JP2013113632A - Ground fault detecting method - Google Patents

Ground fault detecting method Download PDF

Info

Publication number
JP2013113632A
JP2013113632A JP2011258069A JP2011258069A JP2013113632A JP 2013113632 A JP2013113632 A JP 2013113632A JP 2011258069 A JP2011258069 A JP 2011258069A JP 2011258069 A JP2011258069 A JP 2011258069A JP 2013113632 A JP2013113632 A JP 2013113632A
Authority
JP
Japan
Prior art keywords
ground fault
zero
phase current
feeder
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011258069A
Other languages
Japanese (ja)
Inventor
Teppei Kamiyama
哲平 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011258069A priority Critical patent/JP2013113632A/en
Publication of JP2013113632A publication Critical patent/JP2013113632A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

PROBLEM TO BE SOLVED: To provide a ground fault detecting method for easily identifying a feeder wire where an intermittent ground fault occurs.SOLUTION: The ground fault detecting method in a power distribution system where a plurality of feeder wires 2, 3, 4 are connected to a bus line 1 and zero-phase current transformers ZCT are provided for the respective feeder wires 2, 3, 4 measures secondary side terminal voltage of the zero-phase current transformers ZCT and detects the feeder wire 2 to which ground fault occurs on the basis of the measured terminal voltage. Also, the ground fault detecting method has a relay DG operating by the secondary side current of the zero-phase current transformers ZCT and detects a feeder wire to which a ground fault occurs on the basis of the secondary-side terminal voltage when the relay DG is in a non-operation state.

Description

本発明は、複数のフィーダ線から地絡が発生したフィーダ線を検出する地絡検出の技術に関する。   The present invention relates to a ground fault detection technique for detecting a feeder line in which a ground fault has occurred from a plurality of feeder lines.

給電の配電系統では、1つの母線に対し複数のフィーダ線が分岐接続すると共に、配電系統を保護するための保護回路が組み込まれている。その保護回路は、地絡の発生を検出すると、地絡を検出したフィーダ線の交流遮断器CBを遮断状態に変更して配電系統を保護する。
上記保護回路は、母線電圧から地絡故障による零相電圧の上昇を検出する地絡過電圧継電器(0VG)と、各フィーダ線に設けられた零相変流器(ZCT)と、零相変流器からの電流に基づき地絡故障による各フィーダ線零相電流の方向から地絡したフィーダ線(以下地絡フィーダとも呼ぶ)を特定する地絡方向継電器(DG)と、を備える。
In the power distribution system, a plurality of feeder lines are branched and connected to one bus, and a protection circuit for protecting the power distribution system is incorporated. When the occurrence of a ground fault is detected, the protection circuit changes the AC breaker CB of the feeder line that has detected the ground fault to a cutoff state to protect the power distribution system.
The protection circuit includes a ground fault overvoltage relay (0VG) that detects an increase in zero phase voltage due to a ground fault from the bus voltage, a zero phase current transformer (ZCT) provided on each feeder line, and a zero phase current transformer. A ground fault direction relay (DG) that specifies a feeder line (hereinafter also referred to as a ground fault feeder) grounded from the direction of each feeder line zero-phase current due to a ground fault based on the current from the unit.

上記地絡が発生したフィーダ線を特定して配電系統を保護する方法としては、例えば特許文献1に記載の技術がある。この従来技術では、地絡過電圧継電器が地絡故障による零相電圧上昇を検出し、更に、地絡方向継電器の検出に基づき地絡故障による各フィーダ線零相電流の方向から地絡したフィーダ線を検出するという、2つの条件のアンド条件によって地絡フィーダを特定し、特定した地絡フィーダを遮断することで、配電系統を保護する。   As a method for protecting a power distribution system by specifying a feeder line in which the ground fault has occurred, there is a technique described in Patent Document 1, for example. In this prior art, a ground fault overvoltage relay detects a zero-phase voltage increase due to a ground fault, and further, based on detection of a ground fault direction relay, a feeder line that is grounded from the direction of each feeder line zero-phase current due to a ground fault The ground fault feeder is specified by the AND condition of the two conditions of detecting, and the power distribution system is protected by cutting off the specified ground fault feeder.

特開平6−70448号公報JP-A-6-70448

しかし、上述のような給電の配電系統においては、完全地絡に陥る前段階の微小な間欠地絡の状態では、零相電圧上昇を地絡過電圧継電器(0VG)が検出しても、各地絡方向継電器(DG)が動作しない場合が多い。このような場合、「どのフィーダ線が地絡しているのか」は特定できない。
現状では、この微小な間欠地絡が発生しているフィーダ線を特定する場合には、完全地絡が発生する前に各フィーダ線を一時的に停電させて各フィーダ線の精密調査を実行する必要があった。または、完全地絡に達するまで待ち、DG動作(=遮断器トリップ)を侍って地絡点を確認していた。
However, in the power distribution system as described above, even if a ground fault overvoltage relay (0VG) detects a zero-phase voltage rise in the state of a minute intermittent ground fault before a complete ground fault, a local fault is detected. In many cases, the directional relay (DG) does not operate. In such a case, “which feeder line is grounded” cannot be specified.
At present, when identifying feeder lines that have this minute intermittent ground fault, perform a precise survey of each feeder line by temporarily shutting down each feeder line before the complete ground fault occurs. There was a need. Or it waited until a complete ground fault was reached, and the ground fault point was confirmed through DG operation (= breaker trip).

しかしこのような方法では、健全設備の長時間停電を招いたり、遮断器トリップによって設備が突然停電することで設備破損を引き起こすおそれがあったりするなどの問題があった。
本発明は、上記のような点に着目してなされたもので、より簡便に、間欠地絡が発生しているフィーダ線を特定可能な地絡検出技術を提供することを目的としている。
However, such a method has problems such as causing a long-time power failure of a sound facility, or causing a facility power failure due to a power failure suddenly due to a circuit breaker trip.
The present invention has been made paying attention to the above points, and an object thereof is to provide a ground fault detection technique that can more easily specify a feeder line in which an intermittent ground fault has occurred.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、母線に複数のフィーダ線が接続されると共に、各フィーダ線に対し零相変流器が設けられた配電系統での地絡検出方法であって、上記零相変流器の2次側端子電圧を測定し、その測定した端子電圧に基づき地絡が発生しているフィーダ線を検出することを特徴とする。
次に、請求項2に記載した発明は、請求項1に記載した構成に対し、上記零相変流器の2次側電流で作動する継電器を有し、母線の零相電圧から地絡発生を判定し、各零相変流器で検出される零相電流による継電器の作動で地絡が発生しているフィーダ線を検出する地絡検出方法において、
上記継電器が非作動状態の場合に、上記端子電圧に基づき地絡の発生しているフィーダ線の検出を行うことを特徴とする。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is a distribution system in which a plurality of feeder lines are connected to a bus and a zero-phase current transformer is provided for each feeder line. The ground fault detection method is characterized in that a secondary terminal voltage of the zero-phase current transformer is measured, and a feeder line in which a ground fault occurs is detected based on the measured terminal voltage.
Next, the invention described in claim 2 has a relay that operates with the secondary current of the zero-phase current transformer in the configuration described in claim 1, and generates a ground fault from the zero-phase voltage of the bus. In the ground fault detection method for detecting a feeder line in which a ground fault occurs due to the operation of the relay by the zero phase current detected by each zero phase current transformer,
When the relay is in a non-operating state, a feeder line having a ground fault is detected based on the terminal voltage.

次に、請求項3に記載した発明は、請求項1又は請求項2に記載した構成に対し、上記零相変流器の2次側電流が入力される継電器を有し、
上記零相変流器の2次側端子電圧の測定は、上記継電器のインピーダンスを利用して検出することを特徴とする。
Next, the invention described in claim 3 has a relay to which the secondary side current of the zero-phase current transformer is input to the configuration described in claim 1 or claim 2,
The secondary terminal voltage of the zero phase current transformer is measured using the impedance of the relay.

本発明によれば、地絡過電圧継電器と地絡方向継電器の両方の条件を満足することで配電線路の地絡故障除去を行う配電系統であっても、地絡方向継電器が動作に至らない微小な地絡故障が発生したフィーダ線を、簡便に検出することが可能となる。   According to the present invention, even in a power distribution system that eliminates a ground fault in a distribution line by satisfying the conditions of both a ground fault overvoltage relay and a ground fault direction relay, the ground fault direction relay does not lead to operation. It is possible to easily detect a feeder line in which a ground fault has occurred.

本発明に基づく実施形態に係る配電系統の一例を示す図である。It is a figure which shows an example of the power distribution system which concerns on embodiment based on this invention. 地絡発生時の電流の流れを説明する図である。It is a figure explaining the flow of the electric current at the time of a ground fault generating. 人工的に特定のフィーダ線で地絡を起こした場合の電圧の状態を示す図である。It is a figure which shows the state of the voltage at the time of causing a ground fault artificially with a specific feeder line.

次に、本発明の実施形態について図面を参照して説明する。
図1は、本実施形態の配電系統の一例を示す図である。
この実施形態の配電系統は、図1に示すように、一つの母線1に対して3つのフィーダ線2,3,4が分岐していると共に、当該母線1に接地変圧器GPTが接続されている場合の例である。
各フィーダ線2,3,4にはそれぞれ、交流遮断器CBと零相変流器ZCTとが直列に設けられている。符号DGは地絡方向継電器である。
交流遮断器CBは、対応するフィーダ線2,3,4を母線1から切り離す遮断機能を有する。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a power distribution system according to the present embodiment.
In the power distribution system of this embodiment, as shown in FIG. 1, three feeder lines 2, 3, and 4 are branched with respect to one bus 1, and a grounding transformer GPT is connected to the bus 1. This is an example.
An AC circuit breaker CB and a zero-phase current transformer ZCT are provided in series for each feeder line 2, 3 and 4, respectively. Reference DG is a ground fault direction relay.
The AC circuit breaker CB has a function of cutting off the corresponding feeder wires 2, 3 and 4 from the bus 1.

零相変流器ZCTは、一次側巻線を三相導体としたもので、常時あるいは短絡故障時には各相電流のベクトル和はゼロであるので、2次側に電流は流れない。一方、いずれかのフィーダ線2で地絡が発生すると、各零相変流器ZCTの一次側には保護責務区間以外の場所で発生した地絡故障時にも設置箇所より負荷側の対地静電容量を通じて地絡電流の分流分が流れる。このとき、地絡が発生したフィーダ線2(地絡フィーダ)では、地絡電流はケーブルの対地静電容量を介して環流し、他のフィーダ線3,4の対地充電電流と合わせて図2のような電流の流れが一時的に形成される。このため、各フィーダの零相変流器の2次側に流れる中性点電流(零相電流)は、地絡フィーダ2とそれ以外のフィーダ線3,4とで流れる方向が逆になる。なお、図2の例は非接地系の場合であるが、接地系では地絡電流が接地点から帰る回路となる。   The zero-phase current transformer ZCT has a primary-side winding as a three-phase conductor, and the vector sum of each phase current is zero at all times or at the time of a short circuit failure, so no current flows on the secondary side. On the other hand, if a ground fault occurs in any feeder line 2, the primary side of each zero-phase current transformer ZCT is also connected to the electrostatic capacity on the load side from the installation location even in the event of a ground fault occurring in a place other than the protection duty section. A shunt of the ground fault current flows through the capacity. At this time, in the feeder line 2 (ground fault feeder) in which the ground fault has occurred, the ground fault current circulates through the ground capacitance of the cable and is combined with the ground charging currents of the other feeder lines 3 and 4 in FIG. Such a current flow is temporarily formed. For this reason, the neutral point current (zero-phase current) flowing on the secondary side of the zero-phase current transformer of each feeder is reversed in the direction of flow between the ground fault feeder 2 and the other feeder lines 3 and 4. The example of FIG. 2 is a case of a non-grounding system, but in the grounding system, a circuit in which the ground fault current returns from the grounding point is obtained.

接地変圧器GPTは、配電変電所等に設けられて、結線は3次のオープンデルタの発生電圧(零相電圧)にて地絡過電圧継電器(0VG)を動作させる。なお、3次に制限抵抗を入れて中性点を安定させて対地静電容量の無い状態での完全地絡電流を決定する。本実施形態では、地絡過電圧継電器(0VG)として接地形計器用変圧器6(零相電圧計)で零相電圧を検出する。地絡過電圧継電器(0VG)を使用しても問題はない。
地絡方向継電器DGは、零相変流器ZCTの2次電流である零相電流と、接地形計器用変圧器6が検出する零相電圧の位相関係から地絡を有無を検出し、地絡検出の場合には対応する交流遮断器CBを作動して地絡フィーダを選択遮断する。
The grounding transformer GPT is provided in a distribution substation or the like, and the connection operates the ground fault overvoltage relay (0VG) with the generation voltage (zero phase voltage) of the third order open delta. In addition, a third-order limiting resistor is inserted to stabilize the neutral point, and a complete ground fault current in a state without ground capacitance is determined. In the present embodiment, the zero-phase voltage is detected by the grounded-type instrument transformer 6 (zero-phase voltmeter) as the ground fault overvoltage relay (0VG). There is no problem even if a ground fault overvoltage relay (0VG) is used.
The ground fault direction relay DG detects the presence or absence of a ground fault from the phase relationship between the zero phase current, which is the secondary current of the zero phase current transformer ZCT, and the zero phase voltage detected by the grounded instrument transformer 6. In the case of a fault detection, the corresponding AC circuit breaker CB is operated to selectively cut off the ground fault feeder.

更に、本実施形態では、地絡検出用の電圧測定オシロスコープ5を備える。なお、オシロスコープ5のサンプリング周波数は、例えば10kHz程度とする。オシロスコープ5のサンプリング周波数は、地絡方向継電器DGのサンプリング周波数よりも高く設定することが好ましい。
オシロスコープ5は、接地形計器用変圧器6が検出する零相電圧を入力すると共に、各零相変流器ZCTの2次側に並列に接続して各零相変流器ZCTの2次側に流れる零相電流に応じた2次側端子電圧を検出する。そして、上記零相電圧及び各零相変流器ZCTの2次側端子電圧を、時系列で画面に表示すると共に、その時系列データを記録装置に記憶する。
Furthermore, in this embodiment, the voltage measurement oscilloscope 5 for ground fault detection is provided. The sampling frequency of the oscilloscope 5 is about 10 kHz, for example. The sampling frequency of the oscilloscope 5 is preferably set higher than the sampling frequency of the ground fault direction relay DG.
The oscilloscope 5 inputs the zero-phase voltage detected by the grounded-type instrument transformer 6 and is connected in parallel to the secondary side of each zero-phase current transformer ZCT to connect the secondary side of each zero-phase current transformer ZCT. The secondary side terminal voltage corresponding to the zero-phase current flowing through is detected. The zero-phase voltage and the secondary terminal voltage of each zero-phase current transformer ZCT are displayed on the screen in time series, and the time-series data is stored in the recording device.

そして、上記オシロスコープ5が出力する表示画面及び記録装置の記録に基づき、零相電圧が相対的に急峻していることを検出すると、地絡発生と判定し、更に、その地絡検出時の各2次側端子電圧のピークの向きを比較して、位相が他の2次側端子電圧と逆相に立ち上がっている2次側端子電圧に対応するフィーダ線2を地絡フィーダとして特定する。そして、地絡フィーダと特定したフィーダ線2の交流遮断器CBを遮断する。
このとき、地絡方向継電器DGが動作して地絡フィーダと特定したフィーダ線2の交流遮断器CBを遮断した場合には、上記零相電圧及び各零相変流器ZCTの2次側端子電圧によって地絡フィーダの判定をする必要はない。
Then, when it is detected that the zero-phase voltage is relatively steep based on the display screen output from the oscilloscope 5 and the recording of the recording device, it is determined that a ground fault has occurred, and further, each ground fault is detected. The direction of the peak of the secondary side terminal voltage is compared, and the feeder line 2 corresponding to the secondary side terminal voltage whose phase rises in the opposite phase to the other secondary side terminal voltage is specified as the ground fault feeder. And the AC circuit breaker CB of the feeder line 2 identified as the ground fault feeder is interrupted.
At this time, when the ground fault direction relay DG is operated and the AC circuit breaker CB of the feeder line 2 specified as the ground fault feeder is cut off, the zero side voltage and the secondary side terminal of each zero phase current transformer ZCT There is no need to determine the ground fault feeder by voltage.

(作用その他)
本実施形態では、配電系統の零相電圧(母線10VG)が検出されたが、フィーダ線2,3,4の零相電流によって地絡方向継電器DGが作動しない状態で、各フィーダ線2,3,4の零相変流器ZCTの2次側端子電圧を測定する。零相変流器ZCTにより検出される零相電流は方向を持っており、地絡フィーダと非地絡フィーダとでは零相電流の方向が反対となる。このとき零相電流により零相変流器ZCTの2次側端子に誘起される電圧の方向も、地絡/非地絡フィーダで反対となるため、この端子の電圧を測定することで、地絡発生しているフィーダ線2,3,4を特定することが出来る。
ここで、上記零相変流器ZCTの2次側端子に誘起される電圧は、零相変流器ZCTの2次側に流れる零相電流と地絡方向継電器DGが持つインピーダンスにより誘起される。
(Action and others)
In this embodiment, the zero-phase voltage (bus 10VG) of the distribution system is detected, but each feeder line 2, 3 is in a state where the ground fault direction relay DG is not activated by the zero-phase current of the feeder lines 2, 3, 4. , 4 measure the secondary terminal voltage of the zero-phase current transformer ZCT. The zero-phase current detected by the zero-phase current transformer ZCT has a direction, and the direction of the zero-phase current is opposite between the ground fault feeder and the non-ground fault feeder. At this time, the direction of the voltage induced at the secondary terminal of the zero-phase current transformer ZCT by the zero-phase current is also reversed by the ground / non-ground-fault feeder. Therefore, by measuring the voltage at this terminal, It is possible to identify feeder lines 2, 3, and 4 in which entanglement has occurred.
Here, the voltage induced at the secondary side terminal of the zero phase current transformer ZCT is induced by the impedance of the zero phase current flowing on the secondary side of the zero phase current transformer ZCT and the ground fault direction relay DG. .

また、図1において、地絡点Fに流れる地絡電流Ifは、地絡点を含む線路から流れこむ地絡電流Inと、他の線路から流れ込む地絡電流lcの和となる。そのため各線路に取り付けられたZCTにより検出される零相電流は、地絡線路と非地絡線路では方向が逆になる。
ここで、零相変流器ZCTで検出する零相電流は、ラジオノイズなどで変動している。このため、より精度良く零相電流を検出して微小な間欠地絡の発生を検出することを考えると、零相変流器ZCTの2次側に直列に別途抵抗を割り込まして電流センサで測定する必要がある。しかしこの場合には、割り込ました抵抗のインピーダンスによって零相電流の感度が低下してしまう。また、一旦離線して割り込ませる必要があるため、対応する保護責務区間を一旦停電させる必要がある。
In FIG. 1, the ground fault current If flowing through the ground fault point F is the sum of the ground fault current In flowing from the line including the ground fault point and the ground fault current lc flowing from the other line. Therefore, the direction of the zero-phase current detected by the ZCT attached to each line is reversed between the ground fault line and the non-ground fault line.
Here, the zero phase current detected by the zero phase current transformer ZCT fluctuates due to radio noise or the like. For this reason, considering that the zero-phase current is detected more accurately and the occurrence of a minute intermittent ground fault is considered, a separate resistor is inserted in series on the secondary side of the zero-phase current transformer ZCT and a current sensor is used. It is necessary to measure. In this case, however, the sensitivity of the zero-phase current is reduced by the impedance of the interrupted resistor. Moreover, since it is necessary to disconnect and interrupt once, it is necessary to once interrupt the corresponding protection duty section.

これに対し、本実施形態では、2次側端子に誘起される電圧を測定するため、離線の必要が無く、2次側端子に対して並列に接続されることから零相電流の低下を招く事がない。すなわち、本実施形態では、測定する電圧値を精度良く且つ簡便に検出することが可能となる。つまり、電圧要素で検出することにより改造の手間を省略し、零相電流の方向のみを精度良く検出することが出来る。   On the other hand, in this embodiment, since the voltage induced at the secondary side terminal is measured, there is no need for disconnection, and the parallel connection to the secondary side terminal causes a reduction in the zero-phase current. There is nothing. That is, in the present embodiment, the voltage value to be measured can be detected accurately and easily. That is, it is possible to detect only the direction of the zero-phase current with high accuracy by omitting the modification work by detecting the voltage element.

ここで、地絡フィーダを検出するため、地絡方向継電器DGが動作するよりも細かい精度で各フィーダ線2,3,4零相電流の方向を検出する必要がある。このため、本実施形態では、地絡方向継電器DGが動作しない微小な間欠地絡を検出するため、サンプリング周波数10kHz程度のオシロスコープ5を用いる。測定端子はZCT2次側に取り付けるが、安全のためDG継電器近傍で測定することが望ましい。   Here, in order to detect the ground fault feeder, it is necessary to detect the direction of each feeder line 2, 3, 4 zero-phase current with a finer accuracy than the operation of the ground fault direction relay DG. For this reason, in this embodiment, in order to detect a minute intermittent ground fault in which the ground fault direction relay DG does not operate, the oscilloscope 5 having a sampling frequency of about 10 kHz is used. The measurement terminal is attached to the secondary side of the ZCT, but it is desirable to measure near the DG relay for safety.

以上のように、本実施形態の地絡検出方法では、設備の停電が必要なく、また高圧充電部に接近する必要も無いため、安全に、しかも地絡による零相電圧が出た瞬間にすばやく地絡フィーダを判別することが可能である。このため、従来発生していた「健全設備停電させての調査作業、および設備停電に伴う損失」、「地絡トリップ故障による設備・機会損失」を避けることが出来るほか、故障点を早期に発見することにより設備劣化を最小限にとどめることが可能である。   As described above, in the ground fault detection method of the present embodiment, there is no need for a power failure of the equipment and no need to approach the high-voltage charging unit, so that it is safe and quick at the moment when the zero-phase voltage due to the ground fault comes out. It is possible to determine the ground fault feeder. For this reason, it is possible to avoid the “loss of work due to a power outage and loss due to a power outage” and “equipment / opportunity loss due to a ground fault trip” that have occurred in the past, and to find the failure point early. By doing so, it is possible to minimize equipment deterioration.

ここで、上記実施形態では、母線1の零相電圧から地絡発生を検出した場合に、零相変流器ZCTの2次側端子に誘起される電圧の方向が逆になっている零相変流器ZCTに対応するフィーダ線2を地絡フィーダと判定する場合を例示した。図3から分かるように、地絡フィーダの2次側端子に誘起される電圧は、他の地絡フィーダの2次側端子に誘起される電圧よりも大きいので、その2次側端子に誘起される電圧が一番大きなフィーダ線2(若しくは前後の電圧値に対する比が一番大きなフィーダ線2)を地絡フィーダと判定しても良い。   Here, in the above embodiment, when the occurrence of the ground fault is detected from the zero-phase voltage of the bus 1, the direction of the voltage induced at the secondary side terminal of the zero-phase current transformer ZCT is reversed. The case where the feeder line 2 corresponding to the current transformer ZCT is determined as a ground fault feeder has been illustrated. As can be seen from FIG. 3, the voltage induced at the secondary side terminal of the ground fault feeder is larger than the voltage induced at the secondary side terminal of the other ground fault feeder, so that it is induced at the secondary side terminal. The feeder line 2 having the largest voltage (or the feeder line 2 having the largest ratio to the preceding and following voltage values) may be determined as the ground fault feeder.

また、上記実施形態では、オシロスコープ5で零相電圧及び各2次端子電圧を検出し比較することで地絡フィーダの検出を行う場合を例示しているが、これに限定されない。各電圧の時系列データに基づき、地絡フィーダの検出を自動判定するようにしても良い。
例えば、検出した零相電圧及び各2次端子電圧を予め設定してサンプリング周期で取得して記憶しつつ、検出した零相電圧が予め設定した地絡検出電圧以上となっていることを検出すると、その地絡検出電圧以上となったときの当該零相電圧の立上り時刻前後で検出した、各2次端子電圧のピーク電圧を取得し、その2次端子電圧のピーク電圧の向き若しくは大きさに基づき、他の2次端子電圧とは逆相若しくは大きさが異なる電圧値の2次端子電圧に対応するフィーダを地絡フィーダと判定し、その地絡フィーダの交流遮断器CBに遮断動作信号を出力する。
Moreover, although the said embodiment illustrated the case where the ground fault feeder is detected by detecting and comparing the zero-phase voltage and each secondary terminal voltage with the oscilloscope 5, it is not limited to this. Detection of the ground fault feeder may be automatically determined based on the time series data of each voltage.
For example, when it is detected that the detected zero-phase voltage and each secondary terminal voltage are preset and acquired and stored in a sampling period while the detected zero-phase voltage is equal to or higher than a preset ground fault detection voltage. The peak voltage of each secondary terminal voltage detected before and after the rising time of the zero-phase voltage when the ground fault detection voltage is exceeded is acquired, and the direction or magnitude of the peak voltage of the secondary terminal voltage is acquired. Based on this, the feeder corresponding to the secondary terminal voltage having a voltage value that is opposite in phase or different in magnitude from the other secondary terminal voltage is determined as a ground fault feeder, and a cutoff operation signal is sent to the AC circuit breaker CB of the ground fault feeder. Output.

1 母線
2、3,4 フィーダ線
2 地絡フィーダ
5 オシロスコープ
6 接地形計器用変圧器
CB 交流遮断器
DG 地絡方向継電器
GPT 接地変圧器
ZCT 零相変流器
If 地絡電流
In 地絡電流
lc 地絡電流
1 Busbar 2, 3, 4 Feeder 2 Ground fault feeder 5 Oscilloscope 6 Grounding-type instrument transformer CB AC circuit breaker DG Ground fault direction relay GPT Ground transformer ZCT Zero-phase current transformer If Ground fault current In Ground fault current lc Earth fault current

Claims (3)

母線に複数のフィーダ線が接続されると共に、各フィーダ線に対し零相変流器が設けられた配電系統での地絡検出方法であって、
上記零相変流器の2次側端子電圧を測定し、その測定した端子電圧に基づき地絡が発生しているフィーダ線を検出することを特徴とする地絡検出方法。
A ground fault detection method in a distribution system in which a plurality of feeder lines are connected to a bus line and a zero-phase current transformer is provided for each feeder line,
A ground fault detection method comprising measuring a secondary terminal voltage of the zero-phase current transformer and detecting a feeder line in which a ground fault is generated based on the measured terminal voltage.
上記零相変流器の2次側電流で作動する継電器を有し、母線の零相電圧から地絡発生を判定し、各零相変流器で検出される零相電流による継電器の作動で地絡が発生しているフィーダ線を検出する地絡検出方法において、
上記継電器が非作動状態の場合に、上記端子電圧に基づき地絡の発生しているフィーダ線の検出を行うことを特徴とする請求項1に記載した地絡検出方法。
It has a relay that operates with the secondary current of the zero-phase current transformer, determines the occurrence of ground fault from the zero-phase voltage of the bus, and operates the relay with the zero-phase current detected by each zero-phase current transformer In the ground fault detection method for detecting a feeder line where a ground fault has occurred,
2. The ground fault detection method according to claim 1, wherein when the relay is in an inoperative state, a feeder line in which a ground fault occurs is detected based on the terminal voltage.
上記零相変流器の2次側電流が入力される継電器を有し、
上記零相変流器の2次側端子電圧の測定は、上記継電器のインピーダンスを利用して検出することを特徴とする請求項1又は請求項2に記載した地絡検出方法。
A relay to which a secondary current of the zero-phase current transformer is input;
The ground fault detection method according to claim 1 or 2, wherein the measurement of the secondary side terminal voltage of the zero-phase current transformer is detected by using the impedance of the relay.
JP2011258069A 2011-11-25 2011-11-25 Ground fault detecting method Pending JP2013113632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258069A JP2013113632A (en) 2011-11-25 2011-11-25 Ground fault detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258069A JP2013113632A (en) 2011-11-25 2011-11-25 Ground fault detecting method

Publications (1)

Publication Number Publication Date
JP2013113632A true JP2013113632A (en) 2013-06-10

Family

ID=48709309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258069A Pending JP2013113632A (en) 2011-11-25 2011-11-25 Ground fault detecting method

Country Status (1)

Country Link
JP (1) JP2013113632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016256A (en) * 2019-07-12 2021-02-12 日新電機株式会社 Single line ground fault overvoltage suppression device for non-grounded system
CN114578186A (en) * 2022-02-28 2022-06-03 四川大学 Cable early fault severity evaluation method based on volt-ampere characteristic analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130723A (en) * 1982-01-27 1983-08-04 三菱油化株式会社 Early ground-fault trouble detecting system in electric wire line
JPS60156829U (en) * 1984-03-27 1985-10-18 株式会社明電舎 Earth fault directional relay
JPH0698457A (en) * 1991-11-28 1994-04-08 Kansai Electric Power Co Inc:The Cause judgment method of ground fault of high-voltage distribution line
US20110075304A1 (en) * 2009-09-30 2011-03-31 Chevron U.S.A. Inc. System and method for polyphase ground-fault circuit-interrupters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130723A (en) * 1982-01-27 1983-08-04 三菱油化株式会社 Early ground-fault trouble detecting system in electric wire line
JPS60156829U (en) * 1984-03-27 1985-10-18 株式会社明電舎 Earth fault directional relay
JPH0698457A (en) * 1991-11-28 1994-04-08 Kansai Electric Power Co Inc:The Cause judgment method of ground fault of high-voltage distribution line
US20110075304A1 (en) * 2009-09-30 2011-03-31 Chevron U.S.A. Inc. System and method for polyphase ground-fault circuit-interrupters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016256A (en) * 2019-07-12 2021-02-12 日新電機株式会社 Single line ground fault overvoltage suppression device for non-grounded system
JP7159990B2 (en) 2019-07-12 2022-10-25 日新電機株式会社 Single-line ground fault overvoltage suppressor for ungrounded systems
CN114578186A (en) * 2022-02-28 2022-06-03 四川大学 Cable early fault severity evaluation method based on volt-ampere characteristic analysis

Similar Documents

Publication Publication Date Title
RU2542494C2 (en) Device and method for detection of ground short-circuit
US10522998B2 (en) Method for detecting an open-phase condition of a transformer
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
EP2686691B1 (en) A method for detecting earth faults
US8717721B2 (en) High impedance fault isolation system
CN103840437B (en) The quick diagnosis of power distribution network ferromagnetic resonance and singlephase earth fault and processing method
EP2128951B1 (en) Electronic active earthing system for use in high-voltage distribution networks
KR20080093169A (en) Method of leakage current break and measurement leakage current use phase calculation
KR20130060715A (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
JP4871511B2 (en) Interrupt insulation measuring device
KR101490770B1 (en) Ground fault detecting apparatus
JP2006200898A5 (en)
JP2004239863A (en) Grounding method for transformer
JP5073003B2 (en) Distribution transformer secondary side ground fault detection system
JP2010187446A (en) Power cable ground fault detecting apparatus and power cable ground fault protection device
JP2013113632A (en) Ground fault detecting method
CA2741382C (en) Measuring transient electrical activity in aircraft power distribution systems
KR101648512B1 (en) Motor protection relay for detecting resistive ground fault current
JP4921246B2 (en) Ground fault distance relay
Shen et al. Grounding transformer application, modeling, and simulation
JP2002027660A (en) Ground fault detector for low-voltage circuit
Chang et al. Application of low voltage high resistance grounding in nuclear power plants
US11962140B2 (en) Coordination of protective elements in an electric power system
JP2006010608A (en) Insulation level monitoring method for non-earthing electric line and device thereof
JP2012257384A (en) Short circuit distance relay, and system protection system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908