JP2013229960A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2013229960A
JP2013229960A JP2012098815A JP2012098815A JP2013229960A JP 2013229960 A JP2013229960 A JP 2013229960A JP 2012098815 A JP2012098815 A JP 2012098815A JP 2012098815 A JP2012098815 A JP 2012098815A JP 2013229960 A JP2013229960 A JP 2013229960A
Authority
JP
Japan
Prior art keywords
power
ground fault
power conversion
load
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012098815A
Other languages
Japanese (ja)
Inventor
Yu Kishiwada
優 岸和田
Daisuke Tajima
大介 田嶌
Yukimori Kishida
行盛 岸田
Hiroshi Ito
寛 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012098815A priority Critical patent/JP2013229960A/en
Publication of JP2013229960A publication Critical patent/JP2013229960A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a power converter in which safety is enhanced during self-sustained operation.SOLUTION: A power conversion means capable of self-sustained operation for supplying power to a load in a state disconnected from a power system comprises: power conversion means (converter 110, inverter 130, capacitors 120A, 120B, 150A and 150B, reactors 140A and 140B); a switch 190 for switching between a state connected with a power system and a state disconnected from a power system; a terminal block 180 for self-sustained operation which connects and disconnects a load to be supplied with power during self-sustained operation; a ground fault detector 100 for detecting ground fault in the previous stage of the power conversion means; and a ground fault detector 160 for detecting ground fault in the subsequent stage of the power conversion means and in the previous stage of the switch 190 and terminal block 180 for self-sustained operation.

Description

本発明は、系統連系する電力変換装置に関するものである。   The present invention relates to a power conversion device interconnected with a grid.

系統連系する電力変換装置では、一般的に入力側や出力側での地絡を検知する機能を有しており、電力変換装置の利用者や施工者業者が過って感電し、地絡してしまった場合などに速やかに地絡を検知して安全を確保する。地絡を検知する機能は、地絡するおそれがある箇所を予め想定した上で、設置する場所を決めている。   In general, power converters connected to the grid have a function of detecting ground faults on the input side and output side. If this happens, immediately detect a ground fault to ensure safety. The function of detecting a ground fault determines a place to install after assuming a place where there is a possibility of ground fault.

例えば、系統連系する電力変換装置の一つである太陽光発電用パワーコンディショナが特許文献1に記載されている。このパワーコンディショナでは、特許文献1の図1に示されているように、地絡を検知する機能であるZCT(零相変流器)が系統との連系や解列をするためのリレーの後段に設置してある。この場合は、太陽電池の負極側で地絡が発生した場合に大地を伝って系統側の接地を介して太陽電池の正極側へと地絡電流が流れる経路があり、その電流経路がZCTを貫通しているので零相電流の検出により地絡したことを検知できる。   For example, Patent Literature 1 discloses a power conditioner for photovoltaic power generation, which is one of power conversion devices interconnected with a grid. In this power conditioner, as shown in FIG. 1 of Patent Document 1, a relay for connecting and disconnecting a ZCT (zero phase current transformer), which is a function of detecting a ground fault, with the system It is installed in the rear stage. In this case, when a ground fault occurs on the negative electrode side of the solar cell, there is a path through which the ground fault current flows through the ground to the positive side of the solar cell via the ground on the system side. Since it penetrates, it can be detected that a ground fault has occurred by detecting the zero-phase current.

系統連系する電力変換装置(系統連系電力変換装置)には系統異常などにより解列した場合にのみ利用者の負荷(電気的なもの)へ電力変換装置が電力を供給することができる機能(以下、自立運転機能と記す)を有するものがある。   A function that allows the power conversion device to supply power to the user's load (electrical device) only when the power conversion device connected to the system (system connection power conversion device) is disconnected due to a system abnormality or the like (Hereinafter referred to as a self-sustaining operation function).

特許第4206998号公報Japanese Patent No. 4206998

自立運転機能を有する従来の系統連系電力変換装置においては、系統連系時の地絡を想定しているが自立運転時の地絡を検知することまで想定していないため、自立運転時に利用者または施工業者が過って感電した場合の地絡を検知することができず、安全を確保できないという問題があった。   In conventional grid-connected power converters that have a self-sustaining operation function, a ground fault at the time of grid connection is assumed, but it is not assumed to detect a ground fault at the time of autonomous operation. There is a problem in that it is impossible to detect a ground fault when a person or a contractor makes an electric shock and cannot secure safety.

本発明は、上記に鑑みてなされたものであって、系統連系している状態、および自立運転を行っている状態のいずれにおいても、地絡事故が発生した場合に速やかに地絡を検知して安全に電力変換装置を停止することが可能な、安全性を高めた電力変換装置を得ることを目的とする。   The present invention has been made in view of the above, and immediately detects a ground fault when a ground fault occurs in any of a grid-connected state and a self-sustaining operation state. It is an object of the present invention to obtain a power converter with improved safety that can safely stop the power converter.

上述した課題を解決し、目的を達成するために、本発明は、電力系統から切り離された状態で負荷に対する電力供給を行う自立運転が可能な電力変換装置であって、直流電力を交流電力へ変換する電力変換手段と、電力系統に接続された状態と電力系統から切り離された状態とを切り替える切り替え手段と、自立運転時に電力供給対象とする負荷の接続および切り離しを行う接続手段と、前記電力変換手段の前段において地絡検知を行う第1の地絡検出手段と、前記電力変換手段の後段であり、かつ前記切り替え手段および前記接続手段の前段において地絡検知を行う第2の地絡検出手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a power conversion device capable of independent operation that supplies power to a load in a state of being disconnected from a power system, and converts DC power to AC power. Power conversion means for conversion, switching means for switching between a state connected to the power system and a state disconnected from the power system, a connection means for connecting and disconnecting a load to be supplied with power during self-sustaining operation, and the power A first ground fault detection means for detecting a ground fault before the conversion means; and a second ground fault detection that is a subsequent stage of the power conversion means and performs ground fault detection before the switching means and the connection means. And means.

本発明によれば、自立運転時に出力側(負荷側)で地絡事故が発生しても確実に検知することができるようになり、安全性を高めた電力変換装置を得ることができる、という効果を奏する。   According to the present invention, even if a ground fault occurs on the output side (load side) during self-sustained operation, it can be reliably detected, and a power converter with improved safety can be obtained. There is an effect.

図1は、本発明にかかる電力変換装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a power converter according to the present invention. 図2は、電力変換装置の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the power conversion device. 図3は、図1の電力変換装置が系統連系しているときの構成を示す図である。FIG. 3 is a diagram illustrating a configuration when the power conversion apparatus of FIG. 1 is grid-connected. 図4は、図3に示した構成で地絡が発生した場合の地絡電流の経路を示す図である。FIG. 4 is a diagram showing a path of a ground fault current when a ground fault occurs in the configuration shown in FIG. 図5は、図1の電力変換装置が自立運転しているときの構成を示す図である。FIG. 5 is a diagram illustrating a configuration when the power conversion device of FIG. 1 is operating independently. 図6は、図5に示した構成で地絡が発生した場合の地絡電流の経路を示す図である。6 is a diagram illustrating a path of a ground fault current when a ground fault occurs in the configuration illustrated in FIG. 図7は、図2の電力変換装置が自立運転しているときの構成および地絡電流の経路を示す図である。FIG. 7 is a diagram showing a configuration and a ground fault current path when the power conversion device of FIG. 2 is operating independently.

以下に、本発明にかかる電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a power conversion device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明にかかる電力変換装置の構成例を示す図である。本実施の形態の電力変換装置は、入力機器90と、地絡検知器100と、コンバータ110と、コンデンサ120Aおよび120Bと、インバータ130と、リアクトル140Aおよび140Bと、コンデンサ150Aおよび150Bと、地絡検知器160と、制御器170と、自立運転用端子台180と、開閉器190と、系統電圧200と、を備える。この電力変換装置は、系統連系する電力変換装置であり、系統から解列された状態で利用者の負荷に対して電力を供給する自立運転機能を有している。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of a power converter according to the present invention. The power conversion device of the present embodiment includes an input device 90, a ground fault detector 100, a converter 110, capacitors 120A and 120B, an inverter 130, reactors 140A and 140B, capacitors 150A and 150B, and a ground fault. A detector 160, a controller 170, a terminal block 180 for independent operation, a switch 190, and a system voltage 200 are provided. This power conversion device is a power conversion device that is connected to the grid, and has a self-sustaining operation function of supplying power to a user's load in a state of being disconnected from the grid.

入力機器90は、直流電力を出力する機器であり、例えば直流電源や太陽電池である。地絡検知器100および160は、地絡事故を検知する回路であり、例えば、地絡電流を監視することにより地絡を検知する。例えばZCTなどのように零相電流を検知可能な機器を利用する。なお、同様の機能を有し、地絡検知が可能であればこれに限定されない。   The input device 90 is a device that outputs DC power, and is, for example, a DC power source or a solar battery. The ground fault detectors 100 and 160 are circuits for detecting a ground fault, and for example, detect a ground fault by monitoring a ground fault current. For example, a device capable of detecting a zero-phase current such as ZCT is used. In addition, if it has the same function and a ground fault detection is possible, it will not be limited to this.

コンバータ110は、半導体スイッチ等により構成され、入力機器90から出力された直流電力を入力とし、所望の直流電圧をコンデンサ120Aおよび120Bに充電する。直列に接続されているコンデンサ120Aと120Bの接続点(コンバータ110出力の中間電位点)が接地されている。インバータ130は、半導体スイッチ等により構成され、コンデンサ120Aおよび120Bに充電された直流電圧を入力として、所望の交流電圧を出力する。   Converter 110 is configured by a semiconductor switch or the like, receives DC power output from input device 90 as input, and charges capacitors 120A and 120B with a desired DC voltage. A connection point (an intermediate potential point of the converter 110 output) between the capacitors 120A and 120B connected in series is grounded. Inverter 130 is configured by a semiconductor switch or the like, and outputs a desired AC voltage with DC voltage charged in capacitors 120A and 120B as an input.

リアクトル140Aおよび140Bとコンデンサ150Aおよび150Bとは、インバータ130のそれぞれの出力をフィルタリングする。なお、同様の機能を実現可能であれば、図1の構成に限定されない。   Reactors 140A and 140B and capacitors 150A and 150B filter the respective outputs of inverter 130. Note that the configuration of FIG. 1 is not limited as long as the same function can be realized.

制御器170は、コンバータ110やインバータ130の半導体スイッチのオンオフ制御するための制御信号を生成・出力する。また、地絡検知器100または地絡検知器160の出力を受けて電力変換装置の運転を停止するなど、電力変換装置のあらゆる制御を行う。   The controller 170 generates and outputs a control signal for on / off control of the semiconductor switches of the converter 110 and the inverter 130. In addition, all control of the power converter is performed, such as stopping the operation of the power converter upon receiving the output of the ground fault detector 100 or the ground fault detector 160.

自立運転用端子台180は、自立運転時に電力変換装置から電力が出力される箇所となっており、利用者が負荷機器210を接続することができる。開閉器190は、インバータ130側と系統側の電気的な接続を開閉する。開閉器190としては、例えばMC(マグネット・コンタクタ)やリレーなどが挙げられるが、同機能を有していればこれに限定されない。   The terminal block 180 for independent operation is a place where electric power is output from the power converter during the independent operation, and the user can connect the load device 210. The switch 190 opens and closes an electrical connection between the inverter 130 side and the system side. Examples of the switch 190 include an MC (magnet contactor) and a relay. However, the switch 190 is not limited to this as long as it has the same function.

なお、図2に示した構成も考えられるが、安全性の向上のためには、図1の構成とするのが望ましい。理由については別途示す。   The configuration shown in FIG. 2 is also conceivable, but the configuration shown in FIG. 1 is desirable for improving safety. The reason will be shown separately.

図3は、図1の電力変換装置が系統連系しているときの構成を示す図である。この構成では、系統側で地絡が発生した場合、および入力側で地絡が発生した場合の両方の場合において、図4の太破線のように地絡電流が流れる。そのため、地絡検知器100および160にてそれぞれの地絡を検知することが可能である。   FIG. 3 is a diagram illustrating a configuration when the power conversion apparatus of FIG. 1 is grid-connected. In this configuration, a ground fault current flows as shown by a thick broken line in FIG. 4 in both cases where a ground fault occurs on the system side and when a ground fault occurs on the input side. Therefore, the ground fault detectors 100 and 160 can detect each ground fault.

また、図5は、図1の電力変換装置が自立運転しているときの構成を示す図である。この構成では、負荷側で地絡が発生した場合、および入力側で地絡が発生した場合の両方の場合において、図6の太破線のように地絡電流が流れる。そのため、地絡検知器100および160にてそれぞれの地絡を検知することが可能である。   Moreover, FIG. 5 is a figure which shows a structure when the power converter device of FIG. 1 is operating independently. In this configuration, a ground fault current flows as shown by a thick broken line in FIG. 6 in both cases where a ground fault occurs on the load side and when a ground fault occurs on the input side. Therefore, the ground fault detectors 100 and 160 can detect each ground fault.

図7は、図2の電力変換装置が自立運転しているときの構成および地絡電流の経路を示す図である。この構成では、入力側で地絡が発生した場合には太破線のように地絡電流が流れるので地絡検知器100にて地絡を検知することが可能である。しかしながら、負荷側で地絡が発生した場合には、地絡検知器160を介さず太破線のように地絡電流が流れるため、地絡を検知することができない。このとき、利用者および施工業者が過って感電した場合に安全が確保できない。   FIG. 7 is a diagram showing a configuration and a ground fault current path when the power conversion device of FIG. 2 is operating independently. In this configuration, when a ground fault occurs on the input side, a ground fault current flows as indicated by a thick broken line, so that the ground fault detector 100 can detect the ground fault. However, when a ground fault occurs on the load side, the ground fault cannot be detected because a ground fault current flows as shown by a thick broken line without passing through the ground fault detector 160. At this time, safety cannot be ensured when the user and the contractor are in danger of receiving an electric shock.

このように、本実施の形態の電力変換装置は、コンバータ110の前段において地絡検知を行う地絡検知器110と、インバータ130の後段であり、かつ、電力系統に接続された状態と電力系統から切り離された状態とを切り替える開閉器190および自立運転時に負荷を接続する接続端子(自立運転用端子台180)の前段において地絡検知を行う地絡検知器160と、を備えることとした。これにより、電力系統に接続された状態、および自立運転時のいずれにおいても、電力変換装置の出力側(電力系統側,負荷側)で発生した地絡事故を確実に検知することができるようになり、安全性を高めることができる。   As described above, the power conversion device according to the present embodiment includes a ground fault detector 110 that performs ground fault detection in the previous stage of converter 110 and a stage subsequent to inverter 130 and is connected to the power system and the power system. And a ground fault detector 160 that performs ground fault detection in the previous stage of a connection terminal (a terminal block for self-sustaining operation 180) that connects a load during self-sustaining operation. As a result, it is possible to reliably detect a ground fault that has occurred on the output side (power system side, load side) of the power converter, both in the state connected to the power system and during independent operation. And safety can be improved.

以上のように、本発明にかかる電力変換装置は、系統から切り離された状態で負荷に電力を供給する自立運転が可能な電力変換装置として有用である。   As described above, the power conversion device according to the present invention is useful as a power conversion device capable of independent operation for supplying power to a load while being disconnected from the system.

90 入力機器
100,160 地絡検知器
110 コンバータ
120A,120B,150A,150B コンデンサ
130 インバータ
140A,140B リアクトル
170 制御器
180 自立運転用端子台
190 開閉器
200 系統電圧
90 Input device 100, 160 Ground fault detector 110 Converter 120A, 120B, 150A, 150B Capacitor 130 Inverter 140A, 140B Reactor 170 Controller 180 Stand-alone terminal block 190 Switch 200 System voltage

Claims (2)

電力系統から切り離された状態で負荷に対する電力供給を行う自立運転が可能な電力変換装置であって、
直流電力を交流電力へ変換する電力変換手段と、
電力系統に接続された状態と電力系統から切り離された状態とを切り替える切り替え手段と、
自立運転時に電力供給対象とする負荷の接続および切り離しを行う接続手段と、
前記電力変換手段の前段において地絡検知を行う第1の地絡検出手段と、
前記電力変換手段の後段であり、かつ前記切り替え手段および前記接続手段の前段において地絡検知を行う第2の地絡検出手段と、
を備えることを特徴とする電力変換装置。
A power conversion device capable of independent operation that supplies power to a load in a state disconnected from the power system,
Power conversion means for converting DC power to AC power;
Switching means for switching between a state connected to the power system and a state disconnected from the power system;
A connection means for connecting and disconnecting a load to be supplied with power during self-sustaining operation;
First ground fault detection means for performing ground fault detection before the power conversion means;
A second ground fault detection means that is a subsequent stage of the power conversion means and that detects ground faults in the previous stage of the switching means and the connection means;
A power conversion device comprising:
前記第2の地絡検出手段は、零相電流を監視して地絡検知を行うことを特徴とする請求項1に記載の電力変換装置。   The power converter according to claim 1, wherein the second ground fault detection unit performs ground fault detection by monitoring a zero-phase current.
JP2012098815A 2012-04-24 2012-04-24 Power converter Pending JP2013229960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098815A JP2013229960A (en) 2012-04-24 2012-04-24 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098815A JP2013229960A (en) 2012-04-24 2012-04-24 Power converter

Publications (1)

Publication Number Publication Date
JP2013229960A true JP2013229960A (en) 2013-11-07

Family

ID=49677103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098815A Pending JP2013229960A (en) 2012-04-24 2012-04-24 Power converter

Country Status (1)

Country Link
JP (1) JP2013229960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100962A (en) * 2014-11-20 2016-05-30 三菱電機株式会社 Ground fault detector
JP2021004855A (en) * 2019-06-27 2021-01-14 古河電気工業株式会社 Ground fault detection method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865899A (en) * 1994-08-18 1996-03-08 Nissin Electric Co Ltd Operation control method for dispersed interlocking system
JPH08149843A (en) * 1994-11-18 1996-06-07 Sanyo Electric Co Ltd Protector of system interconnection inveter
JPH1051959A (en) * 1996-07-31 1998-02-20 Matsushita Electric Works Ltd Decentralized power system
JP2005245136A (en) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp Reverse-tidal-current-preventing systematically interconnecting system
JP2011196729A (en) * 2010-03-18 2011-10-06 Kansai Electric Power Co Inc:The Leak detection device and method for dc circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865899A (en) * 1994-08-18 1996-03-08 Nissin Electric Co Ltd Operation control method for dispersed interlocking system
JPH08149843A (en) * 1994-11-18 1996-06-07 Sanyo Electric Co Ltd Protector of system interconnection inveter
JPH1051959A (en) * 1996-07-31 1998-02-20 Matsushita Electric Works Ltd Decentralized power system
JP2005245136A (en) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp Reverse-tidal-current-preventing systematically interconnecting system
JP2011196729A (en) * 2010-03-18 2011-10-06 Kansai Electric Power Co Inc:The Leak detection device and method for dc circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100962A (en) * 2014-11-20 2016-05-30 三菱電機株式会社 Ground fault detector
JP2021004855A (en) * 2019-06-27 2021-01-14 古河電気工業株式会社 Ground fault detection method and device
JP7233322B2 (en) 2019-06-27 2023-03-06 古河電気工業株式会社 Ground fault detection method and device

Similar Documents

Publication Publication Date Title
EP3024134B1 (en) Parallel inverter system, and shutdown control method and shutdown control device for parallel inverter system
US8779630B2 (en) Power generation system and inverter for feeding power into a three-phase grid
KR101410508B1 (en) Direct current ground fault detecting circuit for solar cell generating system
CN107819357B (en) Isolated parallel UPS system with fault location detection
US10734944B2 (en) Inverter having grid disconnection point and insulation resistance measurement and method for measuring an insulation resistance
WO2012046331A1 (en) Failure detecting apparatus
US8970169B2 (en) Charging device for a high-voltage battery of a motor vehicle, charging system and method of operating a charging system
US20160099569A1 (en) Energy generating device with functionally reliable potential separation
WO2013001820A1 (en) System connection inverter device and control method therefor
US9509231B2 (en) Power converter system, damping system, and method of operating a power converter system
JP5939069B2 (en) Inverter
JP5472415B2 (en) Power converter
JP2017135889A (en) Power conversion device, and power conversion system
WO2016035159A1 (en) In-vehicle charging device
JP2013229960A (en) Power converter
JP6203012B2 (en) Grid-connected inverter device
US9806636B2 (en) DC/AC converter apparatus configurable as grid-connected or stand-alone and power conversion and generation system comprising such DC/AC converter apparatus
JP6385269B2 (en) Grid-connected inverter device
JP6033043B2 (en) Power converter
KR20170120954A (en) Apparatus for fault detection in photovoltaic inverter system
JP6484570B2 (en) Power converter
JP2014057393A (en) Power control device
KR20140102997A (en) An islanding detection apparatus and method with partial phase window monitoring method on grid connected inverter
JP2014147230A (en) Distributed power system
JP6658012B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630