JP2014203356A - Reactive power compensation device - Google Patents

Reactive power compensation device Download PDF

Info

Publication number
JP2014203356A
JP2014203356A JP2013080658A JP2013080658A JP2014203356A JP 2014203356 A JP2014203356 A JP 2014203356A JP 2013080658 A JP2013080658 A JP 2013080658A JP 2013080658 A JP2013080658 A JP 2013080658A JP 2014203356 A JP2014203356 A JP 2014203356A
Authority
JP
Japan
Prior art keywords
reactive power
voltage
capacitor
output
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013080658A
Other languages
Japanese (ja)
Other versions
JP6113556B2 (en
Inventor
裕史 児山
Yuji Koyama
裕史 児山
中沢 洋介
Yosuke Nakazawa
洋介 中沢
宏 餅川
Hiroshi Mochikawa
宏 餅川
淳彦 葛巻
Atsuhiko Kuzumaki
淳彦 葛巻
武 村尾
Takeshi Murao
武 村尾
田村 裕治
Yuji Tamura
裕治 田村
渡邊 裕治
Yuji Watanabe
裕治 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013080658A priority Critical patent/JP6113556B2/en
Publication of JP2014203356A publication Critical patent/JP2014203356A/en
Application granted granted Critical
Publication of JP6113556B2 publication Critical patent/JP6113556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PROBLEM TO BE SOLVED: To provide a reactive power compensation device that balances capacitor voltages without any additional circuit, and suppresses current distortion in restarting reactive power outputting for system voltage stabilization.SOLUTION: A reactive power compensation device includes: multistage inverter circuits which are configured for respective three phases; a filter circuit which is connected between a system interconnection end and output ends of the respective multistage inverter circuits and reduces harmonics; and a control unit which controls the respective multistage inverter circuits so as to output a predetermined three-phase AC voltage. The multistage inverter circuits are each constituted by connecting a plurality of inverters, which each convert a DC voltage by a capacitor into a pulse voltage corresponding to a voltage command value, in series, and the opposite-side ends of systems of the respective multistage inverters are connected together to form an all-phase connection as the neutral point. The control unit performs reactive power output control for maintaining voltage balance among the capacitors during a stop of reactive power output operation for system voltage stabilization so as to charge the capacitors.

Description

本発明は、系統に無効電力を注入することで、系統電圧を安定させる無効電力補償装置に関する。   The present invention relates to a reactive power compensator that stabilizes a system voltage by injecting reactive power into the system.

太陽光発電や風力発電、燃料電池といった分散電源が系統に連系される事例が増えてきており、それに伴い系統電圧の変動が懸念されている。特に住宅用太陽光発電は今後も更なる増加が見込まれており、発電量が多く負荷が小さい場合には大きな逆潮流が起こり配電網の電圧が上昇し、系統電圧規程値を逸脱してしまう。従来ではこのような場合には発電電力を絞る事で電圧上昇を抑えている。しかしこの方法では、本来発電できるはずの電力から絞られておりエネルギーに無駄が生じてしまう。系統に無効電力を注入する無効電力補償装置を用いれば、エネルギーに無駄を生じる事なく系統電圧を下げて、太陽光などの分散電源も本来の発電が可能となる。例えば系統電圧が規定範囲の電圧より高い場合、系統電圧に対して90°位相が遅れた無効電流が無効電力補償装置に流れるように無効電力補償装置を動作させ、系統電圧を下げることができる。このとき無効電力補償装置はリアクトルのように作用する。尚、このような無効電力出力制御時には、有効電力も制御される。   The number of cases where distributed power sources such as solar power generation, wind power generation, and fuel cells are connected to the system is increasing, and accordingly, fluctuations in system voltage are concerned. In particular, residential solar power generation is expected to increase further in the future, and when the amount of power generation is large and the load is small, a large reverse power flow will occur and the voltage of the distribution network will rise and deviate from the system voltage regulation value . Conventionally, in such a case, the voltage rise is suppressed by reducing the generated power. However, with this method, the power that is supposed to be generated is limited and energy is wasted. If a reactive power compensator that injects reactive power into the system is used, the system voltage can be lowered without wasting energy, and a distributed power source such as sunlight can also generate power. For example, when the system voltage is higher than a voltage within a specified range, the reactive power compensator can be operated so that the reactive current whose phase is delayed by 90 ° with respect to the system voltage flows to the reactive power compensator, thereby reducing the system voltage. At this time, the reactive power compensator acts like a reactor. Note that during such reactive power output control, the active power is also controlled.

しかし、従来の無効電力補償装置は重量・体積が大きく、変電所などの送電端側に設置される事が多かった。住宅用太陽光発電などの分散電源による配電網の系統電圧上昇に対応するため、狭い住宅街にも設置できる小型な無効電力補償装置が求められている。   However, the conventional reactive power compensator has a large weight and volume, and is often installed on the power transmission end side of a substation or the like. In order to cope with an increase in the system voltage of a distribution network using a distributed power source such as residential solar power generation, a small reactive power compensator that can be installed in a small residential area is required.

無効電力補償装置を小型化する手段として、半導体電力変換器(インバータ)部分の出力する電圧波形をより正弦波に近く高調波の少ない波形とする事で、連系フィルタリアクトルを小型化するという方法がある。高調波の少ない電圧波形を出力するには、直流コンデンサを電圧源としてそれをパルス幅変調した電圧波形を出力するPWMインバータを各相で直列に多段接続して、細かい電圧パルス幅で連系電圧に近い波形を作り出す方法がある。細かい電圧のパルス出力を重ね合わせる事で、出力電圧の高調波を低減し、連系フィルタリアクトルを小型できる。また、直列接続するPWMインバータの多段接続数を多くして耐圧を十分とる事で、系統連系にトランスを用いずに小型化する事ができる。   As a means to reduce the reactive power compensator, the voltage waveform output from the semiconductor power converter (inverter) part is made a waveform that is closer to a sine wave and has less harmonics, thereby reducing the size of the interconnection filter reactor. There is. In order to output a voltage waveform with few harmonics, a PWM inverter that outputs a voltage waveform obtained by modulating the pulse width of a DC capacitor as a voltage source is connected in multiple stages in series for each phase, and the interconnection voltage with a fine voltage pulse width There is a way to create a waveform close to. By superimposing fine voltage pulse outputs, the harmonics of the output voltage can be reduced, and the interconnection filter reactor can be made smaller. Further, by increasing the number of multi-stage PWM inverters connected in series to obtain sufficient withstand voltage, the system can be reduced in size without using a transformer.

このように各相にインバータを備え中性点を接続するY結線方式の無効電力補償装置では、各インバータに備わる直流コンデンサの電圧バランスをとる必要がある。そのバランス制御としては、無効電流と同位相の制御量を各相の電圧指令値に重畳する方法がある。全ての相に同じ制御量を重畳、即ち零相電圧制御量を重畳すると相間の直流コンデンサ電圧バランスが制御される。また各相に複数のインバータが直列に多段接続されている場合は、無効電流と同位相で、段間で全て加算したら零となる制御量を各段それぞれの電圧指令値に重畳する事により、段間の直流コンデンサ電圧バランスが制御される。   In this way, in the Y-connection reactive power compensator that includes an inverter in each phase and connects a neutral point, it is necessary to balance the voltage of the DC capacitors provided in each inverter. As the balance control, there is a method of superimposing a control amount in the same phase as the reactive current on the voltage command value of each phase. When the same control amount is superimposed on all phases, that is, when the zero-phase voltage control amount is superimposed, the DC capacitor voltage balance between the phases is controlled. Also, when multiple inverters are connected in series in each phase, by superimposing a control amount that is the same phase as the reactive current and adding zero between the stages to the voltage command value of each stage, The DC capacitor voltage balance between stages is controlled.

「6.6kV トランスレス・カスケードPWM STATCOM−三相200V 10kVAミニモデルによる動作検証−」(電気学会産業応用部門論文誌 2007年 127巻8号 p.781−788)"6.6kV Transformerless Cascade PWM STATCOM-Operation Verification with Three-phase 200V 10kVA Mini Model" (Institute of Electrical Engineers, Industrial Applications Division 2007, Vol. 127, No. 8, p. 781-788) 「カスケードPWM変換器と二次電池を使用した6.6kVトランスレス電力貯蔵システム」(電気学会産業応用部門論文誌 2009年 129巻1号 p.67−76)"6.6kV transformerless power storage system using cascade PWM converter and secondary battery" (The Institute of Electrical Engineers of Japan, 2009, Vol.129, No.1, p.67-76)

特許第3244836号公報Japanese Patent No. 324483 特開平9−56072号公報JP-A-9-56072

このようにY結線方式の無効電力補償装置で直流コンデンサ電圧のバランスを制御する場合、無効電流が流れていることが前提であるため、無効電力を出力していない場合にはバランスが制御できない。このため無効電力出力運転を停止中に直流コンデンサ電圧が自然放電により低下した後、無効電力出力を再開した時に、直流コンデンサ電圧が低下しているだけでなくアンバランスであるため、直流コンデンサが充電されバランスがとれるまで電流の波形が歪んでしまうという課題がある。停止中の直流コンデンサ電圧の制御については、外部電源から充電する方法がある。これは図8のように交流電源9から変圧器72を介して得た電力を、充電回路8によりインバータ13の直流コンデンサ12に充電するといった手法である。このような方法では電源9や変圧器72、充電回路8といった追加回路が別途必要となる。   Thus, when controlling the balance of the DC capacitor voltage with the reactive power compensator of the Y-connection method, it is premised that reactive current is flowing. Therefore, the balance cannot be controlled when reactive power is not output. For this reason, when the reactive power output is restarted after the reactive power output operation is stopped, when the reactive power output is restarted, the DC capacitor voltage is unbalanced. However, there is a problem that the current waveform is distorted until a balance is achieved. For controlling the DC capacitor voltage during the stop, there is a method of charging from an external power source. This is a technique in which the power obtained from the AC power supply 9 via the transformer 72 is charged to the DC capacitor 12 of the inverter 13 by the charging circuit 8 as shown in FIG. In such a method, additional circuits such as a power source 9, a transformer 72, and a charging circuit 8 are separately required.

従って実施形態は、追加回路なしにコンデンサ電圧のバランスを取り、系統電圧安定化のための無効電力出力を再開する際の電流歪みを抑制する事を目的とする。   Therefore, an object of the embodiment is to balance the capacitor voltage without an additional circuit and suppress current distortion when restarting reactive power output for system voltage stabilization.

一実施形態に係る無効電力補償装置は、三相各相にそれぞれ構成される多段インバータ回路と、系統連系端と各多段インバータ回路の出力端の間に接続され、高調波を低減するためのフィルタ回路と、前記各多段インバータ回路を制御して所定の三相交流電圧を出力させる制御装置とを具備する。前記各多段インバータ回路は、コンデンサによる直流電圧を電圧指令値に対応するパルス電圧に変換するインバータを複数直列接続して構成され、前記各多段インバータ回路の系統の反対側端は、中性点として全相接続されており、前記制御装置は、系統電圧安定化のための無効電力出力動作を停止している時に、前記コンデンサの電圧バランスを維持するための無効電力出力制御を行い、前記コンデンサを充電する。   A reactive power compensator according to an embodiment is connected between a multistage inverter circuit configured for each of three phases, and between a grid connection end and an output end of each multistage inverter circuit, for reducing harmonics. A filter circuit; and a control device that controls each of the multi-stage inverter circuits to output a predetermined three-phase AC voltage. Each multi-stage inverter circuit is configured by connecting in series a plurality of inverters that convert a DC voltage by a capacitor into a pulse voltage corresponding to a voltage command value, and the opposite end of the system of each multi-stage inverter circuit is a neutral point. All phases are connected, and the control device performs reactive power output control for maintaining the voltage balance of the capacitor when the reactive power output operation for stabilizing the system voltage is stopped, and the capacitor is Charge.

第1実施形態における無効電力補償装置の構成図である。It is a block diagram of the reactive power compensation apparatus in 1st Embodiment. 第2実施形態における直流コンデンサ電圧監視による直流コンデンサ電圧の変化を示す図である。It is a figure which shows the change of the DC capacitor voltage by the DC capacitor voltage monitoring in 2nd Embodiment. 第2実施形態における直流コンデンサ電圧監視による直流コンデンサ電圧の制御を示す図である。It is a figure which shows control of the DC capacitor voltage by the DC capacitor voltage monitoring in 2nd Embodiment. 系統相電圧と、直流コンデンサの閾値Vc_th及び連系フィルタでの電圧降下Vfの関係を示す図である。It is a figure which shows the relationship between system phase voltage, the threshold value Vc_th of a DC capacitor, and the voltage drop Vf in a connection filter. 第3実施形態における停止時間監視による直流コンデンサ電圧の変化を示す図である。It is a figure which shows the change of the DC capacitor voltage by stop time monitoring in 3rd Embodiment. 第3実施形態における停止時間監視による直流コンデンサ電圧の制御を示す図である。It is a figure which shows control of the DC capacitor voltage by stop time monitoring in 3rd Embodiment. 第4実施形態における無効電力指令のソフトスタートを示す図である。It is a figure which shows the soft start of the reactive power command in 4th Embodiment. 従来におけるコンデンサの充電方法を示す図である。It is a figure which shows the charging method of the capacitor | condenser in the past.

以下、実施形態に係る無効電力補償装置について、図面を参照して説明する。   Hereinafter, a reactive power compensator according to an embodiment will be described with reference to the drawings.

[第1実施形態]
図1は、第1実施形態に係る無効電力補償装置10の構成を示す図である。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration of a reactive power compensator 10 according to the first embodiment.

この無効電力補償装置10は、4つの半導体スイッチング素子11と直流コンデンサ12により構成された単相フルブリッジ構成のインバータ1をUVWの各相に複数段と、連系フィルタ2として系統連系端7に接続されたリアクトル21とを各相に備える。各相の複数のインバータ1及びリアクトル21は直列に接続されており、複数のインバータ1に対して系統の反対側端は中性点3で各相が接続されている。また制御装置4を備える。無効電力補償装置10は系統電源5から電力供給される配電線6に連系される。制御装置4は系統電圧Vs、出力電流Ioに基づいて、無効電流指令値、出力電圧指令値等を演算し、図1に示す無効電力補償装置10を全体的に制御する。各インバータ1は制御装置4の制御の下、PWMあるいはワンパルスで動作する。   The reactive power compensator 10 includes a single-phase full-bridge inverter 1 composed of four semiconductor switching elements 11 and a DC capacitor 12 in a plurality of stages for each phase of UVW, and a grid connection end 7 as a grid filter 2. And reactor 21 connected to each phase. A plurality of inverters 1 and reactors 21 of each phase are connected in series, and each phase is connected to the plurality of inverters 1 at a neutral point 3 at the opposite end of the system. A control device 4 is also provided. The reactive power compensator 10 is linked to a distribution line 6 that is supplied with power from the system power supply 5. The control device 4 calculates a reactive current command value, an output voltage command value, and the like based on the system voltage Vs and the output current Io, and controls the reactive power compensator 10 shown in FIG. 1 as a whole. Each inverter 1 operates under PWM or one pulse under the control of the control device 4.

図1では1つの直流コンデンサ12の電圧を入力信号とする制御装置4のブロックを代表的に示している。制御装置4は実際には全てのインバータの直流コンデンサ12の電圧を監視しており、無効電力出力停止中に直流コンデンサ電圧12の電圧が著しく低下して電圧バランスが崩れる事を防ぐため、直流コンデンサ12を充電してバランスをとるための無効電力指令値を出力する。実際には、その無効電力指令値に対応した半導体スイッチング素子11の制御ゲート信号を出力する。無効電力を出力する事により、各直流コンデンサ12は充電され、UVWの相間及びインバータ1a〜1cの段間における電圧バランスがとれるため、系統電圧安定化のための無効電力出力を再開する際の電流歪みを抑制できる。   FIG. 1 representatively shows a block of the control device 4 using the voltage of one DC capacitor 12 as an input signal. The control device 4 actually monitors the voltage of the DC capacitor 12 of all inverters, and in order to prevent the voltage balance of the DC capacitor voltage 12 from being significantly lowered and the voltage balance being lost while the reactive power output is stopped, the DC capacitor Reactive power command value for charging 12 and balancing is output. Actually, the control gate signal of the semiconductor switching element 11 corresponding to the reactive power command value is output. By outputting reactive power, each DC capacitor 12 is charged, and voltage balance is achieved between the phases of UVW and the stages of inverters 1a to 1c. Therefore, the current when restarting reactive power output for system voltage stabilization is resumed. Distortion can be suppressed.

図1では各相あたりインバータ1を3段直列接続しているが、1段や2段、また5段や6段などとしても良い。また図1では連系フィルタ2はリアクトル21のみで構成されているが、各相から中性点に接続するコンデンサ、または各相間を接続するコンデンサを用いたLCL構成でも構わない。また上記無効電力指令値は、内部制御動作において無効電流指令値であっても構わない。
[第2実施形態]
図2は第2実施形態に係る無効電力補償装置10の動作を示す図であり、図3はその制御構成を示す図である。なお、以下においては、図1に示す無効電力補償装置10の構成要素と同一または相当する構成要素には、図1で使用した符号と同一の符号を付して説明する。
In FIG. 1, three stages of inverters 1 are connected in series for each phase, but one stage, two stages, five stages, six stages, and the like may be used. In FIG. 1, the interconnection filter 2 includes only the reactor 21, but an LCL configuration using a capacitor connected from each phase to the neutral point or a capacitor connecting between the phases may be used. The reactive power command value may be a reactive current command value in the internal control operation.
[Second Embodiment]
FIG. 2 is a diagram illustrating an operation of the reactive power compensator 10 according to the second embodiment, and FIG. 3 is a diagram illustrating a control configuration thereof. In the following description, the same or equivalent components as those of the reactive power compensator 10 illustrated in FIG. 1 are denoted by the same reference numerals as those used in FIG.

図2は無効電力補償装置10の備える直流コンデンサ12のコンデンサ電圧の変化を代表的に示している。第1実施形態の構成の無効電力補償装置10が無効電力出力動作(無効電力補償)を停止すると、図2のように直流コンデンサ12の電圧Vcは定格値Vc_refから自然放電により低下していき、相間及び段間でのバランスが崩れていく。本実施形態では、無効電力出力動作を停止してからも、この直流コンデンサ12の電圧Vcを監視しておき、定められた閾値Vc_thを下回ると、最小無効電力指令値Q_minを出力する事により直流コンデンサ12を充電する。これにより直流コンデンサ12は充電され、相間・段間におけるバランスがとれる(制御される)。すなわち、UVWの各相に設けられた直流コンデンサ12の電圧の各相の加算値が等しく、また各段におけるコンデンサ12の電圧も等しくなる。このため、系統電圧安定化のための無効電力出力を再開する際の電流歪みを抑制できる。   FIG. 2 representatively shows changes in the capacitor voltage of the DC capacitor 12 included in the reactive power compensator 10. When the reactive power compensator 10 having the configuration of the first embodiment stops the reactive power output operation (reactive power compensation), the voltage Vc of the DC capacitor 12 decreases from the rated value Vc_ref due to natural discharge as shown in FIG. The balance between phases and steps will be lost. In the present embodiment, even after the reactive power output operation is stopped, the voltage Vc of the DC capacitor 12 is monitored, and when the voltage falls below a predetermined threshold value Vc_th, the minimum reactive power command value Q_min is output to output the DC. The capacitor 12 is charged. As a result, the DC capacitor 12 is charged and balanced (controlled) between phases and stages. That is, the added value of each phase of the voltage of the DC capacitor 12 provided in each phase of UVW is equal, and the voltage of the capacitor 12 in each stage is also equal. For this reason, the current distortion at the time of restarting the reactive power output for system voltage stabilization can be suppressed.

最小無効電力指令値Q_minは、直流コンデンサ12の電圧の相間及び段間のバランスをとるために必要な無効電力の最小値である。直流コンデンサ電圧の相間及び段間バランスを制御するためには無効電力の出力が必要であり、それが小さ過ぎるとバランス制御は成立しない。そのため、直流コンデンサ12を充電する際には、バランスをとるために必要な最小の無効電力Q_minを出力する。この最小無効電力指令を与える際、その指令値はゼロからQ_minまで緩やかに変化する事で、電流の急激な変化を抑制し、系統への影響を抑制できる。この最小無効電力Q_minがゼロから緩やかに変化する程度は、例えば系統電圧1周期以上が望ましい。   The minimum reactive power command value Q_min is the minimum value of reactive power necessary for balancing the voltage of the DC capacitor 12 between phases and stages. In order to control the interphase and interstage balance of the DC capacitor voltage, it is necessary to output reactive power. If it is too small, balance control cannot be established. Therefore, when the DC capacitor 12 is charged, the minimum reactive power Q_min necessary for balancing is output. When giving this minimum reactive power command, the command value gradually changes from zero to Q_min, so that a rapid change in current can be suppressed and the influence on the system can be suppressed. It is desirable that the minimum reactive power Q_min is gradually changed from zero, for example, one period or more of the system voltage.

図3は本実施形態の制御構成を示すブロックである。直流コンデンサ電圧Vcと閾値Vc_thを比較し、閾値を下回っていれば最小無効電力指令値Q_minを制御演算・ゲートパルス生成装置41に与え、指令値に対応したゲートパルスを各インバータ1に出力する。この制御判定は、各相各段に備える全てのインバータ1の直流コンデンサ12に対して行われる。   FIG. 3 is a block diagram showing the control configuration of this embodiment. The DC capacitor voltage Vc is compared with the threshold value Vc_th, and if it is below the threshold value, the minimum reactive power command value Q_min is given to the control calculation / gate pulse generating device 41, and the gate pulse corresponding to the command value is output to each inverter 1. This control determination is performed for the DC capacitors 12 of all inverters 1 provided in each stage of each phase.

図2のように、コンデンサ電圧をバランスさせるために発生させる最小無効電力指令値Q_minは、例えば実験的に求められる固定値である。最小無効電力指令値Q_minは、制御演算・ゲートパルス生成装置41内で最小無効電流指令値に変換され、この最小無効電流指令値に基づいて各半導体スイッチング素子に与えるゲートパルスが生成される。このとき最小無効電力指令値Q_minは、系統電圧に最小無効電流指令値を乗算した値である。例えば、制御演算・ゲートパルス生成装置41に与える指令値を最小無効電流指令値とすると、系統電圧が僅かに変化すると、この最小無効電流指令値も変化する。しかし系統電圧安定化のための無効電力出力を停止しているときは、系統電圧はほぼ定格の系統電圧となって安定しているときであるので、最小無効電力指令値Q_minはほぼ変化しない。従って本願では説明を簡単にするため、出力電流Ioにひずみを生じさせないためにコンデンサ12を充電するための最小指令値を最小無効電力指令値Q_minとしている。   As shown in FIG. 2, the minimum reactive power command value Q_min generated to balance the capacitor voltage is a fixed value obtained experimentally, for example. The minimum reactive power command value Q_min is converted into a minimum reactive current command value in the control calculation / gate pulse generating device 41, and a gate pulse to be given to each semiconductor switching element is generated based on the minimum reactive current command value. At this time, the minimum reactive power command value Q_min is a value obtained by multiplying the system voltage by the minimum reactive current command value. For example, if the command value given to the control calculation / gate pulse generator 41 is the minimum reactive current command value, the minimum reactive current command value also changes when the system voltage slightly changes. However, when the reactive power output for stabilizing the system voltage is stopped, the system voltage is almost at the rated system voltage and is stable, so the minimum reactive power command value Q_min does not change substantially. Therefore, in order to simplify the explanation in the present application, the minimum command value for charging the capacitor 12 is set as the minimum reactive power command value Q_min so as not to cause distortion in the output current Io.

閾値Vc_thは、著しい歪みなく電流を出力できる直流コンデンサ電圧の下限値から定められる。また閾値Vc_thは、出力する電圧に歪みを生じない直流コンデンサ電圧の下限値であり、各インバータ1の変調率がある相で全て100%の時に相当する。即ち、各相に備えるインバータ1の直流コンデンサ12の電圧Vcを各相で合計した値に、最小無効電力指令値Q_minを出力した際の連系フィルタでの電圧降下Vfを加算した値が、系統電圧の相電圧ピーク値に一致する時が、歪のない電流を出力できる限界点である。   The threshold value Vc_th is determined from the lower limit value of the DC capacitor voltage that can output current without significant distortion. The threshold value Vc_th is the lower limit value of the DC capacitor voltage that does not cause distortion in the output voltage, and corresponds to the case where the phase of each inverter 1 is 100% in a certain phase. That is, the value obtained by adding the voltage drop Vf at the interconnection filter when the minimum reactive power command value Q_min is output to the value obtained by summing the voltage Vc of the DC capacitor 12 of the inverter 1 provided for each phase in each phase, The time when the voltage coincides with the phase voltage peak value is the limit point at which a current without distortion can be output.

従って図4のように、系統電圧の相電圧ピーク値Vspから最小無効電力指令値Q_minを出力した際の連系フィルタ(リアクトル21)での電圧降下値Vfを引き、残りの電圧を各相が備えるインバータ段数で割ることにより閾値Vc_thが求められる。つまり閾値Vc_thは、系統電圧の相電圧のピーク値から、最小無効電力指令値Q_minに応じた出力電流が流れることにより生じるリアクトル21の電圧降下分を引いた値を、多段インバータの段数で割った値である。連系フィルタでの電圧降下値Vfは、無効電力の方向によっては正負が上記と逆になるので、その場合はVspに加算する事になる。   Therefore, as shown in FIG. 4, the voltage drop value Vf at the interconnection filter (reactor 21) when the minimum reactive power command value Q_min is output from the phase voltage peak value Vsp of the system voltage is subtracted, and the remaining voltage is obtained for each phase. The threshold Vc_th is obtained by dividing by the number of inverter stages provided. That is, the threshold value Vc_th is obtained by dividing the value obtained by subtracting the voltage drop of the reactor 21 caused by the output current corresponding to the minimum reactive power command value Q_min from the peak value of the phase voltage of the system voltage by the number of stages of the multistage inverter. Value. The voltage drop value Vf at the interconnection filter is opposite to the above depending on the reactive power direction, and in this case, it is added to Vsp.

各相に定格電圧の異なる複数の直流電圧のインバータを多段に備える場合は、それら定格電圧の比率に比例した各閾値Vc_thを計算する。   When a plurality of DC voltage inverters having different rated voltages are provided for each phase in multiple stages, each threshold Vc_th proportional to the ratio of the rated voltages is calculated.

なお上記最小無効電力指令値は、内部制御動作において最小無効電流指令値であっても構わない。   The minimum reactive power command value may be the minimum reactive current command value in the internal control operation.

[第3実施形態]
図5は第3実施形態に係る無効電力補償装置10の動作を示す図であり、図6はその制御構成を示す図である。なお、以下においては、図1〜3に示す無効電力補償装置10の構成要素と同一または相当する構成要素には、図1〜3で使用した符号と同一の符号を付して説明する。
[Third Embodiment]
FIG. 5 is a diagram illustrating an operation of the reactive power compensator 10 according to the third embodiment, and FIG. 6 is a diagram illustrating a control configuration thereof. In the following description, the same or corresponding components as those of the reactive power compensator 10 shown in FIGS. 1 to 3 are denoted by the same reference numerals as those used in FIGS.

図5は無効電力補償装置10の備える直流コンデンサ12のコンデンサ電圧の変化を代表的に示している。第1実施形態の構成の無効電力補償装置10が無効電力出力動作を停止すると、図5のように直流コンデンサ12の電圧Vcは定格値Vc_refから自然放電により低下していき、相間及び段間でのバランスが崩れていく。無効電力出力動作を停止してからの時間t0を監視しておき、定められた時間閾値t_thを越えると、第2実施形態同様、最小無効電力指令値Q_minを出力する。これにより直流コンデンサ12は充電され、相間及び段間におけるバランスもとれる(制御される)ため、系統電圧安定化のための無効電力出力を再開する際の電流歪みを抑制できる。尚、系統電圧安定化のための無効電力出力を停止している限り、図5に示す波形(動作)は繰り返される。   FIG. 5 representatively shows changes in the capacitor voltage of the DC capacitor 12 included in the reactive power compensator 10. When the reactive power compensator 10 having the configuration of the first embodiment stops the reactive power output operation, the voltage Vc of the DC capacitor 12 decreases from the rated value Vc_ref due to natural discharge as shown in FIG. The balance will be lost. The time t0 after the reactive power output operation is stopped is monitored, and when the predetermined time threshold t_th is exceeded, the minimum reactive power command value Q_min is output as in the second embodiment. As a result, the DC capacitor 12 is charged and balanced (controlled) between phases and stages, so that current distortion when restarting reactive power output for system voltage stabilization can be suppressed. As long as reactive power output for stabilizing the system voltage is stopped, the waveform (operation) shown in FIG. 5 is repeated.

図6は本実施形態の制御構成を示すブロックである。無効電力出力動作を停止してからの時間t0と時間閾値t_thを比較し、t_thを超えれば最小無効電力指令値Q_minを制御演算・ゲートパルス生成装置41に与え、ゲートパルスを各インバータ1に出力する。   FIG. 6 is a block diagram showing the control configuration of this embodiment. The time t0 after the reactive power output operation is stopped is compared with the time threshold value t_th, and if t_th is exceeded, the minimum reactive power command value Q_min is given to the control calculation / gate pulse generation device 41 and the gate pulse is output to each inverter 1 To do.

時間閾値t_thは、無効電力補償運転時の直流コンデンサ12の定格電圧Vc_refから、第2実施形態のように定まる閾値Vc_thまで自然放電する時間により定められる。   The time threshold t_th is determined by the time during which natural discharge is performed from the rated voltage Vc_ref of the DC capacitor 12 during the reactive power compensation operation to the threshold Vc_th determined as in the second embodiment.

なお上記最小無効電力指令値は、内部制御動作において最小無効電流指令値であっても構わない。   The minimum reactive power command value may be the minimum reactive current command value in the internal control operation.

[第4実施形態]
図7は第4実施形態に係る無効電力補償装置10の動作を示す図である。なお、以下においては、図1〜5に示す無効電力補償装置10の構成要素と同一または相当する構成要素には、図1〜5で使用した符号と同一の符号を付して説明する。
[Fourth Embodiment]
FIG. 7 is a diagram illustrating the operation of the reactive power compensator 10 according to the fourth embodiment. In the following description, the same or equivalent components as those of the reactive power compensator 10 illustrated in FIGS. 1 to 5 are denoted by the same reference numerals as those used in FIGS.

図7は無効電力補償装置10の備える直流コンデンサ12のコンデンサ電圧の変化を代表的に示している。第1実施形態の構成の無効電力補償装置10が停止状態から系統安定化のための無効電力出力動作を再開する際、最初のt_ssの時間は最小無効電力指令値Q_minを与え、直流コンデンサ12の充電を行い、相間及び段間の直流コンデンサ電圧バランスを制御し、その後無効電力指令値をQ_minから本来の指令値Q_ref(系統電圧定格値)まで変化させる。これにより、無効電力出力を再開する際の電流歪みを十分に抑制できる。   FIG. 7 representatively shows changes in the capacitor voltage of the DC capacitor 12 included in the reactive power compensator 10. When the reactive power compensator 10 having the configuration of the first embodiment resumes the reactive power output operation for system stabilization from the stopped state, the first t_ss time gives the minimum reactive power command value Q_min, and the DC capacitor 12 Charging is performed to control the DC capacitor voltage balance between phases and stages, and then the reactive power command value is changed from Q_min to the original command value Q_ref (system voltage rating value). Thereby, the current distortion at the time of restarting the reactive power output can be sufficiently suppressed.

期間t_ssの決定法には、全ての直流コンデンサ12の電圧が定格値Vc_refに達した事を判定して終了する方法や、最小無効電力指令値Q_minにて直流コンデンサの電圧が閾値Vc_thからVc_refに達する時間をt_ssとして、それだけの期間Q_minを出力する方法がある。   The method of determining the period t_ss includes a method of determining that all the voltages of the DC capacitors 12 have reached the rated value Vc_ref and ending, or the DC capacitor voltage is changed from the threshold value Vc_th to Vc_ref at the minimum reactive power command value Q_min. There is a method in which the reaching time is t_ss and a corresponding period Q_min is output.

なお上記最小無効電力指令値は、内部制御動作において最小無効電流指令値であっても構わない。   The minimum reactive power command value may be the minimum reactive current command value in the internal control operation.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…単相インバータ、2…連系フィルタ、3…中性点、4…制御装置、5…系統電源、6…配電線、8…充電回路、9…電源、11…半導体スイッチング素子、12…直流コンデンサ、13…インバータ、21…リアクトル、41…指令値演算・ゲートパルス生成器、71、72…変圧器。   DESCRIPTION OF SYMBOLS 1 ... Single phase inverter, 2 ... Connection filter, 3 ... Neutral point, 4 ... Control apparatus, 5 ... System power supply, 6 ... Distribution line, 8 ... Charging circuit, 9 ... Power supply, 11 ... Semiconductor switching element, 12 ... DC capacitor, 13 ... inverter, 21 ... reactor, 41 ... command value calculation / gate pulse generator, 71, 72 ... transformer.

Claims (8)

三相各相にそれぞれ構成される多段インバータ回路と、
系統連系端と各多段インバータ回路の出力端の間に接続され、高調波を低減するためのフィルタ回路と、
前記各多段インバータ回路を制御して所定の三相交流電圧を出力させる制御装置と、を具備し、
前記各多段インバータ回路は、コンデンサによる直流電圧を電圧指令値に対応するパルス電圧に変換するインバータを複数直列接続して構成され、
前記各多段インバータ回路の系統の反対側端は、中性点として全相接続されており、
前記制御装置は、系統電圧安定化のための無効電力出力動作を停止している時に、前記コンデンサの電圧バランスを維持するための無効電力出力制御を行い、前記コンデンサを充電することを特徴とする無効電力補償装置。
A multi-stage inverter circuit configured for each of the three phases;
A filter circuit connected between the grid connection end and the output end of each multi-stage inverter circuit to reduce harmonics;
A control device for controlling each of the multi-stage inverter circuits and outputting a predetermined three-phase AC voltage; and
Each of the multi-stage inverter circuits is configured by connecting in series a plurality of inverters that convert a DC voltage by a capacitor into a pulse voltage corresponding to a voltage command value,
The opposite end of the system of each multi-stage inverter circuit is connected to all phases as a neutral point,
The control device performs a reactive power output control for maintaining a voltage balance of the capacitor when the reactive power output operation for stabilizing the system voltage is stopped, and charges the capacitor. Reactive power compensator.
前記制御装置が、前記系統電圧安定化のための無効電力出力動作停止時に、各前記コンデンサの電圧バランスを維持ために出力する無効電力指令値は、前記コンデンサ電圧の相間及び段間のバランスをとることができる最小無効電力指令値であることを特徴とする請求項1記載の無効電力補償装置。   The reactive power command value output to maintain the voltage balance of each capacitor when the reactive power output operation for stabilizing the system voltage is stopped is balanced between the phases and stages of the capacitor voltage. The reactive power compensator according to claim 1, wherein the reactive power compensation value is a minimum reactive power command value. 前記制御装置は、前記系統電圧安定化のための無効電力出力動作停止時に、前記コンデンサの電圧が、所定閾値電圧を下回った場合、前記コンデンサの電圧バランスを維持するための無効電力出力制御を行うことを特徴とする請求項1又は2記載の無効電力補償装置。   When the reactive power output operation for stabilizing the system voltage is stopped, the control device performs reactive power output control for maintaining the voltage balance of the capacitor when the voltage of the capacitor falls below a predetermined threshold voltage. The reactive power compensator according to claim 1 or 2. 前記所定閾値電圧は、系統電圧の相電圧のピーク値から、前記最小無効電力指令値に応じた出力電流が流れることにより生じる前記リアクトルの電圧降下分を引いた値を、前記多段インバータの段数で割った値であることを特徴とする請求項3記載の無効電力補償装置。   The predetermined threshold voltage is a value obtained by subtracting the voltage drop of the reactor caused by the output current corresponding to the minimum reactive power command value from the peak value of the phase voltage of the system voltage, as the number of stages of the multistage inverter. 4. The reactive power compensator according to claim 3, wherein the reactive power compensator is a divided value. 前記制御装置は、前記系統電圧安定化のための無効電力出力動作停止時に、前記無効電力出力動作を停止した時間が、所定時間に達した場合、前記コンデンサの電圧バランスを維持するための無効電力出力制御を行うことを特徴とする請求項1又は2記載の無効電力補償装置。   The control device, when the reactive power output operation for stabilizing the system voltage is stopped, when the time when the reactive power output operation is stopped reaches a predetermined time, the reactive power for maintaining the voltage balance of the capacitor 3. The reactive power compensator according to claim 1, wherein output control is performed. 前記所定時間は、前記系統電圧安定化のための無効電力出力動作を停止してから、前記コンデンサが自然放電して、前記コンデンサ電圧が所定閾値電圧に達するまでの時間である
ことを特徴とする請求項5記載の無効電力補償装置。
The predetermined time is a time from when the reactive power output operation for stabilizing the system voltage is stopped until the capacitor spontaneously discharges and the capacitor voltage reaches a predetermined threshold voltage. The reactive power compensator according to claim 5.
前記制御装置が、前記系統電圧安定化のための無効電力出力動作停止時に、前記コンデンサ電圧のバランスをとるために出力する無効電力指令値は、ゼロから前記無効電力指令値まで緩やかに変化することを特徴とする請求項1〜6記載の無効電力補償装置。   The reactive power command value output to balance the capacitor voltage when the reactive power output operation for stabilizing the system voltage is stopped by the control device gradually changes from zero to the reactive power command value. The reactive power compensator according to claim 1. 前記制御装置は、前記系統電圧安定化のための無効電力出力を停止した状態から出力を再開する時に、前記コンデンサの電圧が定められた定格値に充電されるまで、前記コンデンサ電圧の相間及び段間のバランスがとれる最小無効電力指令値を出力することを特徴とする請求項1〜7記載の無効電力補償装置。   When the control device restarts the output from the state where the reactive power output for stabilizing the system voltage is stopped, until the capacitor voltage is charged to a predetermined rated value, the phase and stage of the capacitor voltage are increased. The reactive power compensator according to claim 1, wherein a minimum reactive power command value that balances between the two is output.
JP2013080658A 2013-04-08 2013-04-08 Reactive power compensator Active JP6113556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080658A JP6113556B2 (en) 2013-04-08 2013-04-08 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080658A JP6113556B2 (en) 2013-04-08 2013-04-08 Reactive power compensator

Publications (2)

Publication Number Publication Date
JP2014203356A true JP2014203356A (en) 2014-10-27
JP6113556B2 JP6113556B2 (en) 2017-04-12

Family

ID=52353719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080658A Active JP6113556B2 (en) 2013-04-08 2013-04-08 Reactive power compensator

Country Status (1)

Country Link
JP (1) JP6113556B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466986A (en) * 2014-12-12 2015-03-25 国家电网公司 UPQC series side reactive compensation control method based on rotating vector method
JP2016123159A (en) * 2014-12-24 2016-07-07 株式会社東芝 Electric power converter
CN107103864A (en) * 2016-02-19 2017-08-29 精工爱普生株式会社 Screen operation detection means
JP2020010564A (en) * 2018-07-11 2020-01-16 東芝三菱電機産業システム株式会社 Electric power conversion device
JP2020035415A (en) * 2018-08-27 2020-03-05 富士電機株式会社 Power conversion device and control method for power conversion device
CN114172181A (en) * 2021-11-29 2022-03-11 国网福建省电力有限公司电力科学研究院 Impact power and pulse power rapid stabilizing method based on two-stage type hybrid energy storage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081285A (en) * 2004-09-09 2006-03-23 Chugoku Electric Power Co Inc:The Control method for static reactive power compensator
WO2011013187A1 (en) * 2009-07-27 2011-02-03 東芝三菱電機産業システム株式会社 Self-excited reactive power compensation device
JP2012175848A (en) * 2011-02-23 2012-09-10 Central Research Institute Of Electric Power Industry Invalid power compensation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081285A (en) * 2004-09-09 2006-03-23 Chugoku Electric Power Co Inc:The Control method for static reactive power compensator
WO2011013187A1 (en) * 2009-07-27 2011-02-03 東芝三菱電機産業システム株式会社 Self-excited reactive power compensation device
JP2012175848A (en) * 2011-02-23 2012-09-10 Central Research Institute Of Electric Power Industry Invalid power compensation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466986A (en) * 2014-12-12 2015-03-25 国家电网公司 UPQC series side reactive compensation control method based on rotating vector method
JP2016123159A (en) * 2014-12-24 2016-07-07 株式会社東芝 Electric power converter
CN107103864A (en) * 2016-02-19 2017-08-29 精工爱普生株式会社 Screen operation detection means
CN107103864B (en) * 2016-02-19 2021-02-05 精工爱普生株式会社 Screen operation detection device
JP2020010564A (en) * 2018-07-11 2020-01-16 東芝三菱電機産業システム株式会社 Electric power conversion device
JP7266373B2 (en) 2018-07-11 2023-04-28 東芝三菱電機産業システム株式会社 power converter
JP2020035415A (en) * 2018-08-27 2020-03-05 富士電機株式会社 Power conversion device and control method for power conversion device
JP7298260B2 (en) 2018-08-27 2023-06-27 富士電機株式会社 POWER CONVERSION DEVICE AND CONTROL METHOD OF POWER CONVERSION DEVICE
CN114172181A (en) * 2021-11-29 2022-03-11 国网福建省电力有限公司电力科学研究院 Impact power and pulse power rapid stabilizing method based on two-stage type hybrid energy storage
CN114172181B (en) * 2021-11-29 2024-03-12 国网福建省电力有限公司电力科学研究院 Impact power and pulse power rapid stabilization method based on two-stage hybrid energy storage

Also Published As

Publication number Publication date
JP6113556B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
Pannala et al. Effective control and management scheme for isolated and grid connected DC microgrid
Tang et al. DC-link voltage control strategy for three-phase back-to-back active power conditioners
Zhou et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications
Maknouninejad et al. Analysis and control of PV inverters operating in VAR mode at night
JP6139111B2 (en) Reactive power compensator
JP6113556B2 (en) Reactive power compensator
EP2671310B1 (en) Power electronic converter
US9948211B2 (en) System and method for controlling the operating area of an inverter coupled to an alternative energy source
US20120163044A1 (en) Multilevel power converter or inverter arrangement using h bridges
TW201310876A (en) A power compensation apparatus and method for a renewable energy system
Zhao et al. Power synchronization control for capacitor minimization in Solid State Transformers (SST)
Liu et al. Modular multilevel converter with high-frequency transformers for interfacing hybrid DC and AC microgrid systems
Alepuz et al. Development and testing of a bidirectional distribution electronic power transformer model
Hillers et al. Fault-tolerant operation of the modular multilevel converter in an energy storage system based on split batteries
JP2016174490A (en) Electric power conversion system
Vandoorn et al. Voltage control in islanded microgrids by means of a linear-quadratic regulator
JP6253548B2 (en) Power converter
Farokhnia et al. Voltage sag and unbalance mitigation in distribution systems using multi-level UPQC
Jakka et al. A triple port active bridge converter based multi-fed power electronic transformer
Al-Hafri et al. Transformer-less based solid state transformer for intelligent power management
Tafti et al. Low-voltage ride-through capability of cascaded H-bridge multilevel converters for large-scale photovoltaic power plants
Burgio et al. Design of a grid-connected Photovoltaic system with grid ancillary services
Reddy et al. Dynamic performance of power quality improvement using multilevel DSTATCOM with DG application
TWI505597B (en) Micro-grid operation system with smart energy management
Vavilapalli et al. A buck-chopper based energy storage system for the cascaded H-bridge inverters in PV applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R151 Written notification of patent or utility model registration

Ref document number: 6113556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151