JP2013191551A - Planar heating element, manufacturing method therefor, and electrode for planar heating element - Google Patents

Planar heating element, manufacturing method therefor, and electrode for planar heating element Download PDF

Info

Publication number
JP2013191551A
JP2013191551A JP2013025973A JP2013025973A JP2013191551A JP 2013191551 A JP2013191551 A JP 2013191551A JP 2013025973 A JP2013025973 A JP 2013025973A JP 2013025973 A JP2013025973 A JP 2013025973A JP 2013191551 A JP2013191551 A JP 2013191551A
Authority
JP
Japan
Prior art keywords
heating element
electrode
conductive
planar heating
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013025973A
Other languages
Japanese (ja)
Inventor
Eiji Akiba
英治 秋庭
Toshiaki Yamaguchi
俊朗 山口
Tadayoshi Koizumi
忠由 古泉
Hirotaka Mizuno
寛隆 水野
Akihisa Suzuki
陽久 鈴木
Tetsushi Yoshida
哲士 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsuchiya KK
Kuraray Living Co Ltd
Original Assignee
Tsuchiya KK
Kuraray Living Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuchiya KK, Kuraray Living Co Ltd filed Critical Tsuchiya KK
Priority to JP2013025973A priority Critical patent/JP2013191551A/en
Publication of JP2013191551A publication Critical patent/JP2013191551A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a planar heating element in which increase in electrical resistance due to poor contact with the conductive fiber of a heating part can be minimized.SOLUTION: In the planar heating element formed of a heating part that is formed of a fiber structure containing conductive fibers, and an electrode for electrifying the heating part, the electrode is formed of a conductive agent and a binder component. The electrode has a layer shape, and at least a part of which may be impregnated with the fiber structure of the heating part. The electrode may have a curved strip shape. The binder component may be a cured resin (especially, curable polyester resin). The conductive agent may contain metal particles. The electrode may further contain a metal wire. The conductive fiber may contain a carbon-based conductive agent (especially, carbon nanotube).

Description

本発明は、導電性繊維を含む繊維構造体で形成された発熱部を備えた面状発熱体及びその製造方法並びに面状発熱体用電極に関する。   The present invention relates to a planar heating element having a heating part formed of a fiber structure containing conductive fibers, a manufacturing method thereof, and an electrode for the planar heating element.

従来から、通電による面状発熱体は、数多く商品化されており、用途も多岐にわたっている。例えば、床暖房や壁暖房、融雪装置や凍結防止装置、結露防止や防曇装置、ホットカーペット、車輌シート、園芸用マット、防寒ジャケットや防寒ひざ掛けなどが商品化されている。その中でも、布帛状発熱体は、柔軟性に優れるため、特に広く用いられている。   Conventionally, a large number of planar heating elements by energization have been commercialized and have a wide variety of uses. For example, floor heating, wall heating, snow melting devices, anti-freezing devices, anti-condensation and anti-fogging devices, hot carpets, vehicle seats, horticultural mats, cold jackets and cold rugs have been commercialized. Among them, the fabric-like heating element is particularly widely used because of its excellent flexibility.

布帛状発熱体としては、通電により発熱する電線(ニクロム線やカーボン繊維など)をフェルトなどの生地に縫製などにより取り付けた発熱体が一般的である。一方、布帛状発熱体として、布帛を構成する繊維自体に導電性繊維を用い、この導電性繊維を電極で通電して発熱する面状発熱体も提案されている。   As the fabric heating element, a heating element in which an electric wire (such as a nichrome wire or carbon fiber) that generates heat when energized is attached to a cloth such as felt by sewing is common. On the other hand, as a fabric-like heating element, a planar heating element has also been proposed in which conductive fibers are used as the fibers constituting the cloth and the conductive fibers are energized with electrodes to generate heat.

特開2006−328747号公報(特許文献1)には、左右両端に平行に配設された2つの電極と、これらの電極間に差し渡され、かつ導電性塗料を繊維に塗布した導電性緯糸と、前記電極と略平行に延びる非導電性経糸とで形成された平織状の織布を備えた埋設用発熱体が開示されている。   Japanese Patent Application Laid-Open No. 2006-328747 (Patent Document 1) discloses two electrodes arranged in parallel on the left and right ends, and conductive wefts that are interposed between these electrodes and in which a conductive paint is applied to the fibers. And a heating element for embedding provided with a plain woven fabric formed of non-conductive warp extending substantially parallel to the electrode.

また、特開平9−326291号公報(特許文献2)には、複数の電極糸を収束させて所定間隔で複数配列した電極部に対し交差するように合成樹脂発熱糸を配し、電極部間及び合成樹脂発熱糸間に電気抵抗が大きい合成繊維を織り込んだ織物を備えた面状発熱体が開示されている。この文献には、電極糸として、ポリエステルマルチフィラメントを芯糸に錫メッキした銅箔テープをカバリングした電極糸が記載され、合成樹脂発熱糸として、カーボン粒子などの導電性粒子を分散した導電性樹脂を被覆した合成樹脂発熱糸が記載されている。   In Japanese Patent Laid-Open No. 9-326291 (Patent Document 2), synthetic resin heating yarns are arranged so that a plurality of electrode yarns converge and intersect with a plurality of electrode portions arranged at a predetermined interval. And a planar heating element including a woven fabric in which a synthetic fiber having a large electric resistance is woven between synthetic resin heating yarns. This document describes an electrode yarn in which a copper foil tape in which a polyester multifilament is tin-plated on a core yarn is covered as an electrode yarn, and a conductive resin in which conductive particles such as carbon particles are dispersed as a synthetic resin heating yarn. Synthetic resin heating yarns coated with are described.

これらの織物で形成された発熱体では、通常、導電糸と直交する方向に電極として金属細線などの電極糸を織り込み、導電糸を電極糸に接触させ、電極から導電糸に通電する方式が採用されている。この方式では、導電糸が緯糸に配置されていれば経糸の少なくとも一部に電極糸が配置され、また導電糸が経糸に配置されていれば緯糸の少なくとも一部に電極糸が配置され、導電性繊維と電極糸とは直交して接触することにより通電する。   In heating elements made of these fabrics, a method is usually adopted in which an electrode thread such as a fine metal wire is woven as an electrode in a direction orthogonal to the conductive thread, the conductive thread is brought into contact with the electrode thread, and the conductive thread is energized from the electrode. Has been. In this method, if the conductive yarn is arranged on the weft, the electrode yarn is arranged on at least a part of the warp, and if the conductive yarn is arranged on the warp, the electrode yarn is arranged on at least a part of the weft. The conductive fiber and the electrode yarn are energized by being brought into contact with each other at right angles.

しかし、この方式では、導電性繊維と電極糸とを充分に接触させるのが困難であり、接触不良により電気抵抗が生じて、電極部分での発熱が発生し易い。また、電極糸を繊維構造体に織り込むため、電極糸のパターン形状を湾曲状などに形成するのが困難である。さらに、金属細線などの電極糸では、繰り返しの屈曲により、断線する懸念があるため、これらを用いた面状発熱体は、繰り返し屈曲が必要となる用途には不適であった。   However, in this method, it is difficult to sufficiently contact the conductive fiber and the electrode yarn, and electrical resistance is generated due to poor contact, and heat is easily generated at the electrode portion. In addition, since the electrode yarn is woven into the fiber structure, it is difficult to form the pattern shape of the electrode yarn in a curved shape. Furthermore, in the case of electrode yarns such as fine metal wires, there is a concern of disconnection due to repeated bending. Therefore, a planar heating element using these is not suitable for applications that require repeated bending.

さらに、近年では、導電体であるカーボンナノチューブを繊維表面にコーティングした導電性繊維を用いて織物生地を作成し、この生地に電極を取り付けて通電させる面状発熱体も提案されている。   Furthermore, in recent years, a planar heating element has also been proposed in which a woven fabric is prepared using conductive fibers obtained by coating a carbon nanotube as a conductor on the fiber surface, and an electrode is attached to the fabric to energize the fabric.

特開2010−192218号公報(特許文献3)には、導電性繊維を含む編織物で形成された発熱部と、この発熱部に通電するための電極部とで構成された面状発熱体であって、前記導電性繊維が、有機繊維と、この有機繊維の表面を被覆するカーボンナノチューブとを含む面状発熱体が開示されている。この文献には、電極として、帯状電極部を導電性粘着剤で織物に貼着する方法が記載され、導電性粘着剤を有する帯状電極部として、導電粘着層を有する金属箔が例示されている。   Japanese Patent Application Laid-Open No. 2010-192218 (Patent Document 3) discloses a sheet heating element composed of a heat generating portion formed of a knitted fabric containing conductive fibers and an electrode portion for energizing the heat generating portion. And the planar heating element in which the said electroconductive fiber contains an organic fiber and the carbon nanotube which coat | covers the surface of this organic fiber is disclosed. This document describes a method of sticking a strip electrode portion to a fabric with a conductive adhesive as an electrode, and a metal foil having a conductive adhesive layer is exemplified as the strip electrode portion having a conductive adhesive. .

しかし、前記面状発熱体には、非導電性繊維である有機繊維を含むため、有機繊維が表面に露出する箇所など、有機繊維の介在により導電性繊維と電極との接触不良による電気抵抗が増加し、電極部で発熱が発生し易い。また、帯状電極部と発熱部との接着力が十分でなく、剥離や位置ずれが生じやすい。さらに、帯状電極部が金属箔で形成されているため、電極のパターン形状を容易に制御できず、耐屈曲性も低い。   However, since the planar heating element includes organic fibers that are non-conductive fibers, the electrical resistance due to poor contact between the conductive fibers and the electrodes due to the interposition of the organic fibers, such as portions where the organic fibers are exposed on the surface. It increases, and heat is likely to be generated at the electrode part. Further, the adhesive force between the belt-like electrode portion and the heat generating portion is not sufficient, and peeling or misalignment tends to occur. Furthermore, since the strip electrode portion is formed of a metal foil, the pattern shape of the electrode cannot be easily controlled, and the bending resistance is low.

特開2006−328747号公報(請求項1、段落[0017][0018]、図2)JP 2006-328747 A (Claim 1, paragraphs [0017] [0018], FIG. 2) 特開平9−326291号公報(請求項1、段落[0013]、実施例)JP-A-9-326291 (Claim 1, paragraph [0013], Example) 特開2010−192218号公報(請求項1、段落[0104][0105]、実施例)JP 2010-192218 A (Claim 1, paragraphs [0104] [0105], Examples)

従って、本発明の目的は、発熱部の導電性繊維に対する接触不良による電気抵抗の増加を抑制できる面状発熱体及びその製造方法並びに面状発熱体用電極を提供することにある。   Accordingly, an object of the present invention is to provide a planar heating element, a method for manufacturing the same, and an electrode for the planar heating element that can suppress an increase in electrical resistance due to poor contact of the heating part with the conductive fibers.

本発明の他の目的は、柔軟性及び耐屈曲性を併せ持つとともに、発熱部に対して強固に接着できる面状発熱体及びその製造方法並びに面状発熱体用電極を提供することにある。   Another object of the present invention is to provide a sheet heating element, a manufacturing method thereof, and an electrode for sheet heating element that have both flexibility and bending resistance and can be firmly bonded to a heating portion.

本発明のさらに他の目的は、湾曲状などの所望のパターン形状を簡便に形成できる面状発熱体用電極及びその製造方法並びに前記電極を備えた面状発熱体を提供することにある。   Still another object of the present invention is to provide an electrode for a planar heating element that can easily form a desired pattern shape such as a curved shape, a manufacturing method thereof, and a planar heating element including the electrode.

本発明の別の目的は、所定の温度分布のパターンで発熱を発生できる面状発熱体及びその製造方法並びに面状発熱体用電極を提供することにある。   Another object of the present invention is to provide a planar heating element capable of generating heat with a predetermined temperature distribution pattern, a method for manufacturing the same, and an electrode for the planar heating element.

本発明者らは、鋭意検討の結果、導電性繊維を含む繊維構造体で形成された発熱部を備えた面状発熱体の電極部を導電剤及びバインダー成分で形成することにより、発熱部の導電性繊維に対する接触不良による電気抵抗の増加を抑制できることを見出し、本発明を完成した。   As a result of intensive studies, the inventors of the present invention have formed an electrode part of a planar heating element including a heating part formed of a fiber structure containing conductive fibers with a conductive agent and a binder component, thereby The inventors have found that an increase in electrical resistance due to poor contact with conductive fibers can be suppressed, and have completed the present invention.

すなわち、本発明の面状発熱体は、導電性繊維を含む繊維構造体で形成された発熱部と、この発熱部に通電するための電極部とで形成された面状発熱体であって、前記電極部が導電剤及びバインダー成分(接着性樹脂)を含む。前記電極部は層状であり、かつ少なくとも一部(少なくとも導電剤の一部)が発熱部の繊維構造体に含浸していてもよい。前記電極部の平面形状は湾曲した線状又は帯状であってもよい。前記繊維構造体は織物であってもよい。前記繊維構造体はさらに非導電性繊維を含み、導電性繊維が経糸及び緯糸のいずれか一方に含まれていてもよい。本発明の面状発熱体は、前記導電性繊維と交差する方向に延びる複数の線状又は帯状電極部を有してもよい。前記帯状電極部間の距離は電極部の長さ方向で均一であってもよく、不均一であっても(又は変化していても)よい。前記バインダー成分は硬化樹脂(特に硬化性ポリエステル系樹脂)であってもよい。前記導電剤は金属粒子を含んでいてもよい。また、前記導電剤は炭素質粒子を含んでいてもよい。前記電極部はさらに金属線を含んでいてもよい。前記導電性繊維は炭素系導電剤(特にカーボンナノチューブ)を含んでいてもよい。前記電極部は、金属系導電剤及びバインダー成分を含む第1の層と、この第1の層に積層され、かつ炭素系導電剤及びバインダー成分を含む第2の層とで形成された積層体であってもよく、特に、第1の層が表面側に配設されていてもよい。   That is, the planar heating element of the present invention is a planar heating element formed by a heating part formed of a fiber structure containing conductive fibers and an electrode part for energizing the heating part, The electrode part includes a conductive agent and a binder component (adhesive resin). The electrode part may be layered, and at least a part (at least a part of the conductive agent) may be impregnated in the fiber structure of the heat generating part. The planar shape of the electrode part may be a curved line or a band. The fiber structure may be a woven fabric. The fiber structure further includes non-conductive fibers, and the conductive fibers may be included in any one of the warp and the weft. The planar heating element of the present invention may have a plurality of linear or strip electrode portions extending in a direction intersecting with the conductive fibers. The distance between the strip electrode portions may be uniform in the length direction of the electrode portions, or may be non-uniform (or changed). The binder component may be a curable resin (particularly a curable polyester resin). The conductive agent may contain metal particles. The conductive agent may contain carbonaceous particles. The electrode portion may further include a metal wire. The conductive fiber may contain a carbon-based conductive agent (particularly carbon nanotube). The electrode part is a laminate formed of a first layer containing a metal-based conductive agent and a binder component, and a second layer stacked on the first layer and containing a carbon-based conductive agent and a binder component. In particular, the first layer may be disposed on the surface side.

本発明には、導電剤及びバインダー成分を含む導電性ペーストを発熱部の表面に塗布する塗布工程を含む前記面状発熱体の製造方法も含まれる。この製造方法は、塗布した導電性ペーストを硬化する硬化工程をさらに含んでいてもよい。前記塗布工程において、スクリーン印刷で導電性ペーストを塗布してもよい。   The present invention also includes a method for manufacturing the planar heating element, which includes a coating process in which a conductive paste containing a conductive agent and a binder component is applied to the surface of the heat generating portion. This manufacturing method may further include a curing step of curing the applied conductive paste. In the application step, the conductive paste may be applied by screen printing.

本発明には、導電性繊維を含む繊維構造体で形成された発熱部と、この発熱部に通電するための電極部とで形成された面状発熱体の電極部に用いられる電極であって、導電剤及び接着性樹脂で形成された面状発熱体用電極も含まれる。   In the present invention, there is provided an electrode used for an electrode part of a planar heating element formed by a heating part formed of a fiber structure containing conductive fibers and an electrode part for energizing the heating part. In addition, an electrode for a planar heating element formed of a conductive agent and an adhesive resin is also included.

本発明では、導電性繊維を含む繊維構造体で形成された発熱部を備えた面状発熱体の電極部が導電剤及びバインダー成分で形成されているため、発熱部の導電性繊維に対する接触効率を高めることでき、接触不良による電気抵抗の増加を抑制できる。特に、バインダー成分を硬化性ポリエステル系樹脂で形成することにより、柔軟性及び耐屈曲性を併せ持つともに、発熱部に対して強固に接着できる。また、導電剤及びバインダー成分で形成することにより、従来の金属線を織り込む電極や金属箔で形成された電極と比べて、湾曲状などの所望のパターン形状を簡便に形成できる。さらに、このような電極で面状発熱体を形成し、電極部間の距離を電極部の長さ方向で不均一にする(又は変化させる)ことにより、所定の温度分布のパターンで発熱を発生できる。   In this invention, since the electrode part of the planar heating element provided with the heat generating part formed of the fiber structure containing the conductive fiber is formed of the conductive agent and the binder component, the contact efficiency of the heat generating part with respect to the conductive fiber. And increase in electrical resistance due to poor contact can be suppressed. In particular, by forming the binder component with a curable polyester resin, the binder component has both flexibility and bending resistance, and can be firmly bonded to the heat generating portion. Moreover, by forming with a conductive agent and a binder component, it is possible to easily form a desired pattern shape such as a curved shape as compared with a conventional electrode woven with a metal wire or an electrode formed with a metal foil. Furthermore, by forming a planar heating element with such electrodes and making the distance between the electrode parts nonuniform (or changing) in the length direction of the electrode parts, heat is generated with a predetermined temperature distribution pattern. it can.

図1は、実施例3で得られた面状発熱体の表面写真である。FIG. 1 is a surface photograph of the planar heating element obtained in Example 3. 図2は、実施例3で得られた面状発熱体の発熱状態を示すサーモグラフィによる発熱分布図である。FIG. 2 is a heat distribution diagram by thermography showing the heat generation state of the planar heating element obtained in Example 3. 図3は、実施例4で得られた面状発熱体の表面写真である。FIG. 3 is a surface photograph of the planar heating element obtained in Example 4. 図4は、実施例4で得られた面状発熱体の発熱状態を示すサーモグラフィによる発熱分布図である。FIG. 4 is a heat distribution diagram by thermography showing the heat generation state of the sheet heating element obtained in Example 4. 図5は、実施例5で得られた面状発熱体の表面写真である。FIG. 5 is a surface photograph of the planar heating element obtained in Example 5. 図6は、実施例5で得られた面状発熱体の発熱状態を示すサーモグラフィによる発熱分布図である。FIG. 6 is a heat distribution diagram by thermography showing the heat generation state of the sheet heating element obtained in Example 5. 図7は、実施例7で得られた面状発熱体の表面写真である。FIG. 7 is a surface photograph of the planar heating element obtained in Example 7. 図8は、実施例7で得られた面状発熱体の発熱状態を示すサーモグラフィによる発熱分布図である。FIG. 8 is a heat distribution diagram by thermography showing the heat generation state of the sheet heating element obtained in Example 7. 図9は、比較例2で得られた面状発熱体の発熱状態を示すサーモグラフィによる発熱分布図である。FIG. 9 is a heat distribution diagram by thermography showing the heat generation state of the sheet heating element obtained in Comparative Example 2. 図10は、比較例2で得られた面状発熱体の発熱分布を示すグラフである。FIG. 10 is a graph showing the heat generation distribution of the planar heating element obtained in Comparative Example 2. 図11は、実施例8で得られた面状発熱体の発熱状態を示すサーモグラフィによる発熱分布図である。FIG. 11 is a heat distribution diagram by thermography showing the heat generation state of the sheet heating element obtained in Example 8. 図12は、実施例8で得られた面状発熱体の発熱分布を示すグラフである。FIG. 12 is a graph showing the heat generation distribution of the planar heating element obtained in Example 8.

[電極部]
本発明の面状発熱体は、導電性繊維を含む繊維構造体で形成された発熱部と、この発熱部に通電するための電極部とで形成されている。前記電極部(面状発熱体用電極)は、導電剤及びバインダー成分(又は接着性樹脂)を含む。
[Electrode part]
The planar heating element of the present invention is formed of a heating part formed of a fiber structure containing conductive fibers and an electrode part for energizing the heating part. The electrode portion (surface heating element electrode) includes a conductive agent and a binder component (or adhesive resin).

(導電剤)
導電剤には、無機系導電剤、有機系導電剤が含まれる。
(Conductive agent)
The conductive agent includes an inorganic conductive agent and an organic conductive agent.

無機系導電剤としては、例えば、炭素類(例えば、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、人造黒鉛、膨張黒鉛、天然黒鉛、カーボンナノチューブ、フラーレンなど)、金属単体又は合金(例えば、銀、金、銅、クロム、ニッケル、鉄、マグネシウム、アルミニウム、白金、亜鉛、マンガン、タングステン、ステンレスなど)、金属化合物又はセラミックス類(例えば、硫化銅、フェライト、トルマリン、珪藻土など)などが挙げられる。これらの無機系導電剤は、単独で又は二種以上組み合わせて使用でき、例えば、炭素系導電剤と金属系導電剤とを組み合わせてもよい。また、複合体であってもよく、例えば、前記金属単体をメッキ又は蒸着した有機又は無機化合物(銀コート銅など)や、カーボンブラックやグラファイトを担持したセラミックスなどであってもよい。さらに、複合体は、非導電剤との複合体であってもよい。   Examples of the inorganic conductive agent include carbons (for example, carbon black such as furnace black, acetylene black, ketjen black, artificial graphite, expanded graphite, natural graphite, carbon nanotube, fullerene, etc.), simple metals or alloys (for example, Silver, gold, copper, chromium, nickel, iron, magnesium, aluminum, platinum, zinc, manganese, tungsten, stainless steel, etc.), metal compounds or ceramics (for example, copper sulfide, ferrite, tourmaline, diatomaceous earth, etc.) It is done. These inorganic conductive agents can be used alone or in combination of two or more. For example, a carbon-based conductive agent and a metal-based conductive agent may be combined. Further, it may be a composite, and may be, for example, an organic or inorganic compound (such as silver-coated copper) obtained by plating or vapor-depositing the metal alone, or a ceramic carrying carbon black or graphite. Furthermore, the composite may be a composite with a non-conductive agent.

有機系導電剤としては、導電性高分子、例えば、ポリアセチレン系樹脂(例えば、ポリアセチレンなど)、ポリチオフェン系重合体(例えば、ポリチオフェンなど)、ポリフェニレン系重合体(例えば、ポリパラフェニレンなど)、ポリピロール系重合体(例えば、ポリピロールなど)、ポリアニリン系重合体(例えば、ポリアニリンなど)、アクリル系重合体で変性されたポリエステル系樹脂などの導電性ポリマーが挙げられる。これらの有機系導電剤は、単独で又は二種以上組み合わせて使用できる。   Examples of organic conductive agents include conductive polymers such as polyacetylene-based resins (for example, polyacetylene), polythiophene-based polymers (for example, polythiophene), polyphenylene-based polymers (for example, polyparaphenylene), and polypyrrole-based materials. Examples thereof include conductive polymers such as a polymer (eg, polypyrrole), a polyaniline polymer (eg, polyaniline), and a polyester resin modified with an acrylic polymer. These organic conductive agents can be used alone or in combination of two or more.

これらの導電剤のうち、導電性の点から、無機系導電剤が好ましい。さらに、無機系導電剤の中でも、銀、金、銅、アルミニウムなどの金属を含む金属系導電剤、カーボンブラックやカーボンナノチューブなどの炭素系導電剤が汎用される。さらに、導電性の点から、金属系導電剤(特に金属粒子)を含むのが好ましく、銀系導電剤(例えば、銀単体、銀コート又はメッキ銅など)が特に好ましい。また、耐久性や耐腐食性に優れる点から、炭素系導電剤を含むのが好ましく、カーボンブラックやカーボンナノチューブなどの炭素質粒子が特に好ましい。   Of these conductive agents, inorganic conductive agents are preferred from the viewpoint of conductivity. Further, among inorganic conductive agents, metal conductive agents containing metals such as silver, gold, copper, and aluminum, and carbon conductive agents such as carbon black and carbon nanotubes are widely used. Further, from the viewpoint of conductivity, it is preferable to contain a metal-based conductive agent (particularly metal particles), and a silver-based conductive agent (for example, silver alone, silver coat or plated copper) is particularly preferable. Moreover, it is preferable that a carbon-type electrically conductive agent is included from the point which is excellent in durability or corrosion resistance, and carbonaceous particles, such as carbon black and a carbon nanotube, are especially preferable.

導電剤の形状としては、例えば、粒子状(粉末状)、板状(又は鱗片状)、繊維状、不定形状などが挙げられる。これらの形状のうち、略球状や多角体状などの粒子状、繊維状などが汎用され、発熱部を構成する繊維構造体の繊維間空隙に入り込み、導電性繊維と電極との接触不良を抑制できる点から、粒子状が好ましい。   Examples of the shape of the conductive agent include particulate (powder), plate (or scale), fiber, and indefinite shape. Of these shapes, particle shapes such as approximately spherical and polygonal shapes, fiber shapes, etc. are widely used, entering the inter-fiber voids of the fiber structure constituting the heat generating part, and suppressing poor contact between conductive fibers and electrodes From the point which can do, a particulate form is preferable.

導電剤の平均粒径(カーボンナノチューブなどの異方形状の場合、長径と短径との平均径)は、10nm〜100μm程度の範囲から適宜選択でき、電極の機械的特性や導電性などの点から、例えば、0.3〜80μm、好ましくは0.5〜50μm、さらに好ましくは1〜40μm(特に3〜50μm)程度であってもよく、炭素系導電剤(炭素質粒子)の場合、例えば、10〜500nm、好ましくは20〜300nm、さらに好ましくは30〜100nm(特に40〜80nm)程度であってもよい。   The average particle diameter of the conductive agent (in the case of an anisotropic shape such as carbon nanotube, the average diameter of the long diameter and the short diameter) can be appropriately selected from the range of about 10 nm to 100 μm, and the mechanical characteristics and conductivity of the electrode From 0.3 to 80 μm, preferably 0.5 to 50 μm, more preferably about 1 to 40 μm (particularly 3 to 50 μm), and in the case of a carbon-based conductive agent (carbonaceous particles), for example, 10 to 500 nm, preferably 20 to 300 nm, more preferably about 30 to 100 nm (particularly 40 to 80 nm).

(バインダー成分)
本発明では、電極部が前記導電剤とバインダー成分とで形成され、金属線や金属箔などで形成された電極と異なり、電極自体が柔軟性を有しているため、繊維構造体の繊維間(例えば、織物において、隣接する糸間や、経糸と緯糸との交点の隙間、経糸や緯糸がマルチフィラメント糸である場合、単繊維間など)にも導電剤を含むバインダー成分(特に硬化前のバインダー成分)が侵入可能であり、発熱部を構成する繊維構造体に含まれる導電性繊維と電極との接触不良を抑制できる。そのため、繊維構造体が非導電性繊維を含んでいても、非導電性繊維の形状に追従してバインダー成分が充填され、又は非導電性繊維がマルチフィラメント糸である場合は単繊維間の隙間にバインダー成分が侵入されるためか、電極と導電性繊維との接触効率を向上でき、かつ均一に両者を接触できる。
(Binder component)
In the present invention, the electrode portion is formed of the conductive agent and the binder component, and unlike the electrode formed of a metal wire or a metal foil, the electrode itself has flexibility, so that the interfibers of the fiber structure (For example, in a woven fabric, a binder component containing a conductive agent (especially before curing) between adjacent yarns, a gap between intersections of warp and weft, or between single fibers when warp and weft are multifilament yarns) The binder component) can penetrate, and poor contact between the conductive fiber and the electrode contained in the fiber structure constituting the heat generating portion can be suppressed. Therefore, even if the fiber structure contains non-conductive fibers, the binder component is filled following the shape of the non-conductive fibers, or when the non-conductive fibers are multifilament yarns, the gaps between the single fibers This is because the binder component penetrates into the electrode, so that the contact efficiency between the electrode and the conductive fiber can be improved, and both can be contacted uniformly.

バインダー成分としては、慣用の接着剤や粘着剤が利用できるが、前記導電剤を発熱部の繊維構造体に強固に固定できる点から、接着剤が好ましい。   As the binder component, a conventional adhesive or pressure-sensitive adhesive can be used, but an adhesive is preferable from the viewpoint that the conductive agent can be firmly fixed to the fiber structure of the heat generating portion.

接着剤には、慣用の接着剤、熱可塑性樹脂(ポリオレフィン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、熱可塑性ポリウレタン系樹脂など)、硬化性樹脂(硬化性アクリル系樹脂、硬化性ポリエステル系樹脂、ビニルエステル樹脂、エポキシ樹脂、メラミン系樹脂、尿素樹脂、フェノール系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ウレタン系樹脂など)、ゴム又は熱可塑性エラストマーなどが挙げられる。これらの接着剤は、単独で又は二種以上組み合わせて使用できる。   For adhesives, conventional adhesives, thermoplastic resins (polyolefin resins, acrylic resins, vinyl acetate resins, styrene resins, polyester resins, polyamide resins, thermoplastic polyurethane resins, etc.), curable resins (Curable acrylic resin, curable polyester resin, vinyl ester resin, epoxy resin, melamine resin, urea resin, phenol resin, silicone resin, polyimide resin, urethane resin, etc.), rubber or thermoplastic elastomer Etc. These adhesives can be used individually or in combination of 2 or more types.

これらの接着剤のうち、発熱部の繊維構造体に対して強固に接着し、一体化できる点から、硬化性アクリル系樹脂、硬化性ポリエステル系樹脂、ウレタン系樹脂などの硬化性樹脂を熱や光で硬化した硬化樹脂(特に熱硬化性樹脂を硬化した硬化樹脂)が好ましく、前記繊維構造体との組み合わせにおいて接着性と柔軟性と耐屈曲性とを両立できる点から、硬化性ポリエステル系樹脂が特に好ましい。   Among these adhesives, curable resins such as curable acrylic resins, curable polyester resins, and urethane resins can be heated or heated because they can be firmly bonded and integrated with the fiber structure of the heat generating portion. A cured resin cured with light (especially a cured resin obtained by curing a thermosetting resin) is preferable, and it is possible to achieve both adhesiveness, flexibility, and bending resistance in combination with the fiber structure. Is particularly preferred.

硬化性ポリエステル系樹脂には、不飽和ポリエステル、共重合ポリエステルが含まれる。不飽和ポリエステルは、柔軟性及び耐屈曲性に優れる点から、ジカルボン酸成分として、重合性ジカルボン酸成分(無視マレイン酸、マレイン酸、フマル酸など)に加えて、アジピン酸やセバシン酸などのC6−16脂肪族ジカルボン酸を含む不飽和ポリエステル;ジオール成分として、長鎖アルカンジオール(ブタンジオールなどのC4−10アルカンジオールなど)やポリアルキレングリコール(ジエチレングリコール、ジプロピレングリコール、ポリテトラメチレングリコールなど)などの長鎖ジオール成分を含む不飽和ポリエステル;前記脂肪族ジカルボン酸成分及び前記長鎖ジオール成分を含む不飽和ポリエステルなどであってもよい。共重合ポリエステルも、エチレンテレフタレートやブチレンテレフタレートなどのC2−4アルキレンC6−14アリレート単位に加えて、前記脂肪族ジカルボン酸成分、前記長鎖ジオール成分の単位を含んでいてもよく、さらに硬化剤に対する反応性基(例えば、ヒドロキシル基、カルボキシル基、アミノ基など)を有する単量体の単位を含んでいてもよい。硬化剤は、例えば、イソシアネート系硬化剤、アミン系硬化剤、酸無水物系硬化剤、イミダゾール系硬化剤(特にポリイソシアネートなどのイソシアネート系硬化剤)などであってもよい。 The curable polyester resin includes unsaturated polyester and copolymer polyester. Unsaturated polyesters are excellent in flexibility and flex resistance, and as a dicarboxylic acid component, in addition to polymerizable dicarboxylic acid components (ignored maleic acid, maleic acid, fumaric acid, etc.), C such as adipic acid and sebacic acid. Unsaturated polyester containing 6-16 aliphatic dicarboxylic acid; long chain alkanediol (such as C 4-10 alkanediol such as butanediol) or polyalkylene glycol (diethylene glycol, dipropylene glycol, polytetramethylene glycol, etc.) as the diol component The unsaturated polyester containing a long-chain diol component such as); an unsaturated polyester containing the aliphatic dicarboxylic acid component and the long-chain diol component may be used. The copolyester may also contain units of the aliphatic dicarboxylic acid component and the long-chain diol component in addition to C 2-4 alkylene C 6-14 arylate units such as ethylene terephthalate and butylene terephthalate, and further curing. It may contain a monomer unit having a reactive group (for example, a hydroxyl group, a carboxyl group, an amino group, etc.) with respect to the agent. The curing agent may be, for example, an isocyanate curing agent, an amine curing agent, an acid anhydride curing agent, an imidazole curing agent (particularly an isocyanate curing agent such as polyisocyanate), and the like.

バインダー成分の割合は、導電剤100質量部に対して1〜100質量部程度の範囲から選択でき、例えば、3〜80質量部、好ましくは5〜60質量部、さらに好ましくは10〜50質量部(特に10〜40質量部)程度であってもよい。バインダー成分の割合が多すぎると、導電性が低下し、逆に少なすぎると接着性が低下する。前記導電剤は、このような割合(濃度)でバインダー成分中に均一に分散しているのが好ましい。   The ratio of the binder component can be selected from the range of about 1 to 100 parts by mass with respect to 100 parts by mass of the conductive agent, for example, 3 to 80 parts by mass, preferably 5 to 60 parts by mass, and more preferably 10 to 50 parts by mass. It may be about (especially 10 to 40 parts by mass). When the ratio of the binder component is too large, the conductivity is lowered, and when it is too small, the adhesiveness is lowered. The conductive agent is preferably uniformly dispersed in the binder component at such a ratio (concentration).

(他の添加剤)
電極部には、さらに慣用の添加剤、例えば、安定剤(銅化合物などの熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤など)、分散剤、微粒子、着色剤、帯電防止剤、難燃剤、可塑剤、潤滑剤、結晶化速度遅延剤などを含有していてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。これらの添加剤は、成形体表面に担持されていてもよく、繊維中に含まれていてもよい。
(Other additives)
In the electrode section, further conventional additives such as stabilizers (heat stabilizers such as copper compounds, ultraviolet absorbers, light stabilizers, antioxidants), dispersants, fine particles, colorants, antistatic agents, A flame retardant, a plasticizer, a lubricant, a crystallization rate retarder, and the like may be contained. These additives can be used alone or in combination of two or more. These additives may be carried on the surface of the molded body or may be contained in the fiber.

(金属線)
電極部は、導電剤及びバインダー成分(必要に応じて添加剤)のみで形成されていてもよいが、導電性を向上させるために、さらに金属線を含んでいてもよい。本発明では、金属線を使用しても、金属線と発熱部の導電性繊維との間に、前記導電性及びバインダー成分が緊密に介在するため、電極と導電性繊維との接触不良を抑制できる。
(Metal wire)
The electrode part may be formed of only a conductive agent and a binder component (additive as required), but may further include a metal wire in order to improve conductivity. In the present invention, even when a metal wire is used, since the conductivity and the binder component are closely interposed between the metal wire and the conductive fiber of the heat generating portion, the contact failure between the electrode and the conductive fiber is suppressed. it can.

金属線は、前記導電剤の項で例示された金属単体又は合金を表面に有していればよい。前記金属単体及び合金のうち、導電性などの点から、クロム、ニッケル、銅、銀、金、アルミニウムなどの金属が汎用される。   The metal wire should just have the metal simple substance or alloy illustrated by the term of the said electrically conductive agent on the surface. Among the simple metals and alloys, metals such as chromium, nickel, copper, silver, gold, and aluminum are generally used from the viewpoint of conductivity.

金属線は、編織性などの点から、合成繊維(ポリエステル繊維やポリアミド繊維など)に金属細線をカバリングしたカバリング糸であってもよい。金属細線の平均径は、例えば、1〜500μm、好ましくは5〜300μm、さらに好ましくは10〜100μm(特に20〜50μm)程度である。合成繊維の平均繊度は、例えば、20〜500dtex、好ましくは30〜300dtex、さらに好ましくは50〜200dtex程度である。金属線は一つの電極に複数本配設してもよく、例えば、2〜100本、好ましくは5〜50本、さらに好ましくは10〜30本程度であってもよい。   The metal wire may be a covering yarn obtained by covering a synthetic fiber (such as polyester fiber or polyamide fiber) with a thin metal wire from the viewpoint of knitting property. The average diameter of the fine metal wires is, for example, about 1 to 500 μm, preferably 5 to 300 μm, more preferably 10 to 100 μm (particularly 20 to 50 μm). The average fineness of the synthetic fiber is, for example, about 20 to 500 dtex, preferably about 30 to 300 dtex, and more preferably about 50 to 200 dtex. A plurality of metal wires may be disposed on one electrode, for example, 2 to 100, preferably 5 to 50, and more preferably about 10 to 30.

金属線は、発熱部の繊維構造体が編織物である場合、編織物の構成糸の一部として組み込んでもよい。金属線は、各電極において複数本導入してもよく、例えば、2〜100本、好ましくは3〜50本、さらに好ましくは5〜30本(特に10〜20本)程度であってもよい。   When the fiber structure of the heat generating portion is a knitted fabric, the metal wire may be incorporated as a part of the constituent yarn of the knitted fabric. A plurality of metal wires may be introduced in each electrode, and may be, for example, about 2 to 100, preferably 3 to 50, more preferably about 5 to 30 (especially 10 to 20).

金属線は、用途に応じて使用でき、高い発熱性が要求される用途では有効であるが、柔軟性を要求される用途や電極の形状を湾曲した線状又は帯状に形成する用途では、金属線と組み合わせることなく、導電剤及びバインダー成分単独で電極を形成するのが好ましい。   The metal wire can be used depending on the application and is effective in applications that require high heat generation, but in applications that require flexibility and in applications where the electrode shape is formed in a curved line or strip, the metal wire It is preferable to form an electrode with a conductive agent and a binder component alone without combining with a wire.

(電極部の形状)
電極部(又は電極)の形状(面形状)は、発熱部の形状に応じて適宜選択でき、特に限定されず、線状であってもよいが、通常、矩形状シートである発熱部の両端部に配設されるため、帯状(又は細幅状)である。さらに、後述するように電極部は塗布工程を経て形成されるため、発熱体の表面で層状に形成され、かつ層状電極部の少なくとも一部(特に、少なくとも導電剤の一部)が、発熱部の繊維構造体に含浸(又は侵入、浸透)しているのが好ましい。電極部が繊維構造体の内部に含浸する(充填される)ことにより、電極部と導電性繊維とを均一に接触でき、接触不良を抑制できる。
(Shape of electrode part)
The shape (surface shape) of the electrode part (or electrode) can be appropriately selected according to the shape of the heat generating part, and is not particularly limited, and may be linear, but usually both ends of the heat generating part that is a rectangular sheet. Since it is disposed in the part, it has a strip shape (or narrow width). Furthermore, since the electrode part is formed through a coating process as will be described later, it is formed in layers on the surface of the heating element, and at least a part of the layered electrode part (particularly, at least a part of the conductive agent) It is preferable that the fiber structure is impregnated (or penetrated or penetrated). By impregnating (filling) the inside of the fiber structure with the electrode part, the electrode part and the conductive fiber can be contacted uniformly, and contact failure can be suppressed.

電極部は、積層構造を有していてもよく、第2の導電剤及びバインダー成分を含む第2の層との積層体であってもよい。積層体は、経済性などの点から、例えば、銀粒子などの金属系導電剤及びバインダー成分を含む第1の層と、カーボンブラックなどの炭素系導電剤及びバインダー成分を含む第2の層との積層体であってもよい。   The electrode part may have a laminated structure, and may be a laminated body with a second layer containing a second conductive agent and a binder component. From the viewpoint of economic efficiency, for example, the laminate includes a first layer containing a metallic conductive agent such as silver particles and a binder component, and a second layer containing a carbon conductive agent such as carbon black and a binder component. The laminated body may be sufficient.

積層順序は、特に限定されず、第1の層及び第2の層のうち、いずれの層が内層(導電性繊維を含む繊維構造体と接触する側の層)であってもよい。導電性の高い第1の層を保護して耐久性(耐腐食性)を向上できる点から、炭素系導電剤及びバインダー成分を含む第2の層を表層としてもよく、導電性が高く、大きな電流を流すための金属系導電剤を表層に偏在させて通電性を向上できる点から、金属系導電剤及びバインダー成分を含む第1の層を表層としてもよい。特に、導電性繊維が炭素系導電剤を含む導電剤で形成されている場合、炭素系導電剤及びバインダー成分を含む第2の層を内層とすることにより、炭素系導電剤を含む導電性繊維と親和性の高い第2の層を繊維構造体(織物の場合、経糸と緯糸との交点など)に染み込ませるとともに、導電性が高く、大きな電流を流すための金属系導電剤を表層に偏在させて通電性を向上できる。さらに、第2の層を内層とする構造において、第1の層の上に、炭素系導電剤及びバインダー成分を含む第3の層を、さらに表層として積層した3層構造として、第1の層を保護してもよい。   The order of lamination is not particularly limited, and any of the first layer and the second layer may be an inner layer (layer on the side in contact with the fiber structure containing conductive fibers). From the point that durability (corrosion resistance) can be improved by protecting the highly conductive first layer, the second layer containing a carbon-based conductive agent and a binder component may be used as a surface layer, and the conductivity is high and large. The first layer containing the metal-based conductive agent and the binder component may be used as the surface layer because a metal-based conductive agent for passing an electric current can be unevenly distributed on the surface layer to improve the conductivity. In particular, when the conductive fiber is formed of a conductive agent including a carbon-based conductive agent, the conductive fiber including the carbon-based conductive agent is formed by setting the second layer including the carbon-based conductive agent and the binder component as an inner layer. The second layer with high affinity to the fiber structure (in the case of woven fabric, the intersection of warp and weft, etc.) is impregnated, and the metal conductive agent for high current flow is unevenly distributed on the surface layer. It is possible to improve the electrical conductivity. Further, in the structure in which the second layer is an inner layer, the first layer has a three-layer structure in which a third layer containing a carbon-based conductive agent and a binder component is further laminated as a surface layer on the first layer. May be protected.

金属系導電剤及びバインダー成分を含む第1の層と、炭素系導電剤及びバインダー成分を含む第2の層との厚み比は、導電剤の割合に応じて適宜選択できるが、塗布量(固形分重量換算)の比率において、例えば、第1の層/第2の層=200/1〜0.2/1、好ましくは50/1〜0.5/1程度である。第1の層の厚みが薄すぎると、大きな電流を流すのが困難となる一方で、第2の層の厚みが薄すぎると、発熱部から第1の層への接触効率が低下するため、いずれにおいても導電性が低下する。   The thickness ratio between the first layer containing the metal-based conductive agent and the binder component and the second layer containing the carbon-based conductive agent and the binder component can be appropriately selected according to the ratio of the conductive agent, but the coating amount (solid For example, the ratio of the first weight / the second weight is 200/1 to 0.2 / 1, preferably about 50/1 to 0.5 / 1. If the thickness of the first layer is too thin, it becomes difficult to flow a large current, whereas if the thickness of the second layer is too thin, the contact efficiency from the heat generating portion to the first layer is reduced. In either case, the conductivity decreases.

電極が金属線を含む場合、導電剤と金属線とが接触していればよく、例えば、層状の電極部中に金属線が含まれていてもよく、層状の電極部の下部に金属線が密着していてもよい。さらに、金属線と組み合わせる導電剤は、金属系導電剤、炭素系導電剤が汎用され、導電性を向上できる点から、金属系導電剤であってもよく、金属線を保護できる点から、炭素系導電剤であってもよく、特に、導電性と表面保護性とのバランスに優れる点から、炭素系導電剤が好ましい。   When the electrode includes a metal wire, it is sufficient that the conductive agent and the metal wire are in contact with each other. For example, the metal electrode may be included in the layered electrode portion, and the metal wire is formed below the layered electrode portion. It may be in close contact. Furthermore, as the conductive agent combined with the metal wire, a metal-based conductive agent and a carbon-based conductive agent are widely used, and the conductive agent may be a metal-based conductive agent because it can improve conductivity. A carbon-based conductive agent may be used, and a carbon-based conductive agent is particularly preferable from the viewpoint of excellent balance between conductivity and surface protection.

線状又は帯状の電極部は、発熱部の導電性繊維と交差する方向に延びていればよく、例えば、発熱部が緯糸に導電性繊維を使用した織物で形成された発熱体では、経糸の方向に帯状の電極部の長さ方向が平行となるように形成してもよい。   The linear or belt-like electrode portion only needs to extend in a direction intersecting with the conductive fibers of the heat generating portion. For example, in a heating element in which the heat generating portion is formed of a woven fabric using conductive fibers for wefts, You may form so that the length direction of a strip | belt-shaped electrode part may become parallel to a direction.

さらに、電極部が金属線と組み合わせることなく、導電剤及びバインダー成分単独で形成されている場合、塗布により容易に所望の形状に電極部を形成できるため、発熱体表面でのパターン形状は、湾曲又は屈曲した帯状に形成されていてもよい。そのため、ストレートな帯状及び/又は湾曲した帯状を組み合わせて、模様を形成し、電極の形状に意匠性を付与するのも容易である。   Furthermore, when the electrode part is formed of a conductive agent and a binder component alone without being combined with a metal wire, the electrode part can be easily formed into a desired shape by coating, so the pattern shape on the surface of the heating element is curved. Alternatively, it may be formed in a bent band shape. Therefore, it is easy to combine a straight belt shape and / or a curved belt shape to form a pattern and impart design properties to the shape of the electrode.

電極部は、前記発熱部に通電するための少なくとも一対の電極部を含む複数の電極部が形成されていてもよい。本発明では、発熱体の発熱面における発熱量が電極部間の距離に反比例する性質を利用して、対となる帯状電極部間の距離を制御することにより、発熱量の分布が異なる発熱体を作製できる。詳しくは、帯状電極部間の距離を電極部の長さ方向で均一に配置すること、すなわち両電極部を平行に配置することにより、全発熱面で略均一に発熱可能な発熱体(発熱量の分布が均一な発熱体)を調製できる。一方、帯状電極部間の距離を電極部の長さ方向で不均一に(変化させて)配置すること、例えば、直線状(ストレート)の帯状電極部同士を一方の方向(電極が延びる方向)に向かうにつれて拡がる(又は狭まる)形態(例えば、略ハ字状の形態など)に配置することや、一方の方向(電極が延びる方向)に向かうにつれて一対の電極に対して他方の電極の距離が一方の端部で小さく、中間部で大きく、他方の端部で小さくなる形態(例えば、湾曲した帯状電極部とストレートの帯状電極部とを組み合わせた略C字状の形態など)に配置することにより、発熱面で不均一に発熱できる発熱体(発熱量の分布が不均一であり、発熱量の分布に傾斜構造を有する発熱体)を調製でき、例えば、略C字状の形態に配置することにより、中間部の発熱量が抑制されたパターンで発熱可能な発熱体を調製できる。そのため、一対の電極部の形態は、直線状、湾曲状(ループ状、螺旋状も含む)、屈曲状、階段状などの種々のパターンの電極要素を組み合わせて形成できる。   The electrode part may be formed with a plurality of electrode parts including at least a pair of electrode parts for energizing the heat generating part. In the present invention, by utilizing the property that the amount of heat generated on the heat generating surface of the heat generating element is inversely proportional to the distance between the electrode parts, the heat generating elements having different distributions of heat generation are controlled by controlling the distance between the pair of strip electrode parts. Can be produced. Specifically, the heating element (heat generation amount) that can generate heat substantially uniformly on the entire heating surface by arranging the distance between the strip electrode parts uniformly in the length direction of the electrode parts, that is, by arranging both electrode parts in parallel. Can be prepared). On the other hand, the distance between the strip electrode portions is arranged non-uniformly (changed) in the length direction of the electrode portions, for example, straight strip electrode portions are arranged in one direction (the direction in which the electrodes extend). It is arranged in a form that expands (or narrows) as it goes toward (for example, a substantially C-shaped form), or the distance between the other electrode with respect to a pair of electrodes as it goes in one direction (the direction in which the electrode extends) It is arranged in a form that is small at one end, large at the middle part, and small at the other end (for example, a substantially C-shaped form in which a curved strip electrode portion and a straight strip electrode portion are combined). Thus, a heating element that can generate heat unevenly on the heating surface (a heating element having a non-uniform distribution of heat generation and a gradient structure in the distribution of heat generation) can be prepared, for example, arranged in a substantially C-shaped form. Heat generated in the middle There can be prepared heatable heating element was suppressed pattern. Therefore, the form of the pair of electrode portions can be formed by combining various patterns of electrode elements such as a linear shape, a curved shape (including a loop shape and a spiral shape), a bent shape, and a stepped shape.

電極部のサイズは、発熱部の形状に応じて選択できる。例えば、電極部が帯状の場合、平均幅は、発熱部のサイズに応じて選択でき、例えば、1〜100mm、好ましくは2〜50mm、さらに好ましくは3〜30mm程度であってもよい。   The size of the electrode part can be selected according to the shape of the heat generating part. For example, when an electrode part is strip | belt shape, an average width can be selected according to the size of a heat-emitting part, for example, 1-100 mm, Preferably it is 2-50 mm, More preferably, it may be about 3-30 mm.

[発熱部]
発熱部は、導電性繊維を含む繊維構造体で形成されている。
[Heat generation part]
The heat generating part is formed of a fiber structure including conductive fibers.

(導電性繊維)
導電性繊維は、慣用の導電性繊維が利用できるが、編織性などに適した柔軟性を有する点から、有機繊維と導電剤とで形成された導電性繊維が好ましい。
(Conductive fiber)
Conventional conductive fibers can be used as the conductive fibers, but conductive fibers formed of organic fibers and a conductive agent are preferable from the viewpoint of flexibility suitable for knitting.

有機繊維としては、発熱部に柔軟性及びしなやかさを付与するために使用され、非合成繊維[例えば、天然繊維(綿、麻、ウール、絹など)、再生繊維(レーヨン、キュプラなど)、半合成繊維(アセテート繊維など)]であってもよいが、導電剤との密着性などの点から、少なくとも合成繊維を含むのが好ましい。   Organic fibers are used to impart flexibility and flexibility to the heat generating part, such as non-synthetic fibers [for example, natural fibers (cotton, hemp, wool, silk, etc.), regenerated fibers (rayon, cupra, etc.), half Synthetic fibers (such as acetate fibers)] may be used, but it is preferable to include at least synthetic fibers from the viewpoint of adhesion to a conductive agent.

合成繊維としては、例えば、ポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維、アクリル系繊維、ポリウレタン繊維、ポリビニルアルコール系繊維、ポリ塩化ビニリデン系繊維、ポリ塩化ビニル系繊維などが挙げられる。これらの合成樹脂は、単独で又は二種以上組み合わせて使用できる。   Examples of the synthetic fiber include polyester fiber, polyamide fiber, polyolefin fiber, acrylic fiber, polyurethane fiber, polyvinyl alcohol fiber, polyvinylidene chloride fiber, and polyvinyl chloride fiber. These synthetic resins can be used alone or in combination of two or more.

合成繊維が2種以上の重合体で形成されている場合は、2種以上の重合体の混合物(アロイ樹脂)で形成された混合紡糸繊維であってもよいし、又は2種以上の重合体が複数の相分離構造を形成した複合紡糸繊維であってもよい。さらに、導電剤の有無によって相分離構造を形成してもよい。複合紡糸繊維には、例えば、海島構造、芯鞘構造、サイドバイサイド型貼合せ構造、海島構造と芯鞘構造とが組み合わさった構造、サイドバイサイド型貼合せ構造と海島構造が組み合わさった構造などが挙げられる。導電剤の有無によって相分離構造を形成した複合紡糸繊維では、導電剤を含む相が表面に配置される。   When the synthetic fiber is formed of two or more types of polymers, it may be a mixed spun fiber formed from a mixture (alloy resin) of two or more types of polymers, or two or more types of polymers. May be a composite spun fiber in which a plurality of phase separation structures are formed. Furthermore, a phase separation structure may be formed depending on the presence or absence of a conductive agent. Examples of the composite spun fiber include a sea-island structure, a core-sheath structure, a side-by-side laminated structure, a structure in which a sea-island structure and a core-sheath structure are combined, and a structure in which a side-by-side laminated structure and a sea-island structure are combined. It is done. In the composite spun fiber in which the phase separation structure is formed by the presence or absence of the conductive agent, the phase containing the conductive agent is arranged on the surface.

これらの合成繊維のうち、導電剤の付着性が良好であり、しかも耐屈曲疲労性及び熱的特性に優れる点から、ポリエステル繊維(特に、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリC2−4アルキレンテレフタレート繊維)、ポリアミド系樹脂(特に、ポリアミド6、ポリアミド66などの脂肪族ポリアミド繊維)が好ましく、特にポリエステル繊維が熱安定性及び寸法安定性が良好である点からより好ましい。 Among these synthetic fibers, polyester fibers (especially poly C 2-4 alkylene such as polyethylene terephthalate and polybutylene terephthalate, etc.) have good adhesion to the conductive agent and excellent bending fatigue resistance and thermal characteristics. Terephthalate fibers) and polyamide resins (especially aliphatic polyamide fibers such as polyamide 6 and polyamide 66) are preferred, and polyester fibers are more preferred from the viewpoint of good thermal stability and dimensional stability.

有機繊維の横断面形状は特に制限されず、丸形断面を有する通常の有機繊維であってもよく、丸形断面以外の異形断面を有する有機繊維であってもよい。異形断面繊維である場合は、その横断面形状は、例えば、方形、多角形、三角形、中空形、偏平形、多葉又は星形、ドッグボーン型、T字形、V字形などのいずれであってもよい。これらの形状のうち、丸形断面が汎用されるが、導電剤の付着性を向上させるために、異形断面形状であってもよい。異形断面形状としては、長さ方向に延びる複数(例えば、2〜10個、好ましくは3〜6個程度)の凹部又は溝部を有する形状となる横断面形状、例えば、多葉又は星形状(例えば、3〜6葉状)が好ましい。多葉又は星形状は、横断面の中心からみて、対称な位置に複数の凹部を有する形状であってもよい。このような異形断面形状は、断面丸形形状の芯鞘型複合紡糸繊維における芯部の形状であってもよい。   The cross-sectional shape of the organic fiber is not particularly limited, and may be a normal organic fiber having a round cross section or an organic fiber having an irregular cross section other than a round cross section. In the case of a modified cross-section fiber, the cross-sectional shape thereof is any of, for example, a square, a polygon, a triangle, a hollow, a flat, a multi-leaf or star, a dogbone, a T-shape, a V-shape, etc. Also good. Of these shapes, a round cross-section is widely used, but an irregular cross-sectional shape may be used in order to improve the adhesion of the conductive agent. As an irregular cross-sectional shape, a cross-sectional shape that has a plurality of (for example, about 2 to 10, preferably about 3 to 6) recesses or grooves extending in the length direction, for example, a multileaf or star shape (for example, 3-6 leaves) is preferred. The multilobal or star shape may be a shape having a plurality of concave portions at symmetrical positions when viewed from the center of the cross section. Such an irregular cross-sectional shape may be the shape of the core portion of the core-sheath type composite spun fiber having a round cross-sectional shape.

有機繊維は、モノフィラメント糸、双糸、マルチフィラメント糸、加工したマルチフィラメント糸、紡績糸、テープヤーン、及びそれらの組み合わせなどのいずれであってもよい。マルチフィラメント糸や紡績糸などの複合糸の場合、同一の有機繊維同士を組み合わせた複合糸であってもよく、異なる種類の有機繊維を組み合わせた複合糸であってもよい。さらに、目的の繊度とするために、複数のマルチフィラメント糸を合糸してもよい。マルチフィラメント糸の本数は、目的の繊度に応じて調整すればよく、例えば、5〜500本、好ましくは8〜400本、さらに好ましくは10〜300本程度である。   The organic fiber may be any of monofilament yarn, twin yarn, multifilament yarn, processed multifilament yarn, spun yarn, tape yarn, and combinations thereof. In the case of a composite yarn such as a multifilament yarn or a spun yarn, it may be a composite yarn obtained by combining the same organic fibers or a composite yarn obtained by combining different types of organic fibers. Furthermore, in order to obtain the desired fineness, a plurality of multifilament yarns may be combined. What is necessary is just to adjust the number of multifilament yarns according to the target fineness, for example, 5-500, Preferably it is 8-400, More preferably, it is about 10-300.

有機繊維の平均繊度(マルチフィラメント糸などの複合糸の場合、合計繊度)は特に制限されないが、例えば、目標とする面状発熱体の目付け、厚み、柔軟性によって、10〜1000dtexの範囲から選択でき、例えば、30〜500dtex、好ましくは50〜400dtex、さらに好ましくは100〜300dtex程度である。   The average fineness of organic fibers (total fineness in the case of composite yarns such as multifilament yarns) is not particularly limited, but is selected from the range of 10 to 1000 dtex depending on, for example, the target basis weight, thickness, and flexibility of the planar heating element For example, it is about 30 to 500 dtex, preferably about 50 to 400 dtex, and more preferably about 100 to 300 dtex.

導電剤としては、前記電極の項で例示された導電剤を利用できる。前記導電剤のうち、軽量で柔軟性に富む点から、カーボンブラックやカーボンナノチューブなどの炭素系導電剤が好ましく、繊維の特性を損なうことなく、高い導電性を実現できる点から、カーボンナノチューブが特に好ましい。   As the conductive agent, the conductive agent exemplified in the section of the electrode can be used. Among the conductive agents, carbon-based conductive agents such as carbon black and carbon nanotubes are preferable because they are lightweight and flexible, and carbon nanotubes are particularly preferable because high conductivity can be realized without impairing fiber properties. preferable.

導電剤は、有機繊維の表面に存在していればよく、例えば、有機繊維の表面に導電剤が付着していてもよく、有機繊維中に導電剤が含まれていてもよい。有機繊維の表面は、例えば、導電剤又は導電剤を含む層によって、例えば、50%以上、好ましくは60%以上、さらに好ましくは80%以上(特に100%)の面積割合で被覆されていてもよい。   The conductive agent only needs to be present on the surface of the organic fiber. For example, the conductive agent may adhere to the surface of the organic fiber, or the conductive agent may be included in the organic fiber. The surface of the organic fiber may be covered with an area ratio of, for example, 50% or more, preferably 60% or more, more preferably 80% or more (particularly 100%), for example, with a conductive agent or a layer containing a conductive agent. Good.

有機繊維の表面に導電剤が付着された導電性繊維としては、有機繊維の表面にカーボンナノチューブが付着又は被覆した導電性繊維が好ましく、例えば、特開2010−59561号公報、特開2010−192218号公報に記載の導電性繊維を利用できる。カーボンナノチューブは、バインダーを介して付着していてもよい。市販品としては、クラレリビング(株)製「CNTEC」などが挙げられる。   The conductive fiber having a conductive agent attached to the surface of the organic fiber is preferably a conductive fiber in which carbon nanotubes are attached or coated on the surface of the organic fiber. For example, JP 2010-59561 A, JP 2010-192218 A. Can be used. The carbon nanotubes may be attached via a binder. Examples of commercially available products include “CNTEC” manufactured by Kuraray Living Co., Ltd.

有機繊維中に導電剤が含まれた導電性繊維としては、導電剤を練り込んだ導電層を表層に有する複合繊維であってもよく、芯鞘型複合繊維が好ましい。芯鞘型複合繊維において、鞘部の断面形状は、前記多葉又は星形状であってもよい。また、芯鞘型複合繊維は、鞘部の横断面形状が丸型断面形状であり、かつ芯部表面の全面(略100%)が導電剤を含む鞘部で覆われていてもよい。さらに、多葉又は星形状繊維の凹部のみを導電剤を含む層が被覆した複合繊維であってもよい。このような複合繊維としては、カーボンブラックを含む表層を有する複合繊維が好ましく、例えば、国際公開WO2008/4448号公報に記載の導電性繊維を利用できる。市販品としては、例えば、クラレトレーディング(株)製「クラカーボ」、BASF社製「Shakespeare」などが挙げられる。   The conductive fiber in which the conductive agent is contained in the organic fiber may be a composite fiber having a conductive layer kneaded with the conductive agent in the surface layer, and a core-sheath type composite fiber is preferable. In the core-sheath type composite fiber, the cross-sectional shape of the sheath part may be the multilobal or star shape. In the core-sheath type composite fiber, the cross-sectional shape of the sheath part may be a round cross-sectional shape, and the entire surface (approximately 100%) of the core part surface may be covered with a sheath part containing a conductive agent. Furthermore, it may be a composite fiber in which only a concave portion of a multi-leaf or star-shaped fiber is covered with a layer containing a conductive agent. As such a composite fiber, a composite fiber having a surface layer containing carbon black is preferable. For example, a conductive fiber described in International Publication No. WO2008 / 4448 can be used. Examples of commercially available products include “Kurabobo” manufactured by Kuraray Trading Co., Ltd. and “Shakespeare” manufactured by BASF.

これらの導電性繊維のうち、伸張変形時の電気抵抗の変動が小さく、耐久性、耐屈曲疲労性、柔軟性に優れる点から、カーボンナノチューブが付着又は被覆した導電性繊維(特に、カーボンナノチューブを含む層が有機繊維の略全面を被覆した導電性繊維)が特に好ましい。   Among these conductive fibers, the fluctuation of the electric resistance at the time of stretching deformation is small, and since the durability, the bending fatigue resistance, and the flexibility are excellent, the conductive fibers to which carbon nanotubes are attached or coated (particularly, carbon nanotubes are used). Particularly preferred is a conductive fiber in which the containing layer covers substantially the entire surface of the organic fiber.

導電剤の割合は、有機繊維100質量部に対して0.1〜100質量部程度の範囲から選択でき、例えば、0.1〜50質量部、好ましくは0.5〜25質量部、さらに好ましくは1〜20質量部(特に1〜15質量部)程度である。   The ratio of the conductive agent can be selected from a range of about 0.1 to 100 parts by mass with respect to 100 parts by mass of the organic fiber, for example, 0.1 to 50 parts by mass, preferably 0.5 to 25 parts by mass, and more preferably. Is about 1 to 20 parts by mass (particularly 1 to 15 parts by mass).

導電性繊維の導電性繊維の20℃における線電気抵抗値は、例えば、1×10〜1×10Ω/cm(例えば、5×10〜1×10Ω/cm)、好ましくは1×10〜1×10Ω/cm、さらに好ましくは1×10〜1×10Ω/cm(特に1×10〜5×10Ω/cm)程度である。 The linear electric resistance value at 20 ° C. of the conductive fiber of the conductive fiber is, for example, 1 × 10 0 to 1 × 10 7 Ω / cm (for example, 5 × 10 0 to 1 × 10 6 Ω / cm), preferably It is about 1 × 10 1 to 1 × 10 5 Ω / cm, more preferably about 1 × 10 2 to 1 × 10 4 Ω / cm (particularly 1 × 10 3 to 5 × 10 3 Ω / cm).

前記線電気抵抗値が高すぎると、発熱効率が低下し、織物などで高密度に配列したとしても発熱量が不足する場合がある。例えば、線電気抵抗1×10Ω/cmで繊度100dtexの繊維の場合、通常の織物の手法を用い90本/インチの密度とし、3cm間隔で200Vの印加電圧をかけたとしても、16W/mの発熱量しか発生せず、実用性に乏しい。 If the linear electric resistance value is too high, the heat generation efficiency is lowered, and the heat generation amount may be insufficient even when arranged in high density with a fabric or the like. For example, in the case of a fiber having a linear electrical resistance of 1 × 10 8 Ω / cm and a fineness of 100 dtex, even if an ordinary woven method is used and the density is 90 pieces / inch and an applied voltage of 200 V is applied at intervals of 3 cm, 16 W / Only a calorific value of m 2 is generated, which is not practical.

一方、前記線電気抵抗値が低すぎると、発熱効率が高すぎ、織物などで高密度に配列すると発熱量が高くなりすぎる場合がある。例えば、線電気抵抗0.1Ω/cmで100dtexの繊維の場合、通常の織物の手法を用い90本/インチの密度とし、100cm間隔で5Vの印加電圧をかけた場合には、約9000W/mの発熱量となり、1mの発熱生地に流れる電流は1800アンペアにもなり、現実的な製品とはならない。 On the other hand, if the linear electric resistance value is too low, the heat generation efficiency is too high, and if it is arranged in high density with a fabric or the like, the heat generation amount may be too high. For example, in the case of a fiber of 100 dtex with a linear electrical resistance of 0.1 Ω / cm, when a density of 90 pieces / inch is applied using a normal woven technique and an applied voltage of 5 V is applied at intervals of 100 cm, about 9000 W / m becomes two of the calorific value, the current flowing through the heating fabric of 1m 2 will be 1800 amps, not a realistic product.

(繊維構造体)
発熱部は、前記導電性繊維を含む繊維構造体で形成されている。繊維構造体としては、織物、編物、不織布、レース地、網などが挙げられる。これらのうち、発熱効率などの点から、織物(織布)、編物(編布)、不織布が好ましく、均一な発熱が可能であり、かつ短絡を抑制できる点から、織物及び編物(特に織物)が好ましい。
(Fiber structure)
The heat generating part is formed of a fiber structure including the conductive fiber. Examples of the fiber structure include woven fabric, knitted fabric, nonwoven fabric, lace fabric, and net. Of these, woven fabrics (woven fabrics), knitted fabrics (knitted fabrics), and non-woven fabrics are preferable from the viewpoint of heat generation efficiency and the like, and woven fabrics and knitted fabrics (particularly woven fabrics) from the point that uniform heat generation is possible and short circuit can be suppressed. Is preferred.

織物としては、慣用の織物(織物生地又は織布)、例えば、タフタ織などの平織、綾織又は斜紋織(ツイル織)、朱子織、パイル織などが挙げられる。これらの織物のうち、高密度の組織を形成でき、発熱効率を向上し易い点から、ツイル織、平織が好ましい。   Examples of the woven fabric include conventional woven fabric (woven fabric or woven fabric), for example, plain weave such as taffeta weave, twill weave or oblique weave (twill weave), satin weave, and pile weave. Among these woven fabrics, twill weave and plain weave are preferable because a high-density structure can be formed and heat generation efficiency is easily improved.

編物としても、慣用の編物(編物生地又は編布)、例えば、平編(天竺編)、経編、丸編、横編、両面編、ゴム編、パイル編などが挙げられる。   Examples of the knitted fabric include a conventional knitted fabric (knitted fabric or knitted fabric), for example, a flat knitted fabric (tenji knitted fabric), a warp knitted fabric, a circular knitted fabric, a horizontal knitted fabric, a double knitted fabric, a rubber knitted fabric, and a pile knitted fabric.

さらに、繊維構造体は、少なくとも導電性繊維を含んでいればよく、導電性繊維の割合は、例えば、繊維構造体全体に対して、例えば、1質量%以上(例えば、1〜100質量%)、好ましくは10〜100質量%(例えば、20〜90質量%)、さらに好ましくは30〜100質量%(例えば、40〜80質量%)程度である。   Furthermore, the fiber structure should just contain electroconductive fiber at least, and the ratio of electroconductive fiber is 1 mass% or more (for example, 1-100 mass%) with respect to the whole fiber structure, for example. The amount is preferably about 10 to 100% by mass (for example, 20 to 90% by mass), more preferably about 30 to 100% by mass (for example, 40 to 80% by mass).

導電性繊維と非導電性繊維とを組み合わせて繊維構造体を形成する場合、非導電性繊維としては、導電性繊維を構成する有機繊維が利用でき、なかでも、ポリエステル系繊維、ポリアミド系繊維、ポリオレフィン系繊維が好ましく、ポリエステル系繊維が特に好ましい。非導電性繊維も、横断面形状や種類も、マルチフィラメント糸や紡績糸における単糸繊度、本数、撚り数などについても、導電性繊維と同様の繊維を利用できる。なお、織物の経糸として、非導電性繊維を使用する場合、導電性繊維で構成された緯糸の繊度は、経糸の繊度に対して、例えば、0.5〜2倍、好ましくは1〜1.8倍、さらに好ましくは1.2〜1.5倍程度の繊度であってもよい。   When forming a fiber structure by combining conductive fibers and non-conductive fibers, as the non-conductive fibers, organic fibers constituting the conductive fibers can be used, among which polyester fibers, polyamide fibers, Polyolefin fibers are preferred, and polyester fibers are particularly preferred. As for the non-conductive fibers, the cross-sectional shape and type, and the single filament fineness, the number of yarns, the number of twists in the multifilament yarn and the spun yarn, the same fibers as the conductive fibers can be used. In addition, when using a nonelectroconductive fiber as a warp of a textile fabric, the fineness of the weft comprised with the conductive fiber is 0.5-2 times with respect to the fineness of a warp, Preferably it is 1-1. The fineness may be about 8 times, more preferably about 1.2 to 1.5 times.

繊維構造体の単位面積当たりの重さ(目付量)としては、発熱効率の点から、例えば、10〜300g/m、好ましくは30〜250g/m、さらに好ましくは50〜200g/m程度である。目付量をこの範囲にすることにより、軽量で薄くてしなやかであり、かつ高い発電効率を有する発電部を形成できる。 The weight per unit area (weight per unit area) of the fiber structure is, for example, 10 to 300 g / m 2 , preferably 30 to 250 g / m 2 , more preferably 50 to 200 g / m 2 from the viewpoint of heat generation efficiency. Degree. By setting the basis weight within this range, it is possible to form a power generation unit that is lightweight, thin and flexible and has high power generation efficiency.

繊維構造体の厚みは、例えば、0.1〜1mm、好ましくは0.15〜0.8mm、さらに好ましくは0.2〜0.6mm程度である。   The thickness of the fiber structure is, for example, about 0.1 to 1 mm, preferably about 0.15 to 0.8 mm, and more preferably about 0.2 to 0.6 mm.

さらに、織物の場合、経糸及び/又は緯糸の全部又は一部を導電性繊維で構成してもよい。特に、経糸及び緯糸のいずれかを導電性繊維で構成することにより、打ち込み本数の調整により発熱効率を容易に制御できるとともに、簡便な方法で導電性繊維の接触を軽減でき、ヒートスポットを抑制できる点で好ましい。さらに、発熱効率を向上させるため、糸密度(打ち込み本数)を調整してもよい。例えば、経糸に150〜200dtexの非導電性繊維、緯糸に150〜250dtexの導電性繊維を用いた場合、緯密度は、例えば、50〜100本/インチ、好ましくは55〜80本/インチ程度としてもよい。このような糸密度で織物を構成し、かつ緯糸又は経糸として、導電性繊維を使用すると、有効に発熱効率を向上できる。また、緯糸及び経糸のいずれか一方に導電性繊維を使用すると、電極の配置の工夫によって、本発明の目的の一つである様々なヒーター形状とすることができる。さらに、緯糸として導電性繊維を使用し、かつ経糸として非導電性繊維を使用すると、導電剤の脱落が抑制される点から特に好ましい。   Furthermore, in the case of a woven fabric, all or part of warp and / or weft may be composed of conductive fibers. In particular, by configuring either warp or weft with conductive fibers, heat generation efficiency can be easily controlled by adjusting the number of driven yarns, and contact of conductive fibers can be reduced by a simple method, and heat spots can be suppressed. This is preferable. Furthermore, in order to improve the heat generation efficiency, the yarn density (the number of driven-in yarns) may be adjusted. For example, when a non-conductive fiber of 150 to 200 dtex is used for the warp and a conductive fiber of 150 to 250 dtex is used for the weft, the weft density is, for example, about 50 to 100 / inch, preferably about 55 to 80 / inch. Also good. When a woven fabric is formed with such a yarn density and conductive fibers are used as wefts or warps, the heat generation efficiency can be effectively improved. Further, when conductive fibers are used for either one of the weft and the warp, various heater shapes which are one of the objects of the present invention can be obtained by devising the arrangement of the electrodes. Furthermore, it is particularly preferable that conductive fibers are used as the wefts and nonconductive fibers are used as the warp yarns since the dropping of the conductive agent is suppressed.

発熱体の表面は、カバー部材などでカバー又は被覆してもよい。カバー部材としては、軟質な耐熱性樹脂、例えば、ポリエステル、ポリアミド、ポリウレタンなどで形成されていてもよい。   The surface of the heating element may be covered or covered with a cover member or the like. The cover member may be formed of a soft heat-resistant resin such as polyester, polyamide, or polyurethane.

[面状発熱体の製造方法]
本発明の面状発熱体は、導電剤及びバインダー成分を含む導電性ペーストを発熱部の表面に塗布する塗布工程を含む製造方法により得られる。
[Method for manufacturing sheet heating element]
The planar heating element of the present invention can be obtained by a manufacturing method including an application process in which a conductive paste containing a conductive agent and a binder component is applied to the surface of a heating part.

導電性ペーストは、電極を構成する導電剤及びバインダー成分を含んでいればよいが、塗工性を向上させ、繊維構造体繊維間に電極を十分に含浸させる点から、溶媒に溶解又は分散されているのが好ましい。   The conductive paste only needs to contain a conductive agent and a binder component constituting the electrode, but it is dissolved or dispersed in a solvent from the viewpoint of improving the coatability and sufficiently impregnating the electrode between the fiber structure fibers. It is preferable.

溶媒としては、バインダーの種類に応じて選択でき、例えば、アルコール類(エタノール、イソプロパノールなど)、ケトン類(アセトン、メチルエチルケトンなど)、エーテル類(テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(トルエン、キシレンなど)、ハロゲン化炭素類(ジクロロメタンなど)、エステル類(酢酸メチルなど)、水、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類(ブチルセロソルブアセテートなど)、スルホキシド類(ジメチルスルホキシドなど)、アミド類(ジメチルホルムアミドなど)などが例示できる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。   The solvent can be selected according to the type of the binder. For example, alcohols (ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), Alicyclic hydrocarbons (such as cyclohexane), aromatic hydrocarbons (such as toluene and xylene), halogenated carbons (such as dichloromethane), esters (such as methyl acetate), water, cellosolves (methyl cellosolve, ethyl cellosolve) Etc.), cellosolve acetates (such as butyl cellosolve acetate), sulfoxides (such as dimethylsulfoxide), amides (such as dimethylformamide) and the like. These solvents can be used alone or in combination of two or more.

溶媒の割合は、導電剤100質量部に対して0〜200質量部程度の範囲から選択でき、例えば、5〜100質量部、好ましくは10〜80質量部、さらに好ましくは20〜60質量部程度である。ペーストの固形分濃度は、例えば、20〜90質量%、好ましくは30〜80質量%、さらに好ましくは40〜75質量%(特に45〜70質量%)程度である。溶媒の割合が多すぎると、導電性の高い電極部の作製が困難となり、逆に少なすぎると、発熱部の繊維構造体の繊維の隙間に十分な量の導電剤及びバインダー成分を侵入させるのが困難となる。すなわち、固形分濃度が高すぎるとペーストの粘度が高すぎるためか、導電剤及びバインダー成分が繊維構造体内部(特に、マルチフィラメント糸の繊維間)に侵入し難くなり、逆に低すぎると繊維構造体に対する導電剤及びバインダー成分の担持量の確保が困難となる。   The ratio of the solvent can be selected from the range of about 0 to 200 parts by mass with respect to 100 parts by mass of the conductive agent, for example, 5 to 100 parts by mass, preferably 10 to 80 parts by mass, and more preferably about 20 to 60 parts by mass. It is. The solid content concentration of the paste is, for example, about 20 to 90% by mass, preferably about 30 to 80% by mass, and more preferably about 40 to 75% by mass (particularly about 45 to 70% by mass). If the proportion of the solvent is too large, it will be difficult to produce a highly conductive electrode part. Conversely, if the amount is too small, a sufficient amount of conductive agent and binder component will penetrate into the gaps in the fiber structure of the heat generating part. It becomes difficult. That is, if the solid content concentration is too high, the viscosity of the paste is too high, or it is difficult for the conductive agent and the binder component to enter the fiber structure (particularly between the fibers of the multifilament yarn). It is difficult to ensure the amount of the conductive agent and binder component supported on the structure.

導電性ペーストの塗布方法としては、例えば、スクリーン印刷法、ディスペンス塗布法、グラビア印刷法、グラビアオフセット印刷法、オフセット印刷法、インクジェット印刷法などが利用できる。これらの方法のうち、導電性ペーストを繊維構造体内部に含浸させるための厚肉の塗膜に対して適度な圧力を付与できる点から、スクリーン印刷法が好ましい。すなわち、スクリーン印刷法では、スキージによりインクをローリングさせながら、スクリーン版の穴を通してインクを押し出すため、繊維構造体の内部に明瞭なパターン形状で導電性ペーストを含浸できる。   As a method for applying the conductive paste, for example, a screen printing method, a dispense coating method, a gravure printing method, a gravure offset printing method, an offset printing method, an ink jet printing method, or the like can be used. Among these methods, the screen printing method is preferable because an appropriate pressure can be applied to the thick coating film for impregnating the inside of the fiber structure with the conductive paste. That is, in the screen printing method, the ink is pushed out through the holes in the screen plate while rolling the ink with a squeegee, so that the conductive paste can be impregnated in a clear pattern shape inside the fiber structure.

塗布量は、面状発熱体の厚みなどに応じて選択できるが、例えば、5〜100mg/cm、好ましくは10〜50mg/cm、さらに好ましくは20〜40mg/cm(特に25〜35mg/cm)程度である。塗布量が少なすぎると、配線として使用するための電極部に必要な導電剤を塗布できないため、配線の異常発熱が発生し易い。逆に、塗布量が多すぎると、膜厚が大きくなるため、屈曲性が低下するとともに、経済性も低下する。 Coating amount can be selected depending on the thickness of the planar heating element, for example, 5 to 100 mg / cm 2, preferably 10 to 50 mg / cm 2, more preferably 20-40 mg / cm 2 (particularly 25~35mg / Cm 2 ). If the coating amount is too small, a necessary conductive agent cannot be applied to the electrode portion for use as wiring, and abnormal heating of the wiring is likely to occur. On the other hand, if the coating amount is too large, the film thickness increases, so that the flexibility is lowered and the economy is also lowered.

電極部が金属線を含む場合、金属線は電極部を用いて貼着する方法、縫製により固定する方法、固定具を利用して固定する方法などで発熱部に固定してもよいが、予め発熱部の繊維構造体の一部に組み込む方法が好ましく、例えば、織物の一部として織成する方法であってもよい。例えば、緯糸が導電性繊維で構成された織物の場合、金属線を織物の緯方向の両端に経糸として導入する方法などであってもよい。なお、経糸が導電性繊維で構成された編物の場合、経方向と緯方向との関係は逆になる。   When the electrode portion includes a metal wire, the metal wire may be fixed to the heat generating portion by a method of sticking using the electrode portion, a method of fixing by sewing, a method of fixing using a fixing tool, etc. A method of incorporating into a part of the fiber structure of the heat generating part is preferable, and for example, a method of weaving as a part of the fabric may be used. For example, in the case of a woven fabric in which the weft is composed of conductive fibers, a method of introducing metal wires as warps at both ends in the weft direction of the fabric may be used. In the case of a knitted fabric in which the warp is composed of conductive fibers, the relationship between the warp direction and the weft direction is reversed.

バインダー成分が硬化性樹脂の場合、塗布工程の後工程として、硬化工程を含んでいてもよい。硬化工程では、硬化性樹脂の種類に応じて、紫外線などの光照射や加熱してもよく、簡便性などの点から、熱硬化性樹脂に対して加熱処理する硬化工程が好ましい。   When the binder component is a curable resin, a curing step may be included as a subsequent step of the coating step. In the curing step, irradiation with light such as ultraviolet rays or heating may be performed depending on the type of the curable resin, and a curing step in which heat treatment is performed on the thermosetting resin is preferable from the viewpoint of simplicity.

以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。実施例における面状発熱体の評価方法は、以下に示す方法により測定した。なお、実施例中の「部」及び「%」はことわりのない限り、質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. The evaluation method of the planar heating element in the examples was measured by the following method. In the examples, “parts” and “%” are based on mass unless otherwise specified.

[発熱挙動及び状態の評価並びに発熱分布の測定]
得られた発熱体の2本又は4本の帯状電極部に交流又は直流電圧をかけて、汎用の電流計を用いて、発熱電力量を測定し、さらに実施例3〜6、8及び比較例2の発熱体については、サーモグラフィ(フリアーシステムズ社製「FLIR i5」)を用いて、発熱状態を確認した。また、比較例2及び実施例8の発熱体について、発熱分布を測定した。
[Evaluation of heat generation behavior and condition and measurement of heat generation distribution]
An AC or DC voltage was applied to two or four strip electrode portions of the obtained heating element, and the amount of heat generated was measured using a general-purpose ammeter. Further, Examples 3 to 6, 8 and Comparative Examples About the heat generating body of 2, heat generation state was confirmed using thermography ("FLIR i5" manufactured by FLIR Systems). Moreover, about the heat generating body of the comparative example 2 and Example 8, the heat_generation | fever distribution was measured.

実施例1
カーボンブラック含有ナイロン系導電繊維(BASF社製「Shakespeare Resistat F901 DO44」、ナイロンモノフィラメント、48.9dtex、10Ω/cm)を4本撚り合わせた合糸を緯糸に配置し、一方でポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)を経糸に配置し、さらに経糸の一部に電極として直径40μmの銅細線をポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)にカバリングしたカバリング糸を連続で16本導入して帯状部を形成し、このカバリング糸の16本の導入部から20cmの間隔となるように、別のカバリング糸を16本導入して帯状部を配置し、平織組織で緯糸密度60本/インチの織物を得た。
Example 1
Nylon conductive fiber containing carbon black ("Shakespeare Resistat F901 DO44" manufactured by BASF, nylon monofilament, 48.9 dtex, 10 < 5 > [Omega] / cm) is placed on the weft, while polyester processed yarn (Kuraray Trading Co., Ltd., 167 dtex / 48 filament) is placed on the warp, and a copper fine wire with a diameter of 40 μm is used as an electrode on a part of the warp as a polyester processed yarn (Kuraray Trading Co., Ltd., 167 dtex / 48 filament). Sixteen covered covering yarns are continuously introduced to form a belt-like portion, and another covering yarn is introduced to form a belt-like portion at a distance of 20 cm from the 16 introduction portions of the covering yarn. Plain weave with weft density of 60 / inch It was obtained.

得られた織物を経方向に1mカットし、銅細線で形成された帯状部に銀系導電性ペースト(藤倉化成(株)製「ドータイトFA353N」、銀粒子入りペースト)を30mg/cmの塗布量でスクリーン印刷方式によって塗工した後、150℃にて20分熱処理し、2本の直線状の帯状電極部(1cm幅×15cm長さ)を、織物の経方向に沿って10cmの間隔で平行に形成した。 The obtained woven fabric was cut by 1 m in the warp direction, and a silver conductive paste (“Dotite FA353N” manufactured by Fujikura Kasei Co., Ltd., paste containing silver particles) was applied at 30 mg / cm 2 to the band-shaped portion formed of copper fine wires. After coating by a screen printing method, heat treatment is performed at 150 ° C. for 20 minutes, and two linear strip electrode portions (1 cm width × 15 cm length) are arranged at intervals of 10 cm along the warp direction of the fabric. They were formed in parallel.

得られた発熱体に対して、2本の帯状電極部における銅細線部分に100Vの交流電圧をかけたところ、44W(220W/m)の均一な発熱挙動を示し、20℃室温下で約40℃の均一な発熱を確認した。 When an AC voltage of 100 V was applied to the copper thin wire portions of the two strip electrode portions with respect to the obtained heating element, it showed a uniform heat generation behavior of 44 W (220 W / m 2 ) and was about 20 ° C. at room temperature. A uniform heat generation at 40 ° C. was confirmed.

比較例1
導電性ペーストを塗装する前の実施例1で得られた生地に対して、2箇所の銅細線部分に100Vの交流電圧をかけたところ、31W(155W/m)の不均一な発熱挙動を示した。また、銅細線の電極部分にも異常発熱が認められた。
Comparative Example 1
When the AC voltage of 100 V was applied to the two copper thin wire portions on the fabric obtained in Example 1 before coating the conductive paste, 31 W (155 W / m 2 ) non-uniform heat generation behavior was observed. Indicated. Abnormal heat generation was also observed in the electrode part of the copper fine wire.

実施例2
カーボンブラック含有ナイロン系導電繊維(クラレトレーディング(株)製「クラカーボKC−792R B22T4」、22dtex、0.8×10Ω/cm)を8本撚り合わせた合糸を緯糸に配置し、一方でポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)を経糸に配置し、平織組織で緯糸密度72本/インチの織物を得た。
Example 2
Nylon conductive fibers containing carbon black (Kuraray Trading Co., Ltd. “Kurabobo KC-792R B22T4”, 22 dtex, 0.8 × 10 6 Ω / cm) are arranged on the weft. Polyester processed yarn (Kuraray Trading Co., Ltd., 167 dtex / 48 filament) was placed on the warp to obtain a woven fabric with a weft density of 72 yarns / inch in a plain weave structure.

得られた織物上に、銀系導電性ペースト(藤倉化成(株)製「ドータイトFA353N」、銀粒子入りペースト)を用い、30mg/cmの塗布量でスクリーン印刷方式によって塗工した後、150℃にて20分熱処理し、2本の直線状の帯状電極部(1cm幅×15cm長さ)を、織物の経方向に沿って10cmの間隔で平行に形成した。 On the obtained woven fabric, a silver conductive paste (“Dotite FA353N” manufactured by Fujikura Kasei Co., Ltd., paste containing silver particles) was applied by a screen printing method at a coating amount of 30 mg / cm 2 , and 150 Heat treatment was carried out at 20 ° C. for 20 minutes, and two linear strip electrode portions (1 cm width × 15 cm length) were formed in parallel at 10 cm intervals along the warp direction of the fabric.

得られた発熱体に対して、銀系導電性ペーストを塗工した2箇所に100Vの交流電圧をかけたところ、3.8W(253W/m)の均一な発熱挙動を示し、20℃室温下で約42℃の均一な発熱を確認した。 When an AC voltage of 100 V was applied to the two places where the silver-based conductive paste was applied to the obtained heating element, it showed a uniform heat generation behavior of 3.8 W (253 W / m 2 ), at room temperature of 20 ° C. A uniform heat generation of about 42 ° C. was confirmed below.

実施例3〜5
カーボンナノチューブ被覆ポリエステル系導電繊維(クラレリビング(株)製「CNTEC240T48」、240dtex、1500Ω/cm)を緯糸に配置し、ポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)を経糸に配置し、平織組織で緯糸密度60本/インチの織物を得た。
Examples 3-5
Polyester conductive fibers coated with carbon nanotubes (“CNTEC240T48” manufactured by Kuraray Living Co., Ltd., 240 dtex, 1500 Ω / cm) are arranged on the weft, and polyester processed yarn (Kuraray Trading Co., Ltd., 167 dtex / 48 filament) is arranged on the warp. Thus, a woven fabric having a weft density of 60 yarns / inch in a plain weave structure was obtained.

得られた織物上に、経方向に銀系導電性ペースト(藤倉化成(株)製「ドータイトFA353N」、銀粒子入りペースト)を用い、30mg/cmの塗布量にてスクリーン印刷方式で塗工した後、150℃にて20分熱処理し、表1に示す形態の2本の帯状電極部を、織物の経方向に沿って所定の間隔で平行に形成した。 Using a silver-based conductive paste (“Dotite FA353N” manufactured by Fujikura Kasei Co., Ltd., paste containing silver particles) in the warp direction on the obtained woven fabric, a coating amount of 30 mg / cm 2 is applied by screen printing. After that, heat treatment was performed at 150 ° C. for 20 minutes, and two strip electrode portions having the forms shown in Table 1 were formed in parallel at predetermined intervals along the warp direction of the fabric.

なお、実施例4及び5において、曲線状である帯状電極部の長さは、両端部の距離を長さとし、実施例5において、直線状の帯状電極部と曲形状の帯状電極部とは、後述する図5にも示されているように、各々の対向する両端部の距離が等間隔となるように略平行に形成した。   In Examples 4 and 5, the length of the strip-shaped electrode portion that is curved is the distance between both ends, and in Example 5, the straight strip-shaped electrode portion and the curved strip-shaped electrode portion are: As shown also in FIG. 5 to be described later, they were formed substantially in parallel so that the distances between the opposite ends were equal.

実施例6
カーボンナノチューブ被覆ポリエステル系導電繊維(クラレリビング(株)製「CNTEC240T48」、240dtex、1500Ω/cm)を緯糸に配置し、ポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)を経糸に配置し、平織組織で緯糸密度60本/インチの織物を得た。
Example 6
Polyester conductive fibers coated with carbon nanotubes (“CNTEC240T48” manufactured by Kuraray Living Co., Ltd., 240 dtex, 1500 Ω / cm) are arranged on the weft, and polyester processed yarn (Kuraray Trading Co., Ltd., 167 dtex / 48 filament) is arranged on the warp. Thus, a woven fabric having a weft density of 60 yarns / inch in a plain weave structure was obtained.

得られた織物上に、経方向に、カーボン系導電性ペースト(藤倉化成(株)製「FC−415」、カーボンブラック入りペースト)を用い、4.5mg/cmの塗布量にてスクリーン印刷方式で塗工し、乾燥後、さらにその上に銀系導電性ペースト(藤倉化成(株)製「ドータイトFA353N」、銀粒子入りペースト)を用い、19mg/cmの塗布量にてスクリーン印刷方式で塗工した後、150℃にて20分熱処理し、表1に示す形態の2本の帯状電極部を、織物の経方向に沿って所定の間隔で平行に形成した。 Screen printing is performed on the obtained fabric using a carbon-based conductive paste (“FC-415” manufactured by Fujikura Kasei Co., Ltd., carbon black paste) in the warp direction at a coating amount of 4.5 mg / cm 2. After coating, drying, and further using a silver conductive paste (“Dotite FA353N” manufactured by Fujikura Kasei Co., Ltd., paste containing silver particles), a screen printing method at a coating amount of 19 mg / cm 2 After coating, the film was heat treated at 150 ° C. for 20 minutes to form two strip electrode portions having the forms shown in Table 1 in parallel at predetermined intervals along the warp direction of the fabric.

実施例3〜6で得られた各々の発熱体につき、導電性ペーストを塗工した2箇所に表1に示す電圧をかけ、各々の発熱状態を確認した。結果を表1に示す。   About each heat generating body obtained in Examples 3-6, the voltage shown in Table 1 was applied to two places which apply | coated the electrically conductive paste, and each heat generating state was confirmed. The results are shown in Table 1.

実施例3で得られた発熱体の表面写真及び発熱分布図を図1及び2に示す。図2の結果から明らかなように、均一に発熱していた。なお、図2で白色領域(実際のカラー画像では赤色に見える領域)が高い発熱領域を示し、図2では電極間で略均一に発熱状態が分布している。   1 and 2 show a surface photograph and a heat distribution diagram of the heating element obtained in Example 3. FIG. As is apparent from the results of FIG. 2, heat was generated uniformly. In FIG. 2, the white region (the region that appears red in an actual color image) shows a high heat generation region, and in FIG. 2, the heat generation state is distributed substantially uniformly between the electrodes.

実施例4で得られた発熱体の表面写真及び発熱分布図を図3及び4に示す。図4の結果から明らかなように、電極間で白色領域が略均一に分布し、均一に発熱していた。   3 and 4 show a surface photograph and a heat distribution diagram of the heating element obtained in Example 4. FIG. As is clear from the results of FIG. 4, white regions were distributed substantially uniformly between the electrodes, and heat was generated uniformly.

実施例5で得られた発熱体の表面写真及び発熱分布図を図5及び6に示す。図6の結果から明らかなように、電極間の白色領域は両端部に偏って分布し、両端部の発熱量が大きく、傾斜構造を示した。   5 and 6 show a surface photograph and a heat distribution diagram of the heating element obtained in Example 5. FIG. As is apparent from the results of FIG. 6, the white areas between the electrodes are unevenly distributed at both ends, the heat generation amount at both ends is large, and an inclined structure is shown.

実施例6で得られた発熱体では、帯状電極部が、金属系導電剤及びバインダー成分を含む第1の層を表層とし、炭素系導電剤及びバインダー成分を含む第2の層を内層とする積層構造を有するため、単位面積当たりのワット数が大きく、導電性が向上した。   In the heating element obtained in Example 6, the band-shaped electrode portion has the first layer containing the metal-based conductive agent and the binder component as the surface layer and the second layer containing the carbon-based conductive agent and the binder component as the inner layer. Since it has a laminated structure, the wattage per unit area is large and the conductivity is improved.

実施例7
図7に示すように、ストレートな帯状の電極部と湾曲した帯状の電極部とを組み合わせて実施例3〜5に準じて面状発熱体を作製し、発熱状況をサーモグラフィにより観察した発熱分布図を図8に示す。図7及び8から明らかなように、本発明の面状発熱体は、様々な形状の電極を容易に形成できた。
Example 7
As shown in FIG. 7, a heat generating distribution diagram in which a sheet heating element is manufactured according to Examples 3 to 5 by combining a straight strip electrode portion and a curved strip electrode portion, and the heat generation state is observed by thermography. Is shown in FIG. As apparent from FIGS. 7 and 8, the planar heating element of the present invention can easily form electrodes having various shapes.

比較例2
カーボンナノチューブ被覆ポリエステル系導電繊維(クラレリビング(株)製「CNTEC240T48」、240dtex、1500Ω/cm)を緯糸に配置し、ポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)を経糸に配置し、さらに経糸の一部に電極として直径40μmの銅細線をポリエステル加工糸(クラレトレーディング(株)製、167dtex/48フィラメント)にカバリングした第1のカバリング糸を連続で16本導入して第1の帯状部を形成し、このカバリング糸の16本の導入部から7cmの間隔となるように、第2のカバリング糸を16本導入して第2の帯状部を形成し、さらに同様の方法で第3及び第4の帯状部を形成し、電極間幅7cmの3段、長さ24cmの織物を得た。
Comparative Example 2
Polyester conductive fibers coated with carbon nanotubes (“CNTEC240T48” manufactured by Kuraray Living Co., Ltd., 240 dtex, 1500 Ω / cm) are arranged on the weft, and polyester processed yarn (Kuraray Trading Co., Ltd., 167 dtex / 48 filament) is arranged on the warp. In addition, 16 first covering yarns, in which a copper fine wire having a diameter of 40 μm as an electrode is covered on a polyester processed yarn (167 dtex / 48 filament, manufactured by Kuraray Trading Co., Ltd.) as part of the warp yarns, are introduced in series. In the same manner, 16 second covering yarns are introduced to form a second belt-like portion so that a distance of 7 cm from the 16 introducing portions of the covering yarn is formed. 3rd and 4th belt-shaped parts are formed, and 3 steps of inter electrode width 7cm, 24cm long fabric Obtained.

電極部の銅細線に交互にプラスマイナスにて12Vの直流電流を印加したところ、発熱部(生地部分)も発熱するものの、銅細線部が局部的に発熱する状態を確認した。ワット数は7W、単位面積当たりのワット数は410W/mであった。得られた発熱体のサーモグラフィによる発熱分布図を図9に示し、電極部の長さ方向の中央部において、長さ方向に直交する方向(図9のA−A’方向)での温度分布のグラフ(縦軸:温度、横軸:A−A’間の相対位置)を図10に示す。図9及び10から明らかなように、20℃室温下で発熱部が約33℃の均一であるのに対して、電極部が約47℃の発熱となっており、発熱状態の分布は不均一であった。 When a DC current of 12 V was alternately applied to the copper thin wire of the electrode portion by plus and minus, it was confirmed that the copper thin wire portion locally generated heat although the heat generating portion (fabric portion) also generated heat. The wattage was 7 W, and the wattage per unit area was 410 W / m 2 . FIG. 9 shows a heat distribution diagram by thermography of the obtained heating element, and shows the temperature distribution in the direction perpendicular to the length direction (AA ′ direction in FIG. 9) at the center in the length direction of the electrode portion. FIG. 10 shows a graph (vertical axis: temperature, horizontal axis: relative position between AA ′). As is clear from FIGS. 9 and 10, the heat generation part is uniform at about 33 ° C. at 20 ° C. room temperature, whereas the electrode part generates heat at about 47 ° C., and the distribution of the heat generation state is non-uniform. Met.

実施例8
比較例2で得られた織物の銅細線で形成された帯状部に、カーボン系導電性ペースト(藤倉化成(株)製「FC−415」、カーボンブラック入りペースト)を8mg/cmの塗布量でスクリーン印刷方式で塗工し、乾燥した。
Example 8
A coating amount of 8 mg / cm 2 of carbon-based conductive paste (“FC-415” manufactured by Fujikura Kasei Co., Ltd., carbon black paste) is applied to the band-shaped portion formed of the copper fine wire of the fabric obtained in Comparative Example 2. And then dried by screen printing.

電極部に交互にプラスマイナスにて12Vの直流電流を印加したところ、発熱部が局部的に発熱しない均一な発熱状態を確認した。ワット数は7W、単位面積当たりのワット数は410W/mであった。得られた発熱体のサーモグラフィによる発熱分布図を図11に示し、電極部の長さ方向の中央部において、長さ方向に直交する方向(図11のA−A’方向)での温度分布のグラフ(縦軸:温度、横軸:A−A’間の相対位置)を図12に示す。図11及び12から明らかなように、20℃室温下で電極部と発熱部とは共に約37℃の発熱となっており、発熱状態の分布は均一であった。 When a DC current of 12 V was alternately applied to the electrode portion by plus and minus, a uniform heat generation state in which the heat generation portion did not generate heat locally was confirmed. The wattage was 7 W, and the wattage per unit area was 410 W / m 2 . FIG. 11 shows a heat distribution diagram by thermography of the obtained heating element, and shows the temperature distribution in the direction perpendicular to the length direction (AA ′ direction in FIG. 11) at the center in the length direction of the electrode portion. FIG. 12 shows a graph (vertical axis: temperature, horizontal axis: relative position between AA ′). As is apparent from FIGS. 11 and 12, both the electrode part and the heat generating part generated heat of about 37 ° C. at 20 ° C. room temperature, and the distribution of the heat generating state was uniform.

本発明の面状発熱体は、各種の分野、例えば、道路などの屋外設備のための用途(例えば、ロードヒーティング、融雪装置、凍結防止装置など)、農業用途(例えば、園芸用マットなど)、建造物の構成要素としての用途(例えば、結露防止や防曇装置、床暖房、壁暖房など)、ベヒクルの内部構成要素としての用途(例えば、電車、自動車などの車輌、航空機などの座席シートなど)、防寒のための身飾品のための用途(例えば、ジャケット、ベスト、ひざ掛けなどの衣料、寝具、靴、カイロ、ホットカーペットなど)、家具や日用品としての用途(例えば、いす、足温器など)などに利用可能である。   The planar heating element of the present invention is used in various fields, for example, outdoor equipment such as roads (for example, road heating, snow melting devices, anti-freezing devices, etc.), agricultural applications (for example, garden mats). Applications as building components (for example, anti-condensation and anti-fogging devices, floor heating, wall heating, etc.), applications as internal vehicle components (for example, trains, cars, etc., seats for aircraft, etc.) ), Clothing for cold protection (eg jackets, vests, rugs, bedding, shoes, warmers, hot carpets, etc.), furniture and daily use (eg chairs, foot warmers) Etc.).

Claims (20)

導電性繊維を含む繊維構造体で形成された発熱部と、この発熱部に通電するための電極部とで形成された面状発熱体であって、前記電極部が導電剤及びバインダー成分を含む面状発熱体。   A planar heating element formed by a heating part formed of a fiber structure containing conductive fibers and an electrode part for energizing the heating part, the electrode part containing a conductive agent and a binder component Planar heating element. 電極部が層状であり、かつ少なくとも一部が発熱部の繊維構造体に含浸している請求項1記載の面状発熱体。   The planar heating element according to claim 1, wherein the electrode part is layered and at least a part thereof is impregnated in the fibrous structure of the heating part. 電極部の平面形状が湾曲した線状又は帯状である請求項1又は2記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the planar shape of the electrode part is a curved line or strip. 繊維構造体が織物である請求項1〜3のいずれかに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 3, wherein the fiber structure is a woven fabric. 繊維構造体がさらに非導電性繊維を含み、導電性繊維が経糸及び緯糸のいずれか一方に含まれる請求項4記載の面状発熱体。   The planar heating element according to claim 4, wherein the fiber structure further includes non-conductive fibers, and the conductive fibers are included in one of the warp and the weft. 導電性繊維と交差する方向に延びる複数の線状又は帯状電極部を有する請求項4又は5記載の面状発熱体。   The planar heating element according to claim 4 or 5, comprising a plurality of linear or strip electrode portions extending in a direction intersecting with the conductive fibers. 帯状電極部間の距離が電極部の長さ方向で均一である請求項6記載の面状発熱体。   The planar heating element according to claim 6, wherein the distance between the strip electrode portions is uniform in the length direction of the electrode portions. 帯状電極部間の距離が電極部の長さ方向で不均一である請求項6記載の面状発熱体。   The planar heating element according to claim 6, wherein the distance between the strip electrode portions is non-uniform in the length direction of the electrode portions. バインダー成分が硬化樹脂である請求項1〜8のいずれかに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 8, wherein the binder component is a cured resin. 硬化樹脂が硬化性ポリエステル系樹脂である請求項9記載の面状発熱体。   The planar heating element according to claim 9, wherein the curable resin is a curable polyester resin. 導電剤が金属粒子を含む請求項1〜10のいずれかに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 10, wherein the conductive agent contains metal particles. 導電剤が炭素質粒子を含む請求項1〜11のいずれかに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 11, wherein the conductive agent contains carbonaceous particles. 電極部がさらに金属線を含む請求項1〜12のいずれかに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 12, wherein the electrode portion further includes a metal wire. 導電性繊維が炭素系導電剤を含む請求項1〜13のいずれかに記載の面状発熱体。   The planar heating element according to any one of claims 1 to 13, wherein the conductive fiber contains a carbon-based conductive agent. 炭素系導電剤がカーボンナノチューブである請求項14記載の面状発熱体。   The planar heating element according to claim 14, wherein the carbon-based conductive agent is a carbon nanotube. 電極部が、金属系導電剤及びバインダー成分を含む第1の層と、この第1の層に積層され、かつ炭素系導電剤及びバインダー成分を含む第2の層とで形成された積層体である請求項2〜15のいずれかに記載の面状発熱体。   The electrode part is a laminate formed of a first layer containing a metal-based conductive agent and a binder component, and a second layer laminated on the first layer and containing a carbon-based conductive agent and a binder component. The planar heating element according to any one of claims 2 to 15. 導電剤及びバインダー成分を含む導電性ペーストを発熱部の表面に塗布する塗布工程を含む請求項1〜16のいずれかに記載の面状発熱体の製造方法。   The manufacturing method of the planar heating element in any one of Claims 1-16 including the application | coating process which apply | coats the electrically conductive paste containing a electrically conductive agent and a binder component on the surface of a heat generating part. 塗布した導電性ペーストを硬化する硬化工程を含む請求項17記載の製造方法。   The manufacturing method of Claim 17 including the hardening process which hardens the apply | coated electrically conductive paste. 塗布工程において、スクリーン印刷で導電性ペーストを塗布する請求項17又は18記載の製造方法。   The manufacturing method according to claim 17 or 18, wherein the conductive paste is applied by screen printing in the applying step. 導電性繊維を含む繊維構造体で形成された発熱部と、この発熱部に通電するための電極部とで形成された面状発熱体の電極部に用いられる電極であって、導電剤及び接着性樹脂で形成された面状発熱体用電極。   An electrode used for an electrode part of a planar heating element formed by a heating part formed of a fiber structure containing conductive fibers and an electrode part for energizing the heating part, comprising a conductive agent and an adhesive Electrode for sheet heating element made of a conductive resin.
JP2013025973A 2012-02-14 2013-02-13 Planar heating element, manufacturing method therefor, and electrode for planar heating element Pending JP2013191551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013025973A JP2013191551A (en) 2012-02-14 2013-02-13 Planar heating element, manufacturing method therefor, and electrode for planar heating element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012029978 2012-02-14
JP2012029978 2012-02-14
JP2013025973A JP2013191551A (en) 2012-02-14 2013-02-13 Planar heating element, manufacturing method therefor, and electrode for planar heating element

Publications (1)

Publication Number Publication Date
JP2013191551A true JP2013191551A (en) 2013-09-26

Family

ID=49391561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025973A Pending JP2013191551A (en) 2012-02-14 2013-02-13 Planar heating element, manufacturing method therefor, and electrode for planar heating element

Country Status (1)

Country Link
JP (1) JP2013191551A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007350B1 (en) * 2016-04-22 2016-10-12 茶久染色株式会社 Conductive yarn
JP2017066536A (en) * 2015-09-28 2017-04-06 グンゼ株式会社 Conductive fabric
WO2017057195A1 (en) * 2015-09-28 2017-04-06 グンゼ株式会社 Conductive fabric and manufacturing method therefor
JP6168506B1 (en) * 2016-08-24 2017-07-26 グンゼ株式会社 Conductive fabric and method for producing the same
JP6168507B1 (en) * 2016-08-24 2017-07-26 グンゼ株式会社 Conductive fabric
KR101777691B1 (en) * 2016-02-19 2017-09-13 전자부품연구원 Heating composition having graphene oxide and heater using the same
KR101777690B1 (en) * 2016-02-19 2017-09-13 전자부품연구원 Heating composition, ceramic heater and fusing belt using the same
WO2018066708A1 (en) * 2016-10-07 2018-04-12 イシイ株式会社 Sheet-like heating element, sheet-like heating device, electrode for sheet-like heating elements, and method for producing sheet-like heating element
KR102058265B1 (en) * 2016-12-27 2019-12-23 한국생산기술연구원 Circuit construction method based on fiber
JP2021131931A (en) * 2020-02-18 2021-09-09 日立造船株式会社 Carbon nanotube heater and method for manufacturing carbon nanotube heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258842A (en) * 1992-03-09 1993-10-08 Naigai Denki Kk Planar heating element and its manufacture
JP2003243135A (en) * 2002-02-12 2003-08-29 Matsushita Electric Ind Co Ltd Planar heating element and heating device using it
JP2007317618A (en) * 2006-05-29 2007-12-06 Honda Sangyo Kk Planar heating element and manufacturing method therefor
JP2010192218A (en) * 2009-02-17 2010-09-02 Hokkaido Univ Surface exothermic body
JP2011243435A (en) * 2010-05-19 2011-12-01 Toyota Boshoku Corp Cloth material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258842A (en) * 1992-03-09 1993-10-08 Naigai Denki Kk Planar heating element and its manufacture
JP2003243135A (en) * 2002-02-12 2003-08-29 Matsushita Electric Ind Co Ltd Planar heating element and heating device using it
JP2007317618A (en) * 2006-05-29 2007-12-06 Honda Sangyo Kk Planar heating element and manufacturing method therefor
JP2010192218A (en) * 2009-02-17 2010-09-02 Hokkaido Univ Surface exothermic body
JP2011243435A (en) * 2010-05-19 2011-12-01 Toyota Boshoku Corp Cloth material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066536A (en) * 2015-09-28 2017-04-06 グンゼ株式会社 Conductive fabric
WO2017057195A1 (en) * 2015-09-28 2017-04-06 グンゼ株式会社 Conductive fabric and manufacturing method therefor
KR101777690B1 (en) * 2016-02-19 2017-09-13 전자부품연구원 Heating composition, ceramic heater and fusing belt using the same
KR101777691B1 (en) * 2016-02-19 2017-09-13 전자부품연구원 Heating composition having graphene oxide and heater using the same
JP6007350B1 (en) * 2016-04-22 2016-10-12 茶久染色株式会社 Conductive yarn
WO2017183228A1 (en) * 2016-04-22 2017-10-26 茶久染色株式会社 Conductive thread
JP6168506B1 (en) * 2016-08-24 2017-07-26 グンゼ株式会社 Conductive fabric and method for producing the same
JP6168507B1 (en) * 2016-08-24 2017-07-26 グンゼ株式会社 Conductive fabric
JP2018030300A (en) * 2016-08-24 2018-03-01 グンゼ株式会社 Conductive fabric and method for producing the same
JP2018032529A (en) * 2016-08-24 2018-03-01 グンゼ株式会社 Conductive fabric
WO2018066708A1 (en) * 2016-10-07 2018-04-12 イシイ株式会社 Sheet-like heating element, sheet-like heating device, electrode for sheet-like heating elements, and method for producing sheet-like heating element
KR102058265B1 (en) * 2016-12-27 2019-12-23 한국생산기술연구원 Circuit construction method based on fiber
JP2021131931A (en) * 2020-02-18 2021-09-09 日立造船株式会社 Carbon nanotube heater and method for manufacturing carbon nanotube heater

Similar Documents

Publication Publication Date Title
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
JP5752821B1 (en) Planar heating element
JP6174220B1 (en) Planar heating element, planar heating device, planar heating element electrode, and manufacturing method of planar heating element
US20100206863A1 (en) Electrically conductive, flexible web material
US20030208851A1 (en) Thermal textile
US20090152257A1 (en) Electric Heating Device
WO2013084668A1 (en) Cloth-like heater
JP6723034B2 (en) Heating unit
JP5907942B2 (en) Electric heating means
EP2129819B1 (en) Fabric in the form of a knitted, woven, or a nonwoven type of article of clothing or for a seat cover or for a textile surface or for an element made of a textile
KR20110121670A (en) Carbon nano tube heating element
WO2017120982A1 (en) Electrothermal component and heat generating method thereof
KR20110109716A (en) Conductive fabrics and method of manufacturing the same
KR20200022317A (en) Heating fabric
JP2014096240A (en) Cloth for planar heating element, planar heating element and manufacturing method thereof
JP2019079714A (en) Planar heat generating cloth and manufacturing method thereof
US20230054505A1 (en) Heat generating fabric
JP2015026422A (en) Conductive cloth
KR20130026275A (en) Planar heating element and manufacturing method thereof
EP2265466A1 (en) Textile fabric for a vehicle seat cover
KR100665705B1 (en) Electric conductive metal fiber and functional compound using seat type heater and preparing thereof
JPH09326291A (en) Flat heater element
JP6171665B2 (en) Conductive fabric, cloth heater, and vehicle heater
JP2606402Y2 (en) Heat generation knitting
JP7417020B2 (en) Circular knitted fabric for heaters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411