception coil 220, and a phase of the power reception voltage. Received voltage phase detection circuit 492 to detect, gate command generation circuit 480 to generate a gate command for turning on / off the semiconductor switching devices 411 and 412, and set and instructed as an electrical signal in consideration of the phase of the received voltage As an electric signal, a reactive power control circuit 460 that outputs a reactive power command to the gate command generation circuit 480 so that a deviation between a received voltage command that is a target value of the received voltage and a received voltage detected by the received voltage sensor 440 becomes zero. Capacitors 421 and 422 that are preset and indicated An active power control circuit 470 that outputs an active power command to the gate command generation circuit 480 so that the deviation between the DC voltage command that is the target value of the DC voltage and the DC voltage detected by the DC voltage sensor 450 becomes zero. Yes.

次に、無効電力発生装置400を含む非接触電力伝送装置1の動作を説明する。交流電源100が発生した電圧に応じて給電コイル210に磁界を発生し、この磁界を受けて受電コイル220に電圧(起電力)を発生する。この受電コイル220が発生する電圧は、交流電源100の電圧が一定であっても給電コイル210と受電コイル220との距離や交流負荷300のインピーダンスの変化に応じて変化するが、無効電力発生装置400が発生する無効電力を調整することで受電電圧を所定の値に制御するようにする。   Next, the operation of the non-contact power transmission device 1 including the reactive power generation device 400 will be described. A magnetic field is generated in the feeding coil 210 according to the voltage generated by the AC power supply 100, and a voltage (electromotive force) is generated in the receiving coil 220 in response to the magnetic field. The voltage generated by the power receiving coil 220 changes according to the distance between the power feeding coil 210 and the power receiving coil 220 and the impedance of the AC load 300 even when the voltage of the AC power supply 100 is constant. The power reception voltage is controlled to a predetermined value by adjusting the reactive power generated by 400.

次に、無効電力発生装置400の動作について説明する。無効電力発生装置400は、半導体スイッチングデバイス411及び半導体スイッチングデバイス412をパルス幅変調などでオン/オフすることで任意の電圧Vaを出力する。より具体的には、無効電力制御回路460が、受電電圧位相検出回路492で検出した受電電圧の位相を考慮しつつ、受電電圧センサ440が検出した受電コイル220の電圧Vrと所定の受電電圧指令(目標電圧)との偏差がゼロとなるように無効電力制御量をゲート指令生成回路480へ出力する。   Next, the operation of the reactive power generation device 400 will be described. The reactive power generation device 400 outputs an arbitrary voltage Va by turning on / off the semiconductor switching device 411 and the semiconductor switching device 412 by pulse width modulation or the like. More specifically, the reactive power control circuit 460 considers the phase of the received voltage detected by the received voltage phase detection circuit 492, and the voltage Vr of the receiving coil 220 detected by the received voltage sensor 440 and a predetermined received voltage command. The reactive power control amount is output to the gate command generation circuit 480 so that the deviation from (target voltage) becomes zero.

また、有効電力制御回路470が、直流電圧センサ450が検出した直列に接続されたコンデンサ421及びコンデンサ422の両端電圧と所定の直流電圧指令(目標電圧)との偏差がゼロとなるように有効電力制御量をゲート指令生成回路480へ出力する。   In addition, the active power control circuit 470 has effective power so that the deviation between the voltage across the capacitor 421 and the capacitor 422 connected in series detected by the DC voltage sensor 450 and a predetermined DC voltage command (target voltage) becomes zero. The control amount is output to the gate command generation circuit 480.

ゲート指令生成回路480では、無効電力制御回路460が出力した無効電力制御量及び有効電力制御回路470が出力した有効電力制御量に応じて、半導体スイッチングデバイス411,412をオン/オフするためのゲート指令をパルス幅変調などにより出力する。ここで、実施例1では、ゲート指令のスイッチング周波数(変調周波数)は、交流電源100の周波数の数十倍以上を想定しており、例えば交流電源100の周波数が20kHzとすれば無効電力発生装置400のスイッチング周波数は500kHz程度以上となる。   In the gate command generation circuit 480, a gate for turning on / off the semiconductor switching devices 411 and 412 according to the reactive power control amount output from the reactive power control circuit 460 and the active power control amount output from the active power control circuit 470. The command is output by pulse width modulation. Here, in the first embodiment, the switching frequency (modulation frequency) of the gate command is assumed to be several tens of times the frequency of the AC power supply 100. For example, if the frequency of the AC power supply 100 is 20 kHz, the reactive power generation device The switching frequency of 400 is about 500 kHz or more.

ここで、コンデンサ421,422の電圧は有効電力の出入で変化するが、定常状態で電圧一定の場合は有効電力の出入はゼロである。給電コイル210と受電コイル220との距離や負荷インピーダンスが変化したときの過渡的な有効電力の出入による直流電圧の変動を抑制して必要な電圧維持するように有効電力制御回路470が動作することになる。   Here, the voltages of the capacitors 421 and 422 change with the input / output of the active power, but the input / output of the active power is zero when the voltage is constant in the steady state. The active power control circuit 470 operates so as to maintain a necessary voltage by suppressing fluctuations in DC voltage due to transient active power input / output when the distance between the power feeding coil 210 and the power receiving coil 220 or load impedance changes. become.

このように、無効電力発生装置400が発生する無効電力を変化させることで受電電圧が制御できることになる。この制御の流れをしめすと、まず、給電コイル210と受電コイル220との距離が大きくなると、給電コイル210と受電コイル220間の相互インダクタンスが低下し、交流電源100が一定の電圧を供給していても負荷(受電)側の電圧は低下するが、これは、給電コイル210と受電コイル220間の磁気抵抗が増加し受電コイル220に到達する磁束が減少するためである。   In this way, the received voltage can be controlled by changing the reactive power generated by the reactive power generation device 400. When this control flow is shown, first, when the distance between the power feeding coil 210 and the power receiving coil 220 is increased, the mutual inductance between the power feeding coil 210 and the power receiving coil 220 is reduced, and the AC power supply 100 supplies a constant voltage. However, the voltage on the load (power receiving) side is lowered because the magnetic resistance between the power feeding coil 210 and the power receiving coil 220 is increased and the magnetic flux reaching the power receiving coil 220 is decreased.

このとき、磁気回路(伝送空間)を伝わるエネルギーは、磁束と磁界強度との積であるので、磁束の減少を補うように磁界強度を強めて伝送エネルギーを維持し受電電圧を所定の値に制御することができる。そして、この磁界強度は、受電側から供給する無効電力の調整で制御可能であり、従って無効電力発生装置400が発生する無効電力を変化させることで受電電圧が制御できることになる。   At this time, since the energy transmitted through the magnetic circuit (transmission space) is the product of the magnetic flux and the magnetic field strength, the magnetic field strength is increased so as to compensate for the decrease in the magnetic flux, the transmission energy is maintained, and the received voltage is controlled to a predetermined value. can do. The magnetic field intensity can be controlled by adjusting the reactive power supplied from the power receiving side, and accordingly, the received voltage can be controlled by changing the reactive power generated by the reactive power generator 400.

このように、実施例1の非接触電力伝送装置1によれば、受電手段である受電コイル220に無効電力発生手段である無効電力発生装置400を接続し、無効電力発生装置400が発生する無効電力を調整することで交流負荷300(負荷)に印加される電圧を所定の値に制御して安定的な電力伝送を実現することができ、また、多様な負荷に対して安定した電力伝送が可能である非接触電力伝送装置1が、安価かつ小型にできる。   As described above, according to the contactless power transmission device 1 of the first embodiment, the reactive power generation device 400 that is the reactive power generation unit is connected to the power receiving coil 220 that is the power reception unit, and the reactive power generation device 400 generates the invalidity. By adjusting the power, the voltage applied to the AC load 300 (load) can be controlled to a predetermined value to realize stable power transmission, and stable power transmission can be achieved for various loads. The possible contactless power transmission device 1 can be made inexpensive and small.

尚、実施例1では、無効電力発生装置400を電圧型インバータで構成した例について説明したが、電流型インバータやアナログ増幅器を用いてもよく、受電側で無効電力を発生させれば同様の効果が得られる。   In the first embodiment, an example in which the reactive power generation device 400 is configured by a voltage type inverter has been described. However, a current type inverter or an analog amplifier may be used, and the same effect can be obtained if reactive power is generated on the power receiving side. Is obtained.

実施例1では、無効電力発生装置400のスイッチング周波数を交流電源100の周波数の数十倍としたが、実施例2では、無効電力発生装置401のスイッチング周波数を交流電源の周波数と一致させている場合について説明する。図3は、本発明に係る非接触電力伝送装置の第2の実施例における無効電力発生装置を示す構成図である。   In the first embodiment, the switching frequency of the reactive power generation device 400 is several tens of times the frequency of the AC power supply 100. However, in the second embodiment, the switching frequency of the reactive power generation device 401 is matched with the frequency of the AC power supply. The case will be described. FIG. 3 is a configuration diagram showing a reactive power generation device in a second embodiment of the non-contact power transmission device according to the present invention.

図3は、無効電力発生装置401は、半導体スイッチングデバイス411,412、コンデンサ421,422及びリアクトル430の部分並びに受電電圧センサ440及び直流電圧センサ450の部分は実施例1と同様であり説明を省略するが、受電電圧センサ440及び直流電圧センサ450の出力を受けてから半導体スイッチングデバイス411,412のゲート指令を生成するまでの制御回路部分が実施例1とは異なる。   In FIG. 3, the reactive power generation device 401 is the same as that of the first embodiment because the semiconductor switching devices 411 and 412, the capacitors 421 and 422, the reactor 430, the power reception voltage sensor 440 and the DC voltage sensor 450 are omitted. However, the control circuit portion from receiving the outputs of the power reception voltage sensor 440 and the DC voltage sensor 450 to generating the gate commands for the semiconductor switching devices 411 and 412 is different from that of the first embodiment.

図3において、半導体スイッチングデバイス411,412のゲート指令を生成するまでの制御回路部分は、受電電圧センサ440が検出する受電電圧の実効値を算出する受電電圧実効値算出回路491、電気信号として予め設定され指示される受電電圧の目標値である受電電圧指令と受電電圧実効値算出回路491が検出する受電電圧実効値との偏差がゼロになるように直流電圧指令を生成する無効電力制御回路461、無効電力制御回路461が生成した直流電圧指令と直流電圧センサ450が検出した直流電圧との偏差がゼロとなるように位相シフト指令を生成する有効電力制御回路471、受電電圧センサ440が検出する受電電圧の位相を検出する受電電圧位相検出回路492、受電電圧位相検出回路492が検出した受電電圧位相から有効電力制御回路471が出力した位相シフト指令分だけシフトさせた位相で受電電圧と同じ周波数のデューティー比50%のパルス信号をゲート指令として半導体スイッチングデバイス411,412へ出力するゲート指令生成回路481で構成されている。   In FIG. 3, the control circuit portion until the gate command of the semiconductor switching devices 411 and 412 is generated is a power reception voltage effective value calculation circuit 491 that calculates an effective value of the power reception voltage detected by the power reception voltage sensor 440, and an electric signal in advance. Reactive power control circuit 461 that generates a DC voltage command so that the deviation between the received voltage command, which is a target value of the received voltage that is set and instructed, and the received voltage effective value calculation circuit 491 is zero. The active power control circuit 471 that generates the phase shift command so that the deviation between the DC voltage command generated by the reactive power control circuit 461 and the DC voltage detected by the DC voltage sensor 450 is zero, and the received voltage sensor 440 detects Power reception voltage phase detection circuit 492 that detects the phase of the power reception voltage, and the power reception voltage level detected by the power reception voltage phase detection circuit 492 A gate command generation circuit 481 that outputs to the semiconductor switching devices 411 and 412, as a gate command, a pulse signal having a duty ratio of 50% having the same frequency as the received voltage at a phase shifted by the phase shift command output from the active power control circuit 471. It consists of

このような構成の無効電力発生装置401とすることで、半導体スイッチングデバイス411,412のオン/オフによるインバータの出力電圧Vaは受電電圧と同じ周波数の矩形波となる。この出力電圧Vaの位相は、有効電力制御回路471が受電電圧の位相からのシフト量(位相差)として決定し、出力電圧Vaの振幅は直流電圧で決まる。そして、無効電力の発生量は、出力電圧Vaの振幅すなわち直流電圧で調整可能であり、有効電力の発生量は出力電圧Vaと受電電圧Vrとの位相差で調整可能であるため、無効電力発生装置401が発生する無効電力を調整することで、受電電圧を所定の値に制御することが可能である。   By using the reactive power generation device 401 having such a configuration, the output voltage Va of the inverter when the semiconductor switching devices 411 and 412 are turned on / off becomes a rectangular wave having the same frequency as the received voltage. The phase of the output voltage Va is determined by the active power control circuit 471 as a shift amount (phase difference) from the phase of the received voltage, and the amplitude of the output voltage Va is determined by the DC voltage. The amount of reactive power generated can be adjusted by the amplitude of the output voltage Va, that is, the DC voltage, and the amount of active power generated can be adjusted by the phase difference between the output voltage Va and the received voltage Vr. By adjusting the reactive power generated by the device 401, the received voltage can be controlled to a predetermined value.

実施例2の無効電力発生装置401では、実施例1の効果に加え、無効電力発生装置401のスイッチング周波数を交流電源の周波数と一致させて、実施例1の場合よりもスイッチング周波数を低くすることで、スイッチングによるエネルギー損失を低減するとともにスイッチング動作が遅い安価な半導体スイッチングデバイスを採用することができる。   In the reactive power generation device 401 according to the second embodiment, in addition to the effects of the first embodiment, the switching frequency of the reactive power generation device 401 is made to coincide with the frequency of the AC power supply so that the switching frequency is lower than that in the first embodiment. Thus, it is possible to employ an inexpensive semiconductor switching device that reduces energy loss due to switching and has a slow switching operation.

実施例1及び実施例2では、交流負荷300の場合を説明したが、実施例3では、負荷が蓄電池やLED照明などのような直流負荷の場合に、無効電力発生装置402が受電した交流電力を直流電力に変換(整流)しつつ直流負荷に電力を供給する非接触電力伝送装置2について説明する。すなわち、無効電力を生成する無効電力発生手段を受電手段と整流手段との間に設けるところを、実施例3における無効電力発生装置402では、無効電力発生手段としての機能と、整流手段としての機能を備え、且つ、直流負荷が蓄電池301であるため、充電機能をも兼ね備えた上で設けている。図4は、本発明に係る非接触電力伝送装置の第3の実施例の構成を示す構成図である。   In the first embodiment and the second embodiment, the case of the AC load 300 has been described. In the third embodiment, when the load is a DC load such as a storage battery or LED lighting, the AC power received by the reactive power generator 402 is received. A non-contact power transmission device 2 that supplies power to a DC load while converting (rectifying) the power into DC power will be described. In other words, the reactive power generating device 402 according to the third embodiment is provided with a reactive power generating unit that generates reactive power between the power receiving unit and the rectifying unit. In addition, since the direct current load is the storage battery 301, it is provided with a charging function. FIG. 4 is a block diagram showing the configuration of the third embodiment of the non-contact power transmission apparatus according to the present invention.

図4の非接触電力伝送装置2における無効電力発生装置402は、受電コイル220が受電した交流電力を直流電力に変換して蓄電池301を充電するとともに、無効電力を発生する無効電力発生手段である。無効電力発生装置402は、実施例1の無効電力発生装置400に対して、コンデンサ421と負荷である蓄電池301との間に、電流センサ451を追加している点及び有効電力制御回路472が蓄電池301の充電電流を制御する機能を備えるところが異なる。   The reactive power generator 402 in the non-contact power transmission apparatus 2 of FIG. 4 is a reactive power generator that converts the AC power received by the power receiving coil 220 into DC power to charge the storage battery 301 and generates reactive power. . The reactive power generation device 402 is different from the reactive power generation device 400 of the first embodiment in that a current sensor 451 is added between the capacitor 421 and the storage battery 301 as a load, and the active power control circuit 472 is a storage battery. The difference is that a function of controlling the charging current 301 is provided.

無効電力発生装置402の有効電力制御回路472の動作は、直流電圧センサ450が検出する蓄電池301の電圧が、電気信号として予め設定され指示される充電電圧指令を超過せず、且つ電流センサ451が検出する蓄電池301の電流が、電気信号として予め設定され指示される充電電流指令を超過しないように充電電力が最大となる有効電力制御量をゲート指令生成回路482へ出力する。   The operation of the active power control circuit 472 of the reactive power generation device 402 is such that the voltage of the storage battery 301 detected by the DC voltage sensor 450 does not exceed the charging voltage command that is preset and instructed as an electrical signal, and the current sensor 451 The active power control amount that maximizes the charging power is output to the gate command generation circuit 482 so that the detected current of the storage battery 301 does not exceed the charging current command that is preset and instructed as an electrical signal.

無効電力発生装置402が、このように動作することで、実施例1の効果に加え、蓄電池301を充電しながら受電電圧を所定の値に制御することができ、効率が高い非接触電力伝送装置を得ることができる。尚、直流負荷として蓄電池301の充電を例として説明したが、直流負荷がLED照明等その他の直流負荷でも同様の効果が得られる。   The reactive power generation device 402 operates in this manner, so that in addition to the effects of the first embodiment, the power reception voltage can be controlled to a predetermined value while charging the storage battery 301, and the contactless power transmission device is highly efficient. Can be obtained. In addition, although charging of the storage battery 301 was demonstrated as an example as DC load, the same effect is acquired even if DC load is other DC loads, such as LED lighting.

以上のように、本発明によれば、負荷に印加される電圧を所定の値に制御して安定的な電力伝送を実現することができ、また、多様な負荷に対して安定した電力伝送が可能で安価かつ小型な非接触電力伝送装置を提供することができる。   As described above, according to the present invention, stable power transmission can be realized by controlling the voltage applied to the load to a predetermined value, and stable power transmission to various loads. A non-contact power transmission device that is possible, inexpensive, and small can be provided.

1・・・・・非接触電力伝送装置
2・・・・・非接触電力伝送装置
3・・・・・非接触電力伝送装置
100・・・交流電源
210・・・給電コイル
220・・・受電コイル
300・・・交流負荷
301・・・蓄電池
400・・・無効電力発生装置
401・・・無効電力発生装置
402・・・無効電力発生装置
411・・・半導体スイッチングデバイス
412・・・半導体スイッチングデバイス
421・・・コンデンサ
422・・・コンデンサ
430・・・リアクトル
440・・・受電電圧センサ
450・・・直流電圧センサ
451・・・電流センサ
460・・・無効電力制御回路
461・・・無効電力制御回路
462・・・無効電力制御回路
470・・・有効電力制御回路
471・・・有効電力制御回路
472・・・有効電力制御回路
480・・・ゲート指令生成回路
481・・・ゲート指令生成回路
482・・・ゲート指令生成回路
491・・・受電電圧実効値算出回路
492・・・受電電圧位相検出回路
DESCRIPTION OF SYMBOLS 1 ... Non-contact power transmission device 2 ... Non-contact power transmission device 3 ... Non-contact power transmission device 100 ... AC power supply 210 ... Feeding coil 220 ... Power reception Coil 300 ... AC load 301 ... Storage battery 400 ... Reactive power generator 401 ... Reactive power generator 402 ... Reactive power generator 411 ... Semiconductor switching device 412 ... Semiconductor switching device 421: Capacitor 422 ... Capacitor 430 ... Reactor 440 ... Receiving voltage sensor 450 ... DC voltage sensor 451 ... Current sensor 460 ... Reactive power control circuit 461 ... Reactive power control Circuit 462 ... reactive power control circuit 470 ... active power control circuit 471 ... active power control circuit 472 ... active power control circuit 480 · Gate command generation circuit 481 ... gate command generation circuit 482 ... gate command generation circuit 491 ... receiving voltage effective value calculation circuit 492 ... receiving voltage phase detecting circuit

Claims (2)

給電手段と受電手段との間の電磁誘導現象又は静電誘導現象によって、非接触にて、該給電手段から送られた交流電力を該受電手段に接続された交流負荷へ伝送する非接触電力伝送装置において、
該受電手段及び該交流負荷と並列に設けられ、無効電力を生成する無効電力発生手段を備え、
該無効電力発生手段が、該交流負荷に印加される交流電圧の実効値が所定の値となるように、該無効電力の大きさを制御することを特徴とする非接触電力伝送装置。
Non-contact power transmission for transmitting AC power sent from the power feeding means to an AC load connected to the power receiving means in a non-contact manner by an electromagnetic induction phenomenon or electrostatic induction phenomenon between the power feeding means and the power receiving means. In the device
Reactive power generating means that is provided in parallel with the power receiving means and the AC load and generates reactive power,
The non-contact power transmission device, wherein the reactive power generation means controls the magnitude of the reactive power so that an effective value of an AC voltage applied to the AC load becomes a predetermined value.
給電手段と受電手段との間の電磁誘導現象又は静電誘導現象によって、非接触にて、該給電手段から送られた交流電力を直流電力に変換する整流手段を介して該受電手段に接続された直流負荷へ伝送する非接触電力伝送装置において、
該受電手段と該整流手段との間に設けられ、無効電力を生成する無効電力発生手段とを備え、
該整流手段の交流側の交流電圧の実効値が所定の値となるように、該無効電力の大きさを制御することを特徴とする非接触電力伝送装置。
Due to the electromagnetic induction phenomenon or electrostatic induction phenomenon between the power feeding means and the power receiving means, the AC power sent from the power feeding means is connected to the power receiving means through a rectifying means that converts AC power sent from the power feeding means into DC power. In a non-contact power transmission device that transmits to a dc load,
Reactive power generating means for generating reactive power provided between the power receiving means and the rectifying means,
A non-contact power transmission apparatus that controls the magnitude of the reactive power so that the effective value of the AC voltage on the AC side of the rectifying means becomes a predetermined value.
JP2013125398A 2013-06-14 2013-06-14 Non-contact power transmission device Pending JP2015002598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013125398A JP2015002598A (en) 2013-06-14 2013-06-14 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125398A JP2015002598A (en) 2013-06-14 2013-06-14 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2015002598A true JP2015002598A (en) 2015-01-05

Family

ID=52296831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125398A Pending JP2015002598A (en) 2013-06-14 2013-06-14 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2015002598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011980A (en) * 2015-06-23 2017-01-12 大平電子株式会社 Non-contact power transmission device
DE102017113425A1 (en) * 2017-06-19 2018-12-20 Otto-Von-Guericke-Universität Magdeburg Device and method for actively generating and impressing reactive power in inductive transmission systems
JP2020043619A (en) * 2018-09-06 2020-03-19 矢崎エナジーシステム株式会社 Power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505277A (en) * 1992-10-20 1996-06-04 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Contactless power supply system
JP2000270479A (en) * 1999-03-19 2000-09-29 Ngk Insulators Ltd Operation control method for reactive power compensator
JP2004072832A (en) * 2002-08-02 2004-03-04 Hitachi Kiden Kogyo Ltd Non-contact power feeding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505277A (en) * 1992-10-20 1996-06-04 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Contactless power supply system
JP2000270479A (en) * 1999-03-19 2000-09-29 Ngk Insulators Ltd Operation control method for reactive power compensator
JP2004072832A (en) * 2002-08-02 2004-03-04 Hitachi Kiden Kogyo Ltd Non-contact power feeding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011980A (en) * 2015-06-23 2017-01-12 大平電子株式会社 Non-contact power transmission device
DE102017113425A1 (en) * 2017-06-19 2018-12-20 Otto-Von-Guericke-Universität Magdeburg Device and method for actively generating and impressing reactive power in inductive transmission systems
JP2020043619A (en) * 2018-09-06 2020-03-19 矢崎エナジーシステム株式会社 Power supply device
JP7305319B2 (en) 2018-09-06 2023-07-10 矢崎エナジーシステム株式会社 power supply

Similar Documents

Publication Publication Date Title
KR101818773B1 (en) Power conversion device for resonance wireless power transfer system
JP6079878B2 (en) Power feeding device and non-contact power feeding system
JP6103061B2 (en) Power feeding device and non-contact power feeding system
US9515577B2 (en) Power conversion device
JP5906946B2 (en) Contactless power supply
JP2015534448A (en) Inductive power transfer system receiver and method for controlling the receiver
JP2014143776A (en) Wireless power receiving device, wireless power transmitting device and wireless power feeding device
JP2015002598A (en) Non-contact power transmission device
JP6675109B2 (en) Wireless power transmission system
JP2014110733A (en) Wireless power transmission device
JP2017163647A (en) Electromagnetic field resonance wireless power supply method and power supply system
JP2012178938A (en) Power conversion system
KR20100069038A (en) Electric discharge machine
WO2014146195A1 (en) Electronic sine wave transformer
JP6714908B1 (en) Contactless power supply system
CN104682570A (en) Contactless Power Transmission Circuit
Yang et al. Transferred power control for ICPT pick-ups utilizing dynamically switched inductor
TWI506941B (en) Inverter capable of distributing input power and operation method thereof
WO2016013549A1 (en) Power transmission device
JP2018078746A (en) Wireless power supply device
JP2014233172A (en) Non-contact power transmission system and power receiver
JP6301213B2 (en) Power transmission equipment
KR20150139067A (en) constant current control method by load variation of railway vehicle
JP2013009484A (en) Piezoelectric transformer driving device
JP2016012975A (en) Non-contact power supply device, non-contact power receiving device and non-contact power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180910