JP2014168320A - Pole change permanent magnet dynamo-electric machine and drive system thereof - Google Patents

Pole change permanent magnet dynamo-electric machine and drive system thereof Download PDF

Info

Publication number
JP2014168320A
JP2014168320A JP2013038592A JP2013038592A JP2014168320A JP 2014168320 A JP2014168320 A JP 2014168320A JP 2013038592 A JP2013038592 A JP 2013038592A JP 2013038592 A JP2013038592 A JP 2013038592A JP 2014168320 A JP2014168320 A JP 2014168320A
Authority
JP
Japan
Prior art keywords
permanent magnet
poles
winding
pole
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013038592A
Other languages
Japanese (ja)
Other versions
JP6202664B2 (en
Inventor
Kazuto Sakai
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2013038592A priority Critical patent/JP6202664B2/en
Publication of JP2014168320A publication Critical patent/JP2014168320A/en
Application granted granted Critical
Publication of JP6202664B2 publication Critical patent/JP6202664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pole change permanent magnet dynamo-electric machine drive system which can be operated to high-speed rotation range without performing flux-weakening control, while saving power, and in which connection switching of an armature winding is not required for pole change of a rotor.SOLUTION: A permanent magnet dynamo-electric machine drive system includes a permanent magnet dynamo-electric machine 1 constituted of a stator 10 having an armature winding 12 generating a rotating magnetic field of a plurality of types of pole number, and a rotor 20 having permanent magnets 22L being magnetized by a magnetic field generated by the armature current of the stator, and a drive unit 2 for converting the pole number of the rotor by magnetizing the permanent magnets 22L, and rotating the rotor 20 by the pole number thus converted.

Description

本発明は、巻線切り替え無しの極数変換永久磁石式回転電機とそのドライブシステムに関する。   The present invention relates to a pole conversion permanent magnet type rotating electrical machine without switching windings and a drive system thereof.

環境とエネルギー問題からプラグインハイブリッド車や電気自動車の実用化が急速に進められており、低消費電力量で高出力、全運転領域で高効率のモータが必要とされている。希土類元素の永久磁石は従来の数十倍の磁力を生じるため高出力で高効率のモータが得られる。そのようなモータでは、電源電圧の制限下で中〜高速回転域でモータを駆動するため、インバータ制御を用い、弱め磁束制御と言われる永久磁石の磁力(磁束)と逆方向の磁力を形成して磁力(電圧)を制御している。そして、埋め込み型永久磁石式モータ(IPMモータ)はこの制御が効果的に作用する磁気的構造を持つ永久磁石式モータである。   Due to environmental and energy issues, plug-in hybrid vehicles and electric vehicles are rapidly being put into practical use, and there is a need for low power consumption, high output, and high efficiency motors in all operating areas. Rare earth element permanent magnets generate a magnetic force several tens of times that of conventional magnets, so that a high output and high efficiency motor can be obtained. In such a motor, in order to drive the motor in the middle to high speed rotation range under the limitation of the power supply voltage, inverter control is used to form a magnetic force in the opposite direction to the magnetic force (magnetic flux) of the permanent magnet, which is called weak magnetic flux control. The magnetic force (voltage) is controlled. The embedded permanent magnet motor (IPM motor) is a permanent magnet motor having a magnetic structure in which this control is effective.

しかしながら、弱め磁束制御を用いると、出力にならない制御電流による銅損と高調波鉄損が発生して効率が大幅に低下する。そのため、この永久磁石式モータをハイブリッド自動車に搭載する場合、モータの高速回転域では燃費が低下する問題点がある。また、この永久磁石式モータを電車に搭載する場合、電車では駅間の高速走行時にはモータから駆動力をもらわない惰行運転モードに移行する。しかし、惰行運転モードでも車輪の高速回転によってモータのロータが回転させられ、これによってロータに埋め込まれている永久磁石によりインバータに高電圧の誘起電圧がかかる。そこで、インバータを保護するため、弱め磁束制御をしているが、駆動力を必要としない惰行運転モードで弱め磁束制御のために電力を消費する必要があり、省エネルギーにならない問題点がある。   However, when the flux-weakening control is used, the copper loss and the harmonic iron loss due to the control current that does not become an output are generated, and the efficiency is greatly reduced. Therefore, when this permanent magnet type motor is mounted on a hybrid vehicle, there is a problem that fuel efficiency is reduced in the high-speed rotation range of the motor. When this permanent magnet motor is mounted on a train, the train shifts to a coasting operation mode in which no driving force is obtained from the motor when traveling at high speed between stations. However, even in the coasting operation mode, the rotor of the motor is rotated by the high-speed rotation of the wheels, whereby a high induced voltage is applied to the inverter by the permanent magnet embedded in the rotor. Therefore, although flux weakening control is performed to protect the inverter, it is necessary to consume power for the flux weakening control in the coasting operation mode that does not require a driving force, and there is a problem that energy is not saved.

橋本尚宜、倉持暁、堺和人:「極数変換と機器定数の可変を可能とする永久磁石モータ」、平成24年度電気学会全大、No.5、18ページ、2012年。Naoyoshi Hashimoto, Satoshi Kuramochi, Kazuhito Tsuji: “Permanent magnet motor that can change the number of poles and change the device constant”, 2012 IEEJ, No. 5, 18 pages, 2012.

本発明は、回転速度に応じて回転子の極数を変換して誘起電圧を可変にし、高速回転域では低極数に切り替えることによって誘起電圧を低くし、高速回転域まで弱め磁束制御せずに運転可能で、省エネルギーが図れ、しかも回転子の極数変換のために電機子巻線の接続切り替えを必要としない極数変換永久磁石式回転電機とそのドライブシステムを提供することを目的とする。   The present invention makes the induced voltage variable by converting the number of poles of the rotor according to the rotational speed, and lowers the induced voltage by switching to a low number of poles in the high-speed rotation range, and does not weaken the high-speed rotation range and control the magnetic flux. It is an object of the present invention to provide a pole conversion permanent magnet type rotating electric machine and its drive system that can be operated in an energy saving manner and that do not require connection switching of armature windings for rotor pole number conversion. .

本発明の1つの特徴は、複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、外部磁界により磁化される永久磁石を持つ回転子とを備えた永久磁石式回転電機である。   One feature of the present invention is a permanent magnet type rotating electrical machine including a stator having an armature winding for generating a rotating magnetic field having a plurality of types of poles, and a rotor having a permanent magnet magnetized by an external magnetic field. is there.

本発明の別の特徴は、複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、前記固定子の電機子電流の生起する磁界により磁化される永久磁石を持つ回転子とを備えた永久磁石式回転電機である。   Another feature of the present invention is a stator having an armature winding that generates a rotating magnetic field having a plurality of types of poles, and a rotor having a permanent magnet that is magnetized by a magnetic field generated by the armature current of the stator. Is a permanent magnet type rotating electrical machine.

本発明のまた別の特徴は、複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、外部磁界に磁化される永久磁石を持つ回転子とで構成される永久磁石式回転電機と、前記永久磁石を磁化することにより前記回転子の極数を変換し、変換後の極数により前記回転子を回転させるドライブ装置とを備えた永久磁石式回転電機ドライブシステムである。   Another feature of the present invention is a permanent magnet type rotation comprising a stator having an armature winding that generates a rotating magnetic field having a plurality of types of poles, and a rotor having a permanent magnet magnetized by an external magnetic field. A permanent magnet type rotating electrical machine drive system including an electric machine and a drive device that converts the number of poles of the rotor by magnetizing the permanent magnet and rotates the rotor by the number of poles after the conversion.

本発明のさらに別の特徴は、複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、前記固定子の電機子電流の生起する磁界により磁化される永久磁石を持つ回転子とで構成される永久磁石式回転電機と、前記永久磁石を磁化することにより前記回転子の極数を変換し、変換後の極数により前記回転子を回転させるドライブ装置とを備えた永久磁石式回転電機ドライブシステムである。   Still another feature of the present invention is that a stator having an armature winding that generates a rotating magnetic field having a plurality of types of poles, and a rotor having a permanent magnet that is magnetized by a magnetic field generated by an armature current of the stator. And a drive device for converting the number of poles of the rotor by magnetizing the permanent magnet and rotating the rotor by the number of poles after the conversion. This is a rotary electric machine drive system.

本発明によれば、回転速度に応じて回転子の極数を変換して誘起電圧を可変にし、高速回転域では低極数に切り替えることによって誘起電圧を低くし、高速回転域まで弱め磁束制御せずに運転可能で、省エネルギーが図れ、しかも回転子の極数変換のために電機子巻線の接続切り替えを必要としない極数変換永久磁石式回転電機とそのドライブシステムが実現できる。   According to the present invention, the induced voltage is made variable by changing the number of poles of the rotor according to the rotational speed, and the induced voltage is lowered by switching to a low number of poles in the high-speed rotation range, and the magnetic flux control is weakened to the high-speed rotation range. Therefore, it is possible to realize a pole conversion permanent magnet type rotating electric machine and its drive system that can be operated without energy saving, can save energy, and do not need to switch the connection of the armature windings to convert the number of poles of the rotor.

低速域、高速域での運転に適した極数変換の説明図。Explanatory drawing of pole number conversion suitable for operation in a low speed range and a high speed range. 本発明の第1の実施の形態の永久磁石式モータドライブシステムのブロック図。1 is a block diagram of a permanent magnet motor drive system according to a first embodiment of the present invention. 図3(a)は8極モードの回転子の永久磁石磁化状態を示す断面図、図3(b)は4極モードの回転子の永久磁石磁化状態を示す断面図。3A is a cross-sectional view showing the permanent magnet magnetization state of the rotor in the 8-pole mode, and FIG. 3B is a cross-sectional view showing the permanent magnet magnetization state of the rotor in the 4-pole mode. 実施例の極数変換永久磁石式モータの諸元図。FIG. 3 is a specification diagram of the pole number conversion permanent magnet motor of the embodiment. 上記実施の形態の永久磁石式モータにおいて8極モードでの無負荷磁束密度分布を示す解析図。The analysis figure which shows the no-load magnetic flux density distribution in 8-pole mode in the permanent magnet type motor of the said embodiment. 上記実施の形態の永久磁石式モータにおいて4極モードでの無負荷磁束密度分布を示す解析図。The analysis figure which shows the no-load magnetic flux density distribution in 4 pole mode in the permanent magnet type motor of the said embodiment. 上記実施の形態の永久磁石式モータの8極モードでのUVW各相の誘起電圧のグラフ。The graph of the induced voltage of each UVW phase in the 8-pole mode of the permanent magnet motor of the embodiment. 上記実施の形態の永久磁石式モータの4極モードでのUVW各相の誘起電圧のグラフ。The graph of the induced voltage of each UVW phase in the 4-pole mode of the permanent magnet type motor of the said embodiment. 上記実施の形態の永久磁石式モータの8極モード、4極モードでの誘起電圧の調波成分毎の強さのグラフ。The graph of the intensity | strength for every harmonic component of the induced voltage in the 8-pole mode and 4-pole mode of the permanent magnet type motor of the said embodiment. 上記実施の形態の永久磁石式モータの8極モード、4極モードでのトルク−電流位相の特性図。The characteristic diagram of the torque-current phase in the 8-pole mode and 4-pole mode of the permanent magnet motor of the embodiment. 上記実施の形態の永久磁石式モータの8極モード、4極モードでの回転数別の鉄損を示すグラフ。The graph which shows the iron loss according to rotation speed in the 8-pole mode and 4-pole mode of the permanent magnet type motor of the said embodiment. 本発明の第2の実施の形態の永久磁石式モータドライブシステムのブロック図。The block diagram of the permanent magnet type motor drive system of the 2nd Embodiment of this invention. 上記実施の形態の永久磁石式モータにおいて回転子を8極から4極に変換する際の磁化磁束の状態を示す説明図。Explanatory drawing which shows the state of the magnetization magnetic flux at the time of converting a rotor from 8 poles to 4 poles in the permanent magnet type motor of the said embodiment. 本発明の第3の実施の形態の永久磁石式モータドライブシステムのブロック図。The block diagram of the permanent-magnet-type motor drive system of the 3rd Embodiment of this invention. 上記実施の形態の永久磁石式モータの回転子の8極と4極に極数変換する動作を示す図。The figure which shows the operation | movement which carries out pole number conversion into 8 poles and 4 poles of the rotor of the permanent magnet type motor of the said embodiment. 上記実施の形態の8極主体のコイル配置の永久磁石式モータの8極モード、4極モードでの回転時のトルク特性図。The torque characteristic figure at the time of the rotation in the 8-pole mode and the 4-pole mode of the permanent magnet type motor with the 8-pole main coil arrangement of the above embodiment. 上記実施の形態の4極主体のコイル配置の永久磁石式モータの8極モード、4極モードでの回転時のトルク特性図。The torque characteristic figure at the time of the rotation in the 8-pole mode and the 4-pole mode of the permanent magnet type motor with a 4-pole main coil arrangement of the above embodiment.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施の形態]
本発明の1つの実施の形態は、巻線切り替え無しで8極磁界と4極磁界が作れる6スロットの巻線切り替え無し極数変換永久磁石式モータとそのドライブシステムである。その基本構成、動作原理、基本特性は以下の通りである。
[First Embodiment]
One embodiment of the present invention is a 6-slot non-switching pole-changing permanent magnet motor that can generate an 8-pole magnetic field and a 4-pole magnetic field without switching windings, and a drive system thereof. Its basic configuration, operating principle, and basic characteristics are as follows.

[巻線切り替え無し極数変換永久磁石式モータドライブシステムの構成]
図1に示すように、極数変換永久磁石式モータは、低速回転域(Low speed area)では8極(8pole)、中速から高速回転域(High speed area)では4極(4pole)として動作させる。このように運転状況に応じて極数を変換することでモータは常に効率の良い領域で運転することができる。
[Configuration of the pole conversion permanent magnet motor drive system without winding switching]
As shown in FIG. 1, the pole conversion permanent magnet motor operates as 8 poles in the low speed area, and as 4 poles in the medium to high speed area. Let Thus, by converting the number of poles according to the driving situation, the motor can always be operated in an efficient region.

図2に、実施の形態の巻線切り替え無し極数変換永久磁石式モータドライブシステムの基本構成を示している。永久磁石式モータ1は、固定子10と回転子20、この回転子20の中心に固定された回転軸30で構成されている。そして、固定子10の電機子巻線の相順切り替えと交流給電を行うインバータIVと回転子20の回転位置を検出するエンコーダENとを含むドライブ装置2が接続されている。   FIG. 2 shows a basic configuration of a pole-converting permanent magnet motor drive system without winding switching according to the embodiment. The permanent magnet motor 1 includes a stator 10, a rotor 20, and a rotating shaft 30 fixed at the center of the rotor 20. A drive device 2 including an inverter IV that performs phase sequence switching of the armature winding of the stator 10 and AC power supply and an encoder EN that detects the rotational position of the rotor 20 is connected.

永久磁石式モータ1の固定子10は、円筒状の固定子鉄心11の内周側に形成した6つのスロット12を用いて2種類の回転磁界を発生できるように電機子巻線13が巻装してある。この電機子巻線13は分数スロット巻線であり、ドライブ装置2による相順の切り替えによって8極と4極の両方の回転磁界を発生させることができる。これにより、従来の極数変換誘導モータのような電機子巻線のΔ−Y結線の接続替えを機械的な電磁接触器で行う機械的機構、あるいは電機子巻線の接続替えを電子的に切り替えて8極と4極を作る機構(電子的な機構)が不要である。   The stator 10 of the permanent magnet motor 1 is wound with an armature winding 13 so that two types of rotating magnetic fields can be generated using six slots 12 formed on the inner peripheral side of a cylindrical stator core 11. It is. The armature winding 13 is a fractional slot winding, and can generate both 8-pole and 4-pole rotating magnetic fields by switching the phase sequence by the drive device 2. As a result, a mechanical mechanism for changing the connection of the Δ-Y connection of the armature winding by a mechanical electromagnetic contactor, such as a conventional pole conversion induction motor, or changing the connection of the armature winding electronically There is no need for a mechanism (electronic mechanism) that switches to create 8 and 4 poles.

回転子20には、回転子鉄心21の中に若しくは周面に周方向に高保磁力(1600kA/m)の磁石(以下、固定磁力磁石と称す。)22H1,22H2と低保磁力(420kA/m)の磁石(以下、可変磁力磁石と称す。)22L1,22L2をそれぞれ2個ずつ隣り合うように配置した構成である。例えば、図2において左端から右回りに1周する間、固定磁力磁石22H2、可変磁力磁石22L1、可変磁力磁石22L2、固定磁力磁石22H1、固定磁力磁石22H2、…と並び、全周で固定磁力磁石22Hが4個ずつ、可変磁力磁石22Lも4個ずつ、それらが2個ずつ交互に並ぶように配置してある。そして低保磁力磁石22L1,22L2は、ドライブ装置2により短パルスのd軸電流を電機子巻線13に流すことで磁化方向を変えることができ、これによってNS極を相互に反転させる。ドライブ装置2が流す磁化のためのパルス的なd軸電流の大きさは、可変磁力磁石22L1,22L2の磁化方向を不可逆的に変化させるのに十分な大きさで、かつ、固定磁力磁石22H1,22H2を不可逆的に減磁することがない大きさである。尚、各図で永久磁石22H,22Lは回転子鉄心21の外周に貼り付けた構成で示しているが、永久磁石は回転子鉄心21の中の円周部近くに埋め込む、磁石埋め込み型の構成とすることもできる。   The rotor 20 has a high coercive force (1600 kA / m) magnet (hereinafter referred to as a fixed magnetic force magnet) 22H1, 22H2 and a low coercive force (420 kA / m) in the rotor core 21 or circumferentially on the circumferential surface. ) Magnets (hereinafter referred to as variable magnetic magnets) 22L1 and 22L2 are arranged so as to be adjacent to each other. For example, during one round clockwise from the left end in FIG. 2, the fixed magnetic magnet 22H2, the variable magnetic magnet 22L1, the variable magnetic magnet 22L2, the fixed magnetic magnet 22H1, the fixed magnetic magnet 22H2,. Each of the four 22H magnets and the four variable magnetic force magnets 22L are arranged so that they are alternately arranged two by two. The low coercivity magnets 22L1 and 22L2 can change the magnetization direction by causing the drive device 2 to pass a short pulse d-axis current to the armature winding 13, thereby reversing the NS poles. The magnitude of the pulsed d-axis current for the magnetization that the drive device 2 flows is large enough to irreversibly change the magnetization direction of the variable magnetic magnets 22L1, 22L2, and the fixed magnetic magnet 22H1, The size is such that 22H2 is not irreversibly demagnetized. In each figure, the permanent magnets 22H and 22L are shown as being affixed to the outer periphery of the rotor core 21, but the permanent magnet is embedded near the circumference of the rotor core 21. It can also be.

ドライブ装置2は、モータ1の電機子巻線13に流すUVW3相電源の相順をU−V−WとU−W−Vの間で相互に変換することによりモータ全体の極数を8極と4極との間で極数変換する。このようにドライブ装置2に含まれるインバータIVで電機子巻線13に与える電圧の相順を切り替えるのみで、スイッチングによる巻線切り替えはしない。   The drive device 2 converts the phase order of the UVW three-phase power flowing through the armature winding 13 of the motor 1 between U-V-W and U-W-V, thereby reducing the total number of poles of the motor to eight. And the number of poles between 4 poles. In this way, only the phase sequence of the voltage applied to the armature winding 13 is switched by the inverter IV included in the drive device 2, and the winding is not switched by switching.

図3に可変磁力磁石22L1,22L2による磁極の形成を示す。固定磁力磁石22H1,22H2については、固定磁力磁石22H1はエアギャップ側がS、回転中心側がNであり、固定磁力磁石22H2は逆にエアギャップ側がN、回転中心側がSで固定されている。(以下、回転子20におけるN,Sの説明では、エアギャップ側に現れる磁極についてNあるいはSという。)そして、回転子20を4極から8極に切り替える場合は、図3(a)に示すように、電機子巻線13を8極の相順に切り替えて定格の数倍の正のd軸電流をパルス的に流し左側の可変磁力磁石22L1をN、右側の可変磁力磁石22L2をSに磁化させる。そして8極の相順で駆動電流を流すことで8極モータとして運転する。   FIG. 3 shows the formation of magnetic poles by the variable magnetic force magnets 22L1 and 22L2. Regarding the fixed magnetic magnets 22H1 and 22H2, the fixed magnetic magnet 22H1 is fixed at S on the air gap side and N at the rotation center side, and the fixed magnetic magnet 22H2 is fixed at N on the air gap side and S at the rotation center side. (Hereinafter, in the description of N and S in the rotor 20, the magnetic pole appearing on the air gap side is referred to as N or S.) And, when the rotor 20 is switched from 4 poles to 8 poles, it is shown in FIG. As described above, the armature winding 13 is switched to the 8-pole phase sequence, and a positive d-axis current several times the rated value is passed in a pulse manner to magnetize the left variable magnetic magnet 22L1 to N and the right variable magnetic magnet 22L2 to S. Let And it operates as an 8-pole motor by letting a drive current flow in the phase order of 8 poles.

図3(b)に示すように、回転子20を8極から4極に切り替える場合は、8極の相順のままで上とは逆に負のd軸電流をパルス的に流し、左側の可変磁力磁石22LをS、右側の可変磁力磁石22L2をNに磁化させる。そして電機子巻線13に流す駆動電流の相順を4極に変えることで4極モータに極数変換する。   As shown in FIG. 3 (b), when the rotor 20 is switched from the 8-pole to the 4-pole, a negative d-axis current is made to flow in a pulsed manner in the reverse order of the 8-pole phase sequence, The variable magnetic magnet 22L is magnetized to S and the right variable magnetic magnet 22L2 is magnetized to N. Then, the number of poles is converted to a four-pole motor by changing the phase sequence of the drive current flowing through the armature winding 13 to four poles.

あるいは、次のようにしても極数変換は可能である。回転子20を4極から8極に切り替える場合は、前記と同様にして図3(a)に示すように、電機子巻線13を8極の相順に切り替えて定格の数倍の正のd軸電流をパルス的に流し左側の可変磁力磁石22L1をN、右側の可変磁力磁石22L2をSに磁化させる。そして8極の相順で駆動電流を流すことで8極モータとして運転する。回転子20を8極から4極に切り替える場合は、前記の8極変換時のパルス電流の位相を変える。8極変換時のパルス電流の位相と180度ずれたパルス電流を流し、図3(b)のように左側の可変磁力磁石22LをS、右側の可変磁力磁石22L2をNに磁化させる。そして電機子巻線13に流す駆動電流の相順を4極に変えることで4極モータに極数変換する。   Alternatively, the pole number conversion is also possible as follows. When switching the rotor 20 from 4 poles to 8 poles, as shown in FIG. 3A, the armature winding 13 is switched in the order of the 8 poles in the same manner as described above, and a positive d that is several times the rated value. An axial current is applied in a pulse manner to magnetize the left variable magnetic magnet 22L1 to N and the right variable magnetic magnet 22L2 to S. And it operates as an 8-pole motor by letting a drive current flow in the phase order of 8 poles. When the rotor 20 is switched from the 8-pole to the 4-pole, the phase of the pulse current at the time of the 8-pole conversion is changed. A pulse current shifted by 180 degrees from the phase of the pulse current at the time of octapole conversion is passed, and the left variable magnetic magnet 22L is magnetized to S and the right variable magnetic magnet 22L2 is magnetized to N as shown in FIG. Then, the number of poles is converted to a four-pole motor by changing the phase sequence of the drive current flowing through the armature winding 13 to four poles.

さらに他の方法として、回転子20を8極から4極に変換する場合は、図3(a)の8極の回転子の状態で、電機子巻線13を4極の相順に切り替えて定格の数倍の正のd軸電流をパルス的に流し、図3(b)に示すように左側の可変磁力磁石22L1をS、右側の可変磁力磁石22L2をNに磁化させる。そして4極の相順で駆動電流を流すことで4極モータとして運転する。   As another method, when converting the rotor 20 from 8 poles to 4 poles, the armature windings 13 are switched in order of the 4 poles in the state of the 8 pole rotor of FIG. A positive d-axis current several times as large as the current is pulsed to magnetize the left variable magnetic magnet 22L1 to S and the right variable magnetic magnet 22L2 to N as shown in FIG. And it operates as a 4-pole motor by letting a drive current flow in the phase order of 4 poles.

[極数変換特性]
実施例の諸元を図4に示す。この諸元のモータによる8極と4極の無負荷時の磁束密度分布を図5、図6に示す。また、図7、図8に8極と4極の無負荷時の誘起電圧波形を示す。このように、可変磁力磁石22L1,22L2の極性を変換することで8極から4極に極数変換していることが確認できる。
[Pole conversion characteristics]
The specifications of the embodiment are shown in FIG. FIG. 5 and FIG. 6 show the magnetic flux density distribution when no load is applied to the 8-pole and 4-pole by this specification motor. FIGS. 7 and 8 show induced voltage waveforms when no load is applied to the 8-pole and 4-pole. Thus, it can be confirmed that the number of poles has been changed from eight to four by converting the polarities of the variable magnetic magnets 22L1 and 22L2.

図9に8極と4極の無負荷時の誘起電圧波形の調波成分を示す。8極での基本波成分の振幅値は223.4V、4極では182.7Vである。したがって、8極から4極に極数変換すると100%から82%まで誘起電圧を低下させることができる。これにより、8極から4極に切り替えることにより、より高速域まで弱め磁束制御無しに回転域を広げることができる。   FIG. 9 shows harmonic components of the induced voltage waveform when no load is applied to the 8-pole and 4-pole. The amplitude value of the fundamental wave component at 8 poles is 223.4V, and 182.7V at 4 poles. Therefore, when the number of poles is converted from 8 poles to 4 poles, the induced voltage can be reduced from 100% to 82%. Thereby, by switching from 8 poles to 4 poles, it is possible to widen the rotation range without weakening the magnetic flux control to a higher speed range.

図10にトルク−電流位相特性を示す。8極の最大トルクは電流位相約90度で60Nm、4極の最大トルクは電流位相114度で44.3Nmでリラクタンストルク成分も併用している。8極の平均トルクは61.3Nm、4極の平均トルクは34.8Nmである。   FIG. 10 shows the torque-current phase characteristics. The maximum torque of 8 poles is 60 Nm at a current phase of about 90 degrees, and the maximum torque of 4 poles is 44.3 Nm at a current phase of 114 degrees, and a reluctance torque component is also used. The 8-pole average torque is 61.3 Nm, and the 4-pole average torque is 34.8 Nm.

モータの極数を変更することで高速回転域での効率が改善される可能性を確認するために鉄損を解析した。図11に無負荷時の固定子の鉄損特性を示す。全運転領域で8極から4極に変換することで、鉄損が60%減少している。これより、鉄損が大きく、高トルクを必要としない高速域で8極から4極に変換することで鉄損が下げられるので、効率が向上する。   Iron loss was analyzed in order to confirm the possibility of improving the efficiency in the high-speed rotation range by changing the number of poles of the motor. FIG. 11 shows the iron loss characteristics of the stator when there is no load. By converting from 8 poles to 4 poles in the entire operating range, iron loss is reduced by 60%. As a result, the iron loss is large, and the iron loss is reduced by converting from 8 poles to 4 poles in a high speed range that does not require high torque, so that the efficiency is improved.

本実施の形態の極数変換永久磁石式モータドライブシステムによれば、巻線切り替えを行わずに永久磁石の磁化方向を変化させて8極から4極に極数変換できる。これにより、高速域では8極から4極に極数変換することによって誘起電圧を低く抑えることができ、広い可変速運転範囲が得られ、鉄損も約60%低減できるので低速から高速までの広範囲での高効率運転ができる。   According to the pole number conversion permanent magnet motor drive system of the present embodiment, the number of poles can be converted from eight poles to four poles by changing the magnetization direction of the permanent magnet without switching the windings. As a result, the induced voltage can be kept low by converting the number of poles from 8 poles to 4 poles in the high speed range, a wide variable speed operation range can be obtained, and the iron loss can be reduced by about 60%. High-efficiency operation over a wide range is possible.

[第2の実施の形態]
図12に示す第2の実施の形態の巻線切り替え無しの極数可変永久磁石式モータドライブシステムは、巻線切り替え無しで8極磁界と4極磁界を作る9スロットの巻線切り替え無し極数変換永久磁石式モータ1Aとそのドライブ装置2で構成されている。
[Second Embodiment]
The pole number variable permanent magnet type motor drive system with no coil switching of the second embodiment shown in FIG. 12 is a 9-slot coil without switching coil that creates an octupole magnetic field and a quadrupole magnetic field without coil switching. It is composed of a conversion permanent magnet motor 1A and its drive device 2.

極数変換永久磁石式モータ1Aも、低速回転域では8極、中速から高速回転域では4極として動作させるものであり、固定子10Aと回転子20、この回転子20の中心に挿通された回転軸30で構成され、これに固定子10Aの電機子巻線の相順切り替えと交流給電を行うインバータIVと回転子20の回転位置を検出するエンコーダENとを含むドライブ装置2が接続されている。   The pole conversion permanent magnet motor 1A is also operated with 8 poles in the low speed rotation range and 4 poles in the medium to high speed rotation range, and is inserted through the stator 10A and the rotor 20 and the center of the rotor 20. A drive device 2 including an inverter IV that performs phase switching of the armature winding of the stator 10A and AC power supply and an encoder EN that detects the rotational position of the rotor 20 is connected to the rotary shaft 30. ing.

永久磁石式モータ1Aの固定子10Aは、円筒状の固定子鉄心11の内周側に形成した9つのスロット12を用いて2種類の回転磁界を発生できるように電機子巻線13Aが巻装してある。この電機子巻線13Aも分数スロット巻線であり、ドライブ装置2による相順の切り替えによって8極と4極の両方の回転磁界を発生させることができ、電機子巻線を構成する電機子コイルの接続を機械的あるいは電子的に切り替えて8極と4極を作る機構が不要である。   The stator 10A of the permanent magnet motor 1A has an armature winding 13A wound so that two types of rotating magnetic fields can be generated using nine slots 12 formed on the inner peripheral side of the cylindrical stator core 11. It is. The armature winding 13A is also a fractional slot winding, and can generate both 8-pole and 4-pole rotating magnetic fields by switching the phase order by the drive device 2, and constitutes the armature winding. A mechanism for making the 8-pole and 4-pole by mechanically or electronically switching the connection is unnecessary.

本実施の形態における回転子20の構成は、図2に示した第1の実施の形態のものと同様であるので、図12において図2と共通する要素には同一の符号を付して示してある。低保磁力磁石22L1,22L2は、ドライブ装置2により短パルスのd軸電流を電機子巻線13Aに流すことで磁化方向を変えることによってNS極を相互に反転させる。   The configuration of the rotor 20 in the present embodiment is the same as that of the first embodiment shown in FIG. 2, and therefore, in FIG. 12, elements common to FIG. It is. The low coercivity magnets 22L1 and 22L2 cause the NS direction to be reversed by changing the magnetization direction by causing the drive device 2 to pass a short pulse d-axis current through the armature winding 13A.

ドライブ装置2は、モータ1の電機子巻線13Aに流すUVW3相電源の相順をU−V−WとU−W−Vの間で相互に変換することによりモータ全体の極数を8極と4極との間で極数変換する。これも第1の実施の形態のものと同様であり、インバータIVで電機子巻線13Aに与える電圧の相順を切り替えるのみで、機械的あるいは電子的な巻線切り替えは必要としない。   The drive device 2 converts the phase order of the UVW three-phase power source flowing through the armature winding 13A of the motor 1 between U-V-W and U-W-V, thereby reducing the total number of poles of the motor to eight. And the number of poles between 4 poles. This is the same as that of the first embodiment, and only the phase sequence of the voltage applied to the armature winding 13A by the inverter IV is switched, and mechanical or electronic winding switching is not required.

図12は回転子20が8極の状態を示している。図12において真上の両側の固定磁力磁石22H1,22H2のうち左側の固定磁力磁石22H1はエアギャップ側にN極があり、その右側の固定磁力磁石22H2は逆にエアギャップ側にS極がある。真下の両側の固定磁力磁石22H1,22H2についても、真上の両側の固定磁力磁石22H1,22H2と180度対称に配置されている。そして、回転子20を4極から8極に切り替える場合は、電機子巻線13Aを8極の相順に切り替えて定格の数倍の正のd軸電流をパルス的に流し左上側の可変磁力磁石22L2をS、左下側の可変磁力磁石22L1をNに磁化させる。同様に右上側の可変磁力磁石22L2をN、右下側の可変磁力磁石22L1をSに磁化させる。そしてドライブ装置2によって8極の相順で駆動電流を流すことで8極モータとして運転する。   FIG. 12 shows a state in which the rotor 20 has eight poles. In FIG. 12, the left fixed magnetic magnet 22H1 of the fixed magnetic magnets 22H1 and 22H2 directly above both sides has an N pole on the air gap side, and the right fixed magnetic magnet 22H2 has an S pole on the air gap side. . The fixed magnetic magnets 22H1, 22H2 on both sides just below are also arranged 180 degrees symmetrically with the fixed magnetic magnets 22H1, 22H2 on both sides just above. When the rotor 20 is switched from 4 poles to 8 poles, the armature winding 13A is switched in order of the 8 pole phases, and a positive d-axis current several times the rated value is passed in a pulsed manner to change the upper left variable magnetic magnet. 22L2 is magnetized to S and the variable magnet 22L1 on the lower left side is magnetized to N. Similarly, the upper right variable magnetic magnet 22L2 is magnetized to N, and the lower right variable magnetic magnet 22L1 is magnetized to S. The drive device 2 is operated as an 8-pole motor by causing a drive current to flow in the 8-pole phase sequence.

図13に示すように、回転子20を8極から4極に切り替える場合は、ドライブ装置2によって、8極の相順のままで上とは逆の負のd軸電流をパルス的に流し、左上側の可変磁力磁石22L2をN、左下側の可変磁力磁石22L1をSに磁化させる。同様に右上側の可変磁力磁石22L2をS、右下側の可変磁力磁石22L1をNに磁化させる。そしてドライブ装置2により、電機子巻線13Aに流す駆動電流の相順を4極に変えることで4極モータに極数変換する。   As shown in FIG. 13, when the rotor 20 is switched from 8 poles to 4 poles, the drive device 2 causes the negative d-axis current to flow in the pulse direction in the 8-pole phase sequence, The upper left variable magnetic magnet 22L2 is magnetized to N, and the lower left variable magnetic magnet 22L1 is magnetized to S. Similarly, the upper right variable magnetic magnet 22L2 is magnetized to S and the lower right variable magnetic magnet 22L1 is magnetized to N. The drive device 2 converts the number of poles into a four-pole motor by changing the phase sequence of the drive current flowing through the armature winding 13A to four poles.

ここにおいても、第1の実施の形態によるのと同様の他の方法によっても、4極から8極への極数変換、またその逆の極数変換が可能である。   Here, pole number conversion from 4 poles to 8 poles and vice versa can also be performed by another method similar to that of the first embodiment.

本実施の形態の永久磁石式モータドライブシステムにあっても、巻線切り替えを行わずに永久磁石の磁化を変化させて8極から4極に極数変換できる。これにより、高速域では8極から4極に極数変換することによって誘起電圧を低くし、広い可変速運転範囲が得られるようになり、鉄損も低減でき、低速から高速までの広範囲での高効率運転ができる。   Even in the permanent magnet type motor drive system of the present embodiment, the number of poles can be changed from 8 poles to 4 poles by changing the magnetization of the permanent magnets without switching the windings. This reduces the induced voltage by converting the number of poles from 8 poles to 4 poles in the high speed range, and a wide variable speed operating range can be obtained, iron loss can be reduced, and a wide range from low speed to high speed can be obtained. Highly efficient operation is possible.

[第3の実施の形態]
風力発電等の流体装置システムでは前記とは逆の特性が要求される。すなわち、低速回転域では低トルク、高速回転域では高トルクが要求される。このような用途でも、本発明は、前記と逆の特性ではあるが同様な作用によって従来に無い優れた特性が得られる。
[Third Embodiment]
The fluid device system such as wind power generation requires characteristics opposite to those described above. That is, a low torque is required in the low speed rotation range, and a high torque is required in the high speed rotation range. Even in such a use, the present invention can obtain an excellent characteristic that is not present in the past due to a similar action, although the characteristic is opposite to that described above.

第3の実施の形態を図14と図15に示す。各図において、第1の実施の形態と共通するあるいは類似する構成要素については同様のあるいは類似する符号を付して示してある。   A third embodiment is shown in FIGS. In each figure, the same or similar components as those in the first embodiment are denoted by the same or similar reference numerals.

固定子10は3相18スロットの分数溝巻線の構成とし、8極と4極に変換する。コイル12の配置は8極主体のコイル配置とする。8極主体とは8極の時にコイルピッチは極ピッチに近く、4極の時にコイルピッチは短くなる配置である。逆にコイル12の配置を4極主体のコイル配置とすることもできる。4極主体とは4極の時にコイルピッチは極ピッチに近く、8極の時にコイルピッチは短くなる配置である。   The stator 10 is configured as a three-phase 18-slot fractional groove winding, and is converted into 8-pole and 4-pole. The arrangement of the coil 12 is an eight-pole coil arrangement. The 8-pole main body is an arrangement in which the coil pitch is close to the pole pitch when there are 8 poles, and the coil pitch becomes shorter when there are 4 poles. Conversely, the arrangement of the coil 12 may be a four-pole coil arrangement. The 4-pole main body is an arrangement in which the coil pitch is close to the pole pitch when there are 4 poles, and the coil pitch is shortened when there are 8 poles.

回転子20は、4個の高保磁力永久磁石(固定磁力磁石)22Hと4個の低保磁力永久磁石(可変磁力磁石)22Lを回転子鉄心21の外周部に設置した構成である。そして、固定磁力磁石22Hも可変磁力磁石22Lとも2個ずつ隣り合わせに配置し、全体で8個の永久磁石を配置している。   The rotor 20 has a configuration in which four high coercive force permanent magnets (fixed magnetic force magnets) 22 </ b> H and four low coercive force permanent magnets (variable magnetic force magnets) 22 </ b> L are installed on the outer periphery of the rotor core 21. Two fixed magnetic magnets 22H and two variable magnetic magnets 22L are arranged next to each other, and eight permanent magnets are arranged in total.

図15に示すように、回転子20を8極から4極に変換するときには、丸印を付けた図において上左側の可変磁力磁石22Lを磁化してNからSに極性反転させ、上右側の可変磁力磁石22Lを磁化してSからNに極性反転させる。図外の下左側の可変磁力磁石22L、下右側の可変磁力磁石22Lについても同様である。回転子20を逆に4極から8極に変換する場合には、上と逆の磁化により極性反転させることになる。   As shown in FIG. 15, when the rotor 20 is converted from 8 poles to 4 poles, the upper left magnetic variable magnet 22L is magnetized and the polarity is inverted from N to S in the circled figure, and the upper right The variable magnetic magnet 22L is magnetized to reverse the polarity from S to N. The same applies to the lower left variable magnetic magnet 22L and the lower right variable magnetic magnet 22L not shown. Conversely, when the rotor 20 is converted from 4 poles to 8 poles, the polarity is reversed by the reverse magnetization.

8極主体のコイル配置とした本実施の形態の回転電機における極数変換時のトルク特性を図16に示す。曲線51が8極負荷時のトルク特性、曲線53が4極負荷時のトルク特性を示し、直線52が8極時の平均トルク、直線54が4極時の平均トルクを示している。低速回転域で使用する8極モードではトルク51,52が大きく、高速回転域の4極モードではトルク53,54が小さくなる。電気自動車や電車などのモータに要求される定出力特性に近い特性が得られる。   FIG. 16 shows torque characteristics at the time of pole number conversion in the rotating electrical machine of the present embodiment in which the coil arrangement is mainly composed of eight poles. A curve 51 shows torque characteristics at the time of 8-pole load, a curve 53 shows torque characteristics at the time of 4-pole load, a straight line 52 shows average torque at the time of 8 poles, and a straight line 54 shows average torque at the time of 4 poles. In the 8-pole mode used in the low-speed rotation region, the torques 51 and 52 are large, and in the 4-pole mode in the high-speed rotation region, the torques 53 and 54 are small. Characteristics close to the constant output characteristics required for motors such as electric cars and trains can be obtained.

一方、4極主体のコイル配置とした本実施の形態の回転電機における極数変換時のトルク特性を図17に示す。曲線61が4極負荷時のトルク特性、曲線63が8極負荷時のトルク特性を示し、直線62が4極時の平均トルク、直線64が8極時の平均トルクを示している。低速回転域で使用する8極モードではトルク63,64が小さく、高速回転域の4極モードではトルク61,62が大きくなる。風力発電、海流発電、河川・排水用水力発電などの流体用発電機に要求される低減トルク特性に近い特性が得られる。   On the other hand, FIG. 17 shows the torque characteristics when changing the number of poles in the rotating electrical machine of the present embodiment in which the coil arrangement is mainly composed of four poles. A curve 61 shows torque characteristics at the time of 4-pole load, a curve 63 shows torque characteristics at the time of 8-pole load, a straight line 62 shows average torque at the time of 4 poles, and a straight line 64 shows average torque at the time of 8 poles. In the 8-pole mode used in the low-speed rotation region, the torques 63 and 64 are small, and in the 4-pole mode in the high-speed rotation region, the torques 61 and 62 are large. Characteristics close to the reduced torque characteristics required for fluid generators such as wind power generation, ocean current power generation, and hydroelectric power generation for rivers and drainage can be obtained.

尚、本発明は上記の実施の形態に限定されるものではなく、永久磁石式モータとそのドライブシステム、また永久磁石式発電機とそれによる発電システム等永久磁石式回転電機とそのドライブシステムに広く適用できる。また、回転子の可変磁力永久磁石の数、固定子のスロットの数と電機子コイルの数も変更可能である。さらに、上記の実施の形態では、回転子20は高保磁力の磁石(固定磁力磁石)22H1,22H2と低保磁力の磁石(可変磁力磁石)22L1,22L2の2種類を設置した構成にしたが、低保磁力の可変磁力磁石のみの構成も可能である。但し、永久磁石を磁化させるための磁界は、変化させたい極数と同じ極数の磁界を電流で形成することになる。   The present invention is not limited to the above-described embodiments, and is widely applied to permanent magnet type motors and their drive systems, and permanent magnet type rotating electrical machines such as permanent magnet type generators and power generation systems therefor, and their drive systems. Applicable. Further, the number of variable magnetic permanent magnets of the rotor, the number of slots of the stator, and the number of armature coils can be changed. Furthermore, in the above embodiment, the rotor 20 has a configuration in which two types of magnets, that is, high coercive force magnets (fixed magnetic force magnets) 22H1, 22H2 and low coercive force magnets (variable magnetic force magnets) 22L1, 22L2, are installed. A configuration with only a low coercive force variable magnet is also possible. However, the magnetic field for magnetizing the permanent magnet is a magnetic field having the same number of poles as the number of poles to be changed.

1,1A 永久磁石式モータ
2 ドライブ装置
10 固定子
11 固定子鉄心
12 スロット
13,13A 電機子巻線
20 回転子
21 回転子鉄心
22H,22H1,22H2 固定磁力磁石
22L,22L1,22L2 可変磁力磁石
30 回転軸
IV インバータ
EN エンコーダ
DESCRIPTION OF SYMBOLS 1,1A Permanent magnet type motor 2 Drive apparatus 10 Stator 11 Stator core 12 Slot 13, 13A Armature winding 20 Rotor 21 Rotor core 22H, 22H1, 22H2 Fixed magnetic magnet 22L, 22L1, 22L2 Variable magnetic magnet 30 Rotating shaft IV Inverter EN Encoder

Claims (14)

複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、
外部磁界により磁化される永久磁石を持つ回転子とを備えたことを特徴とする永久磁石式回転電機。
A stator having an armature winding that generates a rotating magnetic field of a plurality of types of poles;
A permanent magnet type rotating electrical machine comprising a rotor having a permanent magnet magnetized by an external magnetic field.
複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、
前記固定子の電機子電流の生起する磁界により磁化される永久磁石を持つ回転子とを備えたことを特徴とする永久磁石式回転電機。
A stator having an armature winding that generates a rotating magnetic field of a plurality of types of poles;
A permanent magnet type rotating electric machine comprising: a rotor having a permanent magnet magnetized by a magnetic field generated by an armature current of the stator.
前記固定子の電機子巻線は、複数種の極数の回転磁界を生じる分数スロットの電機子巻線から構成されることを特徴とする請求項1又は2に記載の永久磁石式回転電機。   3. The permanent magnet type rotating electric machine according to claim 1, wherein the armature winding of the stator is composed of a fractional slot armature winding that generates a rotating magnetic field having a plurality of types of poles. 第1の極数では極ピッチに近い第1の巻線ピッチとし、前記第1の極数よりも少ない第2の極数では前記第1の巻線ピッチよりも短い第2の巻線ピッチで構成した電機子巻線を備えたことを特徴とする請求項1〜3のいずれか1項に記載の永久磁石式回転電機。   The first winding number is a first winding pitch that is close to the pole pitch, and the second winding number that is shorter than the first winding pitch is a second winding pitch that is shorter than the first winding pitch. The permanent magnet type rotating electric machine according to any one of claims 1 to 3, further comprising a configured armature winding. 第1の極数では極ピッチに近い第1の巻線ピッチとし、前記第1の極数よりも多い第2の極数では前記第1の巻線ピッチよりも短い第2の巻線ピッチで構成した電機子巻線を備えたことを特徴とする請求項1〜3のいずれか1項に記載の永久磁石式回転電機。   The first winding number is a first winding pitch that is close to the pole pitch, and the second winding number that is greater than the first pole number is a second winding pitch that is shorter than the first winding pitch. The permanent magnet type rotating electric machine according to any one of claims 1 to 3, further comprising a configured armature winding. 電機子電流の電流位相の変化により、その変化後の電流位相の電機子電流が生起する磁界によって前記永久磁石を磁化させて前記回転子の極数を変化させることを特徴とする請求項1〜5のいずれか1項に記載の永久磁石式回転電機。   The number of poles of the rotor is changed by magnetizing the permanent magnet by a magnetic field generated by the armature current of the current phase after the change due to the change of the current phase of the armature current. The permanent magnet type rotating electrical machine according to any one of 5. 前記外部磁界又は電機子電流の生起する磁界によって磁化される永久磁石の保磁力は、500kA/m以下であることを特徴とする請求項1〜6のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet rotation according to any one of claims 1 to 6, wherein a coercive force of a permanent magnet magnetized by the external magnetic field or a magnetic field generated by an armature current is 500 kA / m or less. Electric. 複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、外部磁界に磁化される永久磁石を持つ回転子とで構成される永久磁石式回転電機と、
前記永久磁石を磁化することにより前記回転子の極数を変換し、変換後の極数により前記回転子を回転させるドライブ装置とを備えたことを特徴とする永久磁石式回転電機ドライブシステム。
A permanent magnet type rotating electric machine composed of a stator having an armature winding that generates a rotating magnetic field having a plurality of types of poles, and a rotor having a permanent magnet magnetized by an external magnetic field;
A permanent magnet type rotating electrical machine drive system comprising: a drive device that converts the number of poles of the rotor by magnetizing the permanent magnet and rotates the rotor by the number of poles after the conversion.
複数種の極数の回転磁界を生じる電機子巻線を有する固定子と、前記固定子の電機子電流の生起する磁界により磁化される永久磁石を持つ回転子とで構成される永久磁石式回転電機と、
前記永久磁石を磁化することにより前記回転子の極数を変換し、変換後の極数により前記回転子を回転させるドライブ装置とを備えたことを特徴とする永久磁石式回転電機ドライブシステム。
Permanent magnet rotation comprising a stator having an armature winding that generates a rotating magnetic field having a plurality of types of poles, and a rotor having a permanent magnet magnetized by a magnetic field generated by an armature current of the stator Electric
A permanent magnet type rotating electrical machine drive system comprising: a drive device that converts the number of poles of the rotor by magnetizing the permanent magnet and rotates the rotor by the number of poles after the conversion.
前記固定子の電機子巻線は、複数種の極数の回転磁界を生じる分数スロットの電機子巻線から構成されることを特徴とする請求項8又は9に記載の永久磁石式回転電機ドライブシステム。   10. The permanent magnet type rotary electric machine drive according to claim 8, wherein the armature winding of the stator is composed of a fractional slot armature winding that generates a rotating magnetic field having a plurality of types of poles. system. 第1の極数では極ピッチに近い第1の巻線ピッチとし、前記第1の極数よりも少ない第2の極数では前記第1の巻線ピッチよりも短い第2の巻線ピッチで構成した電機子巻線を備えたことを特徴とする請求項8〜10のいずれか1項に記載の永久磁石式回転電機ドライブシステム。   The first winding number is a first winding pitch that is close to the pole pitch, and the second winding number that is shorter than the first winding pitch is a second winding pitch that is shorter than the first winding pitch. The permanent magnet type rotating electrical machine drive system according to any one of claims 8 to 10, further comprising a configured armature winding. 第1の極数では極ピッチに近い第1の巻線ピッチとし、前記第1の極数よりも多い第2の極数では前記第1の巻線ピッチよりも短い第2の巻線ピッチで構成した電機子巻線を備えたことを特徴とする請求項8〜10のいずれか1項に記載の永久磁石式回転電機ドライブシステム。   The first winding number is a first winding pitch that is close to the pole pitch, and the second winding number that is greater than the first pole number is a second winding pitch that is shorter than the first winding pitch. The permanent magnet type rotating electrical machine drive system according to any one of claims 8 to 10, further comprising a configured armature winding. 電機子電流の電流位相を変化させ、その電流位相の電機子電流が生起する磁界によって前記永久磁石を磁化させて前記回転子の極数を変化させることを特徴とする請求項8〜12のいずれか1項に記載の永久磁石式回転電機ドライブシステム。   The current phase of the armature current is changed, and the permanent magnet is magnetized by a magnetic field generated by the armature current of the current phase to change the number of poles of the rotor. A permanent magnet type rotating electrical machine drive system according to claim 1. 前記外部磁界又は電機子電流の生起する磁界によって磁化される永久磁石の保磁力は、500kA/m以下であることを特徴とする請求項8〜13のいずれか1項に記載の永久磁石式回転電機ドライブシステム。   The permanent magnet rotation according to any one of claims 8 to 13, wherein a coercive force of a permanent magnet magnetized by the external magnetic field or a magnetic field generated by an armature current is 500 kA / m or less. Electric drive system.
JP2013038592A 2013-02-28 2013-02-28 Pole conversion permanent magnet type rotating electrical machine and drive system thereof Active JP6202664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038592A JP6202664B2 (en) 2013-02-28 2013-02-28 Pole conversion permanent magnet type rotating electrical machine and drive system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038592A JP6202664B2 (en) 2013-02-28 2013-02-28 Pole conversion permanent magnet type rotating electrical machine and drive system thereof

Publications (2)

Publication Number Publication Date
JP2014168320A true JP2014168320A (en) 2014-09-11
JP6202664B2 JP6202664B2 (en) 2017-09-27

Family

ID=51617709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038592A Active JP6202664B2 (en) 2013-02-28 2013-02-28 Pole conversion permanent magnet type rotating electrical machine and drive system thereof

Country Status (1)

Country Link
JP (1) JP6202664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143593A (en) * 2016-02-08 2017-08-17 住友重機械工業株式会社 Permanent magnet motor and electrically-driven rotary shovel using the same
JP2018027008A (en) * 2016-07-29 2018-02-15 三星電子株式会社Samsung Electronics Co.,Ltd. motor
JP2018026991A (en) * 2016-07-28 2018-02-15 三星電子株式会社Samsung Electronics Co.,Ltd. Motor and washing machine having the same
KR20190074957A (en) * 2017-12-20 2019-06-28 삼성전자주식회사 Motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129743A1 (en) * 2018-11-26 2020-05-28 Schaeffler Technologies AG & Co. KG PM synchronous motor with device for parameterizing the magnets and integrated braking function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118382A (en) * 1997-06-24 1999-01-22 Meidensha Corp Pole-number changing electric rotating machine system
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2009072046A (en) * 2007-09-18 2009-04-02 Toshiba Corp Variable magnetic flux drive system
JP2010028957A (en) * 2008-07-17 2010-02-04 Toyota Central R&D Labs Inc Inductor and inductor pole-number switching system
US20100201294A1 (en) * 2007-09-18 2010-08-12 Kabushiki Kaisha Toshiba Variable magnetic flux drive system
JP2012070608A (en) * 2010-05-18 2012-04-05 Kura Gijutsu Kenkyusho:Kk Magnet-excited rotary electric machine system
JP2013034317A (en) * 2011-08-02 2013-02-14 Toyo Univ Permanent magnet rotary electric machine and its operation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118382A (en) * 1997-06-24 1999-01-22 Meidensha Corp Pole-number changing electric rotating machine system
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2009072046A (en) * 2007-09-18 2009-04-02 Toshiba Corp Variable magnetic flux drive system
US20100201294A1 (en) * 2007-09-18 2010-08-12 Kabushiki Kaisha Toshiba Variable magnetic flux drive system
JP2010028957A (en) * 2008-07-17 2010-02-04 Toyota Central R&D Labs Inc Inductor and inductor pole-number switching system
JP2012070608A (en) * 2010-05-18 2012-04-05 Kura Gijutsu Kenkyusho:Kk Magnet-excited rotary electric machine system
JP2013034317A (en) * 2011-08-02 2013-02-14 Toyo Univ Permanent magnet rotary electric machine and its operation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143593A (en) * 2016-02-08 2017-08-17 住友重機械工業株式会社 Permanent magnet motor and electrically-driven rotary shovel using the same
JP2018026991A (en) * 2016-07-28 2018-02-15 三星電子株式会社Samsung Electronics Co.,Ltd. Motor and washing machine having the same
JP2018027008A (en) * 2016-07-29 2018-02-15 三星電子株式会社Samsung Electronics Co.,Ltd. motor
JP7029243B2 (en) 2016-07-29 2022-03-03 三星電子株式会社 motor
KR20190074957A (en) * 2017-12-20 2019-06-28 삼성전자주식회사 Motor
JP2019110722A (en) * 2017-12-20 2019-07-04 三星電子株式会社Samsung Electronics Co.,Ltd. Motor, washing machine with the motor, and attachment method of the motor
EP3711141A4 (en) * 2017-12-20 2020-12-30 Samsung Electronics Co., Ltd. Motor
JP7186499B2 (en) 2017-12-20 2022-12-09 三星電子株式会社 motor
KR102639683B1 (en) 2017-12-20 2024-02-23 삼성전자주식회사 Motor

Also Published As

Publication number Publication date
JP6202664B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN104578477B (en) Mixed permanent magnetic pole-alternating and magnetic flux-switching memory motor and winding switching magnetism-weakening control method thereof
US8400084B2 (en) Regenerative switched reluctance motor driving system
CN108964396B (en) Stator partition type alternate pole hybrid excitation motor
JP2009219331A (en) Permanent magnet type generator and hybrid vehicle using the same
JP6085753B1 (en) Mutual coupling type Umemori motor
JP6202664B2 (en) Pole conversion permanent magnet type rotating electrical machine and drive system thereof
CN101325349A (en) Permanent magnetism type motor of wide speed-adjusting magnetic flux memory type stator
CN109936230A (en) A kind of series circuit type two-layer hybrid permanent magnetism memory electrical machine
CN106549547A (en) A kind of mixing magnet steel magnetic flux switching memory electrical machine
CN104617726A (en) Permanent magnet crossed type axial magnetic field magnetic flow switching type memory motor
CN112072811B (en) Embedded-permanent magnet reluctance type mixed magnetic pole type memory motor
CN104883019A (en) Stator permanent magnet mixed excitation vernier motor
CN110112878A (en) A kind of extremely tangential excitation vernier magneto of alternating
JP2011103769A (en) Permanent-magnet generator and hybrid vehicle using the same
Sakai et al. Realizing high efficiency using pole-changing hybrid permanent magnet motors
JP6480651B2 (en) Permanent magnet type rotating electrical machine drive system
CN107070154A (en) The phase magneto of extended-range electric vehicle five
JP6325857B2 (en) Permanent magnet rotating electric machine
JP6371550B2 (en) Permanent magnet rotating electric machine
Yang et al. Novel switched-flux hybrid permanent magnet memory machines for EV/HEV applications
CN116317422A (en) Novel double-stator magnetic field modulation memory motor
CN110829652A (en) Series-parallel magnetic circuit mixed magnetic pole type memory motor
Hasegawa et al. Basic consideration of switched reluctance motor with auxiliary windings and permanent magnets
CN213602457U (en) Novel mixed excitation motor stator structure
Long et al. Investigation of a novel brushless electrically excited synchronous machine with arc-shaped rotor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170825

R150 Certificate of patent or registration of utility model

Ref document number: 6202664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250