JP2013078204A - Power converting device - Google Patents

Power converting device Download PDF

Info

Publication number
JP2013078204A
JP2013078204A JP2011216541A JP2011216541A JP2013078204A JP 2013078204 A JP2013078204 A JP 2013078204A JP 2011216541 A JP2011216541 A JP 2011216541A JP 2011216541 A JP2011216541 A JP 2011216541A JP 2013078204 A JP2013078204 A JP 2013078204A
Authority
JP
Japan
Prior art keywords
series
semiconductor elements
circuit
leg
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011216541A
Other languages
Japanese (ja)
Other versions
JP5780907B2 (en
Inventor
Teruo Yoshino
輝雄 吉野
Toshitaka Nakamura
利孝 中村
Makoto Kuraki
誠 椋木
Hiroshi Mochikawa
宏 餅川
Yosuke Nakazawa
洋介 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Corp
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Corp
Priority to JP2011216541A priority Critical patent/JP5780907B2/en
Publication of JP2013078204A publication Critical patent/JP2013078204A/en
Application granted granted Critical
Publication of JP5780907B2 publication Critical patent/JP5780907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power converter that has a series constitution of semiconductor elements as a main constitution and can deal with a high voltage and multiple output levels without using a transformer.SOLUTION: In order to deal with a high voltage, a leg 1 of a voltage-type converter is constituted of series connections of a plurality of semiconductor elements 101 through 112. Taking economic efficiency into account, the semiconductor elements having the same rating are used. Further, since a DC circuit 2 is also subjected to the high voltage, the DC circuit 2 is constituted of series connections of DC capacitors 201 through 206. In such constitutions, connection points among pairs adjacent to one another of the semiconductor elements 101 through 112 constituting the leg 1 and connection points among pairs adjacent to one another of the individual DC capacitors 201 through 206 are connected by switches 41 through 44 constituted of semiconductor elements having the same voltage ratings as those of the semiconductor elements 101 through 112 constituting the leg 1. An output voltage of the number of voltage levels corresponding to the number of capacitors 201 through 206 connected in series in the DC circuit 2 is generated at an output terminal U.

Description

本発明は、高電圧の電力を変換するモーター駆動用インバータや周波数変換装置などに適用される電力変換装置に関する。   The present invention relates to a power conversion device applied to a motor drive inverter, a frequency conversion device, or the like that converts high voltage power.

従来の技術として、3レベルの電圧を出力する変換装置として、ダイオードクランプ回路を用いた変換装置、中性点スイッチを用いた変換装置は、論文等で開示されている。これら回路の基本構成を図13、14に示す。   As a conventional technique, a conversion device using a diode clamp circuit and a conversion device using a neutral point switch as a conversion device that outputs a three-level voltage are disclosed in papers and the like. The basic configuration of these circuits is shown in FIGS.

まず、従来技術の動作を図13を用いて説明する。   First, the operation of the prior art will be described with reference to FIG.

図13は、電力変換器の1相分の構成を示すものであり、単相出力ではこの構成を1組(ハーフブリッジ単相出力回路)あるいは2組(フルブリッジ単相出力回路)用い、三相出力では3組用いる。Uは電力変換器の交流出力であり、レグ1内の半導体101〜104のオンオフにより、直流回路2により維持される直流電圧+E、0、−Eの3つのレベルの電圧が出力される。その電圧ステップの幅をPWM制御により調整し、所望の周波数・電圧の交流電圧を負荷に与える。   FIG. 13 shows the configuration of one phase of the power converter. For single-phase output, this configuration is used in one set (half-bridge single-phase output circuit) or two sets (full-bridge single-phase output circuit). Three sets are used for phase output. U is an AC output of the power converter, and three levels of voltages, DC voltages + E, 0, and −E, maintained by the DC circuit 2 are output by turning on and off the semiconductors 101 to 104 in the leg 1. The width of the voltage step is adjusted by PWM control, and an AC voltage having a desired frequency and voltage is applied to the load.

U相に+Eの電圧を出力する場合は、半導体素子101、102をオンする。0電圧を出力するには、半導体素子102、103をオンする。この状態では、ダイオードクランプ回路3を通じて、直流中性点Cと交流出力端子Uとが接続する。−Eの電圧を出力する場合は、半導体素子103、104をオンする。このようにして、3つのレベルの電圧が出力される。   When outputting + E voltage to the U phase, the semiconductor elements 101 and 102 are turned on. In order to output 0 voltage, the semiconductor elements 102 and 103 are turned on. In this state, the DC neutral point C and the AC output terminal U are connected through the diode clamp circuit 3. When outputting the voltage −E, the semiconductor elements 103 and 104 are turned on. In this way, three levels of voltage are output.

次に、他の従来技術を図14を用いて説明する。   Next, another conventional technique will be described with reference to FIG.

図14は、電力変換器の1相分の構成を示すものであり、単相出力では上記同様にこの構成を1組(ハーフブリッジ単相出力回路)あるいは2組(フルブリッジ単相出力回路)用い、三相出力では3組用いる。動作は、図13の例とほぼ同様であるが、0電圧を出力するには、中性点スイッチ6をオンすることで、直流中性点Cと交流出力端子Uとを接続する点が異なる。従来技術を示す図13の構成では、中性点スイッチをダイオード301、302とトランジスタ102、103をそれぞれ直列した回路を並列接続して構成しているが、図14のようにダイオードとトランジスタを逆並列接続した構成6A、6Bを直列接続しても、同じ機能が実現される。一般的なIGBT素子は、トランジスタとダイオードが逆並列接続されているので、それを用いてスイッチを構成するのが実用的である。したがって図14では、IGBTを互いに逆方向に向けて直列接続することでスイッチを構成した例を示した。   FIG. 14 shows the configuration for one phase of the power converter. For single-phase output, this configuration is similarly set to one set (half-bridge single-phase output circuit) or two sets (full-bridge single-phase output circuit). Use three sets for three-phase output. The operation is almost the same as the example of FIG. 13 except that the DC neutral point C and the AC output terminal U are connected by turning on the neutral point switch 6 to output 0 voltage. . In the configuration of FIG. 13 showing the prior art, the neutral point switch is configured by connecting in parallel a circuit in which the diodes 301 and 302 and the transistors 102 and 103 are connected in series, but the diode and the transistor are reversed as shown in FIG. Even if the configurations 6A and 6B connected in parallel are connected in series, the same function is realized. In a general IGBT element, a transistor and a diode are connected in antiparallel, so that it is practical to configure a switch using the transistor. Therefore, FIG. 14 shows an example in which a switch is configured by connecting IGBTs in series in opposite directions.

これらの技術に用いられる半導体素子として、実用的に使われるのは自励式(自己消弧可能な)IGBT素子などであり、経済的に入手できる半導体素子の電圧定格は、千V程度のものが多く、これらの技術は、数百V程度の出力の電力変換器に適用されている。   As a semiconductor element used in these technologies, a self-excited (self-extinguishing) IGBT element or the like is practically used, and an economically available semiconductor element has a voltage rating of about 1000 V. Many of these techniques are applied to power converters having an output of about several hundred volts.

“A New Neutral-Point-Clamped PWM Inverter”, Akira Nabae他、IEEE Transaction on Industry Applications, Vol. IA-17, No.5 September/October 1981 pp.518-523“A New Neutral-Point-Clamped PWM Inverter”, Akira Nabae et al., IEEE Transaction on Industry Applications, Vol. IA-17, No.5 September / October 1981 pp.518-523

省エネ及びCO削減などのため、ポンプやファンの電動機をインバータで可変速駆動する技術が広く用いられている。しかし、それらのインバータは、先に説明した理由から定格電圧が数百V程度のものが大半であり、大規模なプラントなどで用いられる高電圧電動機は、複数の低電圧インバータを変圧器を介して直列接続した構成のインバータを適用している。しかし、このような構成では、変圧器を必要とすることから、重量や寸法が大きくなり、据付場所などの制約が大きいなどの問題があった。 In order to save energy and reduce CO 2, a technology for driving a pump or a fan motor at a variable speed with an inverter is widely used. However, most of these inverters have a rated voltage of about several hundred volts for the reasons described above. High voltage motors used in large-scale plants and the like have a plurality of low voltage inverters connected via transformers. Inverter connected in series. However, in such a configuration, since a transformer is required, there are problems such as an increase in weight and size and a large restriction on an installation location.

実施形態は上記課題を解決するため、半導体素子の直列構成を中心的な構成とし、変圧器を使用することなく高電圧及び多出力レベルを扱える電力変換器を提供する。   In order to solve the above-described problem, the embodiment provides a power converter capable of handling high voltages and multiple output levels without using a transformer, with a series configuration of semiconductor elements as a central configuration.

上記課題を解決する手段の一例は下記のとおりである。   An example of means for solving the above problems is as follows.

高電圧を扱うため、電圧形変換器のレグを複数の半導体素子の直列接続で構成する。経済性に考慮し同一定格の半導体素子を用いる。また、直流回路も高電圧となるので、直流コンデンサの直列接続で構成する。この構成において、レグを構成する半導体素子相互間の接続点と、直流コンデンサ相互間の接続点を、レグを構成する半導体素子と同じ定格を有する半導体素子から構成されるスイッチにより接続する構成とする。直流回路の直列接続されたコンデンサの数に応じたレベル数の出力電圧が発生される。   In order to handle a high voltage, the legs of the voltage source converter are configured by connecting a plurality of semiconductor elements in series. Considering economic efficiency, use semiconductor elements with the same rating. Further, since the DC circuit also has a high voltage, it is configured by connecting DC capacitors in series. In this configuration, the connection point between the semiconductor elements constituting the leg and the connection point between the DC capacitors are connected by a switch composed of a semiconductor element having the same rating as the semiconductor element constituting the leg. . The output voltage of the number of levels corresponding to the number of capacitors connected in series in the DC circuit is generated.

すなわち、実施形態に係る電力変換装置は、ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子として構成され、複数の同一電圧定格のコンデンサが2n個(nは自然数)直列接続された直流回路と、複数の同一電圧定格の半導体素子を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグと、前記正及び負の直流母線からそれぞれ数えてk番目(kは自然数)と(k+1)番目のコンデンサの相互接続点と、k番目と(k+1)番目の半導体素子の相互接続点との間に直列に接続されるk個の半導体素子で構成されたスイッチと、レグの中点から正および負の母線側に共にn番目と(n+1)番目の半導体素子の相互接続点の間に直列接続された同一方向及び偶数個のダイオードを含み、前記偶数個のダイオードの中点が前記直流回路の中性点に接続されたダイオードクランプ回路とを具備する。     That is, in the power conversion device according to the embodiment, a circuit element composed of an anti-parallel connection of a diode and a switching element is configured as a semiconductor element, and a plurality of 2n capacitors (n is a natural number) having the same voltage rating are connected in series. A circuit and a series circuit in which 4n semiconductor elements having the same voltage rating are connected in series, the leg being connected in parallel with the DC circuit by a positive and negative bus, and the positive and negative DC bus K semiconductors connected in series between the interconnection point of the kth (k is a natural number) and (k + 1) th capacitors and the interconnection point of the kth and (k + 1) th semiconductor elements, respectively. Switches in the same direction and even number connected in series between the interconnection points of the nth and (n + 1) th semiconductor elements, both on the positive and negative buses from the middle point of the leg It includes a diode midpoint of the even number of diodes comprises a diode clamp circuit connected to the neutral point of the DC circuit.

第1実施形態に係る電圧形自励式の電力変換装置の構成を示す図である。It is a figure which shows the structure of the voltage type self-excitation type power converter device which concerns on 1st Embodiment. 第2実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 2nd Embodiment. 第3実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 3rd Embodiment. 第4実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 4th Embodiment. 第5実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 5th Embodiment. 第6実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 6th Embodiment. 第7実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 7th Embodiment. 第8実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 8th Embodiment. 第9実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 9th Embodiment. 第10実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 10th Embodiment. 第11実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 11th Embodiment. 第12実施形態に係る電力変換装置の構成を示す図である。It is a figure which shows the structure of the power converter device which concerns on 12th Embodiment. 従来の電力変換装置の構成を示す図である。It is a figure which shows the structure of the conventional power converter device. 従来の電力変換装置の他の構成を示す図である。It is a figure which shows the other structure of the conventional power converter device.

以下、実施形態の構成及び作用を図面を参照して詳細に説明する。   Hereinafter, the configuration and operation of the embodiment will be described in detail with reference to the drawings.

[第1実施形態]
図1は第1実施形態に係る電圧形自励式の電力変換装置の構成を示す図である。図1は直流コンデンサを6つ直列接続した構成を示す。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a voltage source self-excitation power converter according to the first embodiment. FIG. 1 shows a configuration in which six DC capacitors are connected in series.

直流電圧が全体では、+3E、−3Eと高い電圧になるため、その電圧に見合うよう半導体素子の直列数を定める。各コンデンサの容量及び定格電圧は同一で、「E」はコンデンサの定格電圧を示す。図1では、スイッチング素子(IGBT等)及びダイオードを逆並列接続した12個の半導体素子101〜112を直列して、レグ1を構成する。本明細書では、このスイッチング素子及びダイオードを逆並列接続した回路要素を半導体素子と呼ぶ。ダイオードクランプ回路3を構成するダイオードも電圧に合わせ直列構成としている。電圧定格の高いダイオードを1つで構成しても良い。   Since the DC voltage as a whole is as high as + 3E and -3E, the number of series of semiconductor elements is determined so as to meet the voltage. The capacitance and rated voltage of each capacitor are the same, and “E” indicates the rated voltage of the capacitor. In FIG. 1, a leg 1 is formed by connecting twelve semiconductor elements 101 to 112 in which switching elements (IGBT and the like) and diodes are connected in antiparallel. In this specification, a circuit element in which the switching element and the diode are connected in antiparallel is referred to as a semiconductor element. The diodes constituting the diode clamp circuit 3 are also configured in series according to the voltage. A single diode having a high voltage rating may be configured.

レグ1、ダイオードクランプ回路3を用いることで、従来と同様、交流出力端子Uに、+3E、0、−3Eの3つの電圧レベルを出力可能である。しかし、負荷から見ると、レグのスイッチングに伴う電圧レベルの変化が3Eと大きくなり、ケーブルでの反射による電圧サージなどが発生することがある。つまり出力電圧波形と、負荷を反射した電圧波形が重畳して過電圧が発生し、負荷にとってはストレスが大きくなるおそれがある。   By using the leg 1 and the diode clamp circuit 3, it is possible to output three voltage levels of + 3E, 0, and −3E to the AC output terminal U as in the conventional case. However, when viewed from the load, the voltage level change accompanying leg switching becomes as large as 3E, and a voltage surge or the like due to reflection on the cable may occur. That is, the output voltage waveform and the voltage waveform reflected from the load are superimposed to generate an overvoltage, which may increase the stress on the load.

そこで図1においては、半導体素子101と102との接続点A、直流コンデンサ201と202との接続点Bの間をスイッチ41で接続し、半導体素子102と103との接続点C’、直流コンデンサ202と203との接続点Dの間をスイッチ42で接続し、半導体素子110と111との接続点E’、直流コンデンサ204と205との接続点Fの間をスイッチ43で接続し、半導体素子111と112との接続点G、直流コンデンサ205と206との接続点Hの間をスイッチ44で接続する。このような構成とすることで、直流コンデンサ電圧Eの+2E、+E、−E、−2Eが、交流出力端子Uに発生でき、+3E、+2E、+E、0、−E、−2E、−3Eという7レベルの電圧を出力できる。これにより、スイッチングに伴う電圧変化はEとなるので、負荷の電圧ストレスは小さくなる。   Therefore, in FIG. 1, the connection point A between the semiconductor elements 101 and 102 and the connection point B between the DC capacitors 201 and 202 are connected by the switch 41, the connection point C ′ between the semiconductor elements 102 and 103, and the DC capacitor. The connection point D between 202 and 203 is connected by a switch 42, the connection point E ′ between the semiconductor elements 110 and 111, and the connection point F between the DC capacitors 204 and 205 are connected by a switch 43. A switch 44 connects the connection point G between 111 and 112 and the connection point H between the DC capacitors 205 and 206. With such a configuration, + 2E, + E, −E, −2E of the DC capacitor voltage E can be generated at the AC output terminal U, which is called + 3E, + 2E, + E, 0, −E, −2E, −3E. A 7-level voltage can be output. Thereby, since the voltage change accompanying switching becomes E, the voltage stress of the load is reduced.

7レベルの電圧の出力は、次のように行う。+3Eの出力は、半導体素子101〜106を全てオンし、他の半導体素子をオフする(以下、冗長な説明を避けるため、オンする半導体素子またはスイッチのみを示し、他の半導体素子またはスイッチをオフする記載は省略する)。+2Eの出力は、スイッチ41と半導体素子102〜106をオンする。+Eの出力は、スイッチ42と半導体素子103〜106をオンする。0の出力は、半導体素子104〜109をオンしダイオードクランプ回路3経由で中性点Cと交流出力端子Uを接続する。−Eの出力は、スイッチ43と半導体素子107〜110をオンする。−2Eの出力は、半導体素子107〜111とスイッチ44をオンする。−3Eの出力は、半導体素子107〜112を全てオンする。尚、以上のようなスイッチングのシーケンスはルックアップテーブル等で行い、パルス幅はPWM等を用いて決定される。   The 7-level voltage is output as follows. The output of + 3E turns on all the semiconductor elements 101 to 106 and turns off the other semiconductor elements (hereinafter, in order to avoid redundant explanation, only the semiconductor elements or switches that are turned on are shown, and the other semiconductor elements or switches are turned off. The description to be omitted is omitted). The output of + 2E turns on the switch 41 and the semiconductor elements 102 to 106. The output of + E turns on the switch 42 and the semiconductor elements 103 to 106. The output of 0 turns on the semiconductor elements 104 to 109 and connects the neutral point C and the AC output terminal U via the diode clamp circuit 3. The output of −E turns on the switch 43 and the semiconductor elements 107 to 110. The output of −2E turns on the semiconductor elements 107 to 111 and the switch 44. The output of −3E turns on all the semiconductor elements 107 to 112. The switching sequence as described above is performed using a lookup table or the like, and the pulse width is determined using PWM or the like.

ここで、スイッチ41〜44は、レグとの接続点を適宜選定することで、レグを構成する半導体素子と同じ電圧定格の半導体素子、かつ一方向性の半導体素子で構成することができる。つまり、例えば+3Eを出力している場合、スイッチ41のコレクタ電位は+3E、エミッタ電位は+2Eであるので、スイッチ41の端子間には電圧Eがかかる。ここで、レグを構成する半導体素子は、電圧Eを扱えるものが用いられているので、同じ半導体素子が適用できる。次に、+Eを出力している場合は、スイッチ41のエミッタ電位は+2Eで、交流出力端子Uは+Eであり、スイッチ41と半導体素子102にて+Eの電圧を背負う。0を出力している場合は、スイッチ41のエミッタ電位は+2Eで、交流出力端子Uは0であり、スイッチ41と半導体素子102、103にて+2Eの電圧を背負う。いずれも半導体素子1つあたりの電圧はE以下である。スイッチ42〜44についても同様である。   Here, the switches 41 to 44 can be configured by a semiconductor element having the same voltage rating as the semiconductor element constituting the leg and a unidirectional semiconductor element by appropriately selecting a connection point with the leg. That is, for example, when + 3E is output, the collector potential of the switch 41 is + 3E and the emitter potential is + 2E, so that the voltage E is applied between the terminals of the switch 41. Here, since the semiconductor element which comprises the leg can use the voltage E, the same semiconductor element is applicable. Next, when + E is output, the emitter potential of the switch 41 is + 2E, the AC output terminal U is + E, and the switch 41 and the semiconductor element 102 bear a voltage of + E. When 0 is output, the emitter potential of the switch 41 is + 2E, the AC output terminal U is 0, and the switch 41 and the semiconductor elements 102 and 103 bear a voltage of + 2E. In either case, the voltage per semiconductor element is E or less. The same applies to the switches 42 to 44.

また、別の観点から言えば、図1に示した接続構成とすることで、レグを構成する半導体素子の直列数を有効に活用、すなわち高耐圧及び多レベル出力を実現できる。   From another point of view, the connection configuration shown in FIG. 1 makes it possible to effectively use the series number of semiconductor elements constituting the leg, that is, to realize a high breakdown voltage and multilevel output.

図1では、半導体素子1つで、対応する直流コンデンサ電圧Eを扱えるものとして、直列数を12個で説明した。直流コンデンサ電圧を2つの半導体素子の直列構成で扱うなど、直列数が更に増加しても、同様である。また図1では、直流電圧レベルを7で説明したが、同様な考えで更に高電圧多レベルの電力変換装置を実現できる。   In FIG. 1, the number of series is described as 12 because one semiconductor element can handle the corresponding DC capacitor voltage E. The same applies even if the number of series increases further, such as when the DC capacitor voltage is handled in a series configuration of two semiconductor elements. In FIG. 1, the DC voltage level is described as 7. However, a high voltage multi-level power conversion device can be realized with the same idea.

以上のように本実施形態に係る電力変換装置は、ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子とし、複数の同一電圧定格のコンデンサ201〜206が2n個(図1ではn=3)直列接続された直流回路2と、複数の同一電圧定格の半導体素子を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグ1と、前記正及び負の直流母線P、Nから数えてk番目(kは自然数)と(k+1)番目のコンデンサの相互接続点と、k番目と(k+1)番目の半導体素子の相互接続点との間に直列に接続されるk個の半導体素子で構成されたスイッチ41〜44と、レグの中点から正および負の母線側に共にn番目と(n+1)番目の半導体素子の相互接続点の間に直列接続された同一方向及び偶数個のダイオード301〜306を含み、前記偶数個のダイオードの中点が前記直流回路の中性点Cに接続されたダイオードクランプ回路3とを具備する。   As described above, in the power conversion device according to the present embodiment, the circuit element formed of the antiparallel connection of the diode and the switching element is a semiconductor element, and there are 2n capacitors 201 to 206 having the same voltage rating (n = n in FIG. 1). 3) a DC circuit 2 connected in series, and a series circuit in which a plurality of 4n semiconductor elements having the same voltage rating are connected in series, the leg 1 being connected in parallel with the DC circuit by positive and negative buses; , The k-th (k is a natural number) and (k + 1) th capacitor interconnection point counted from the positive and negative DC buses P and N, and the kth and (k + 1) th semiconductor element interconnection point The switches 41 to 44 composed of k semiconductor elements connected in series between the n-th and (n + 1) th semiconductor elements are connected to the positive and negative buses from the middle point of the leg. Series connection between It includes the same direction and an even number of diodes 301 to 306 which is the midpoint of the even number of diodes comprises a diode clamp circuit 3 connected to the neutral point C of the DC circuit.

(効果)
本実施形態によれば、電力変換器の扱う電圧を高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。
(effect)
According to this embodiment, not only the voltage handled by the power converter can be increased, but also the output voltage level can be increased, and a power converter capable of smoother voltage output can be provided.

[第2実施形態]
(構成)
図2は第2実施形態に係る電力変換装置の構成を示す図である。本実施形態は、図1のダイオードクランプ回路3の代わりに、中性点スイッチ6を用いた構成である。
[Second Embodiment]
(Constitution)
FIG. 2 is a diagram illustrating a configuration of the power conversion device according to the second embodiment. In this embodiment, a neutral point switch 6 is used instead of the diode clamp circuit 3 of FIG.

中性点スイッチ6は、従来は異なり、扱う直流電圧が高くなるので、スイッチ61、62の直列接続から構成されている。また、スイッチ61、62は夫々、半導体素子61A、61Bおよび62A、62Bから構成されている。これらの半導体素子は、レグを構成する半導体素子と同じ電圧定格の半導体素子を適用できる。   Unlike the prior art, the neutral point switch 6 is composed of a series connection of switches 61 and 62 because the DC voltage to be handled is high. The switches 61 and 62 are composed of semiconductor elements 61A and 61B and 62A and 62B, respectively. As these semiconductor elements, semiconductor elements having the same voltage rating as the semiconductor elements constituting the legs can be applied.

(作用)
図2では、直流コンデンサを4つ直列接続した構成を示す。直流電圧が全体では、+2E、−2Eと高い電圧になるため、その電圧に見合うよう半導体素子の直列数を定める。図2では、101〜108の8つの半導体素子を直列して、レグ1を構成する。半導体素子101と102との接続点I、直流コンデンサ201と202との接続点Jの間をスイッチ41で接続し、半導体素子107と108との接続点K、直流コンデンサ203と204との接続点Lの間をスイッチ42で接続する。+2Eの出力は、半導体素子101〜104を全てオンする。+Eの出力は、スイッチ41と半導体素子102〜104をオンする。0の出力は、中性点スイッチ6をオンにする。−Eの出力は、半導体素子105〜107とスイッチ42をオンする。−2Eの出力は、半導体素子105〜108を全てオンする。
(Function)
FIG. 2 shows a configuration in which four DC capacitors are connected in series. Since the DC voltage as a whole is as high as + 2E and -2E, the series number of semiconductor elements is determined so as to meet the voltage. In FIG. 2, the leg 1 is configured by connecting eight semiconductor elements 101 to 108 in series. A connection point I between the semiconductor elements 101 and 102, a connection point J between the DC capacitors 201 and 202 are connected by a switch 41, a connection point K between the semiconductor elements 107 and 108, and a connection point between the DC capacitors 203 and 204. L is connected by a switch 42. The output of + 2E turns on all the semiconductor elements 101 to 104. The output of + E turns on the switch 41 and the semiconductor elements 102 to 104. An output of 0 turns on the neutral point switch 6. The output of −E turns on the semiconductor elements 105 to 107 and the switch 42. The output of −2E turns on all the semiconductor elements 105 to 108.

図2に示す箇所にスイッチを接続することで、スイッチ41、42のように、一方向性半導体素子でスイッチを構成でき、またレグを構成する半導体素子の直列数を有効に活用できる。   By connecting the switches to the locations shown in FIG. 2, the switches can be configured with unidirectional semiconductor elements like the switches 41 and 42, and the series number of semiconductor elements forming the legs can be effectively utilized.

以上のように本実施形態に係る電力変換装置は、ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子とし、複数の同一電圧定格のコンデンサ201〜204が2n個(nは自然数)直列接続された直流回路2と、複数の同一電圧定格の半導体素子101〜108を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグ1と、前記直流回路2の中性点とレグ中点の間に接続され、2n個の同一電圧定格の半導体素子が直列接続された中性点スイッチ6と、前記正及び負の直流母線P、Nから数えてk番目(本例ではk=1)と(k+1)番目のコンデンサの相互接続点と、k番目と(k+1)番目の半導体素子の相互接続点との間に直列に接続されるk個の半導体素子で構成されたコンデンサ・レグ間スイッチ41、42とを具備する。   As described above, in the power conversion device according to the present embodiment, the circuit element formed of the anti-parallel connection of the diode and the switching element is a semiconductor element, and 2n capacitors 201 to 204 having the same voltage rating (n is a natural number) are connected in series. A DC circuit 2 connected, and a series circuit in which 4n semiconductor elements 101 to 108 having the same voltage rating are connected in series, the leg 1 being connected in parallel with the DC circuit by positive and negative buses; , The neutral point switch 6 connected between the neutral point of the DC circuit 2 and the midpoint of the leg and connected in series with 2n semiconductor elements having the same voltage rating, and the positive and negative DC buses P, N K connected in series between the interconnection point of the kth (k = 1 in this example) and (k + 1) th capacitors and the interconnection point of the kth and (k + 1) th semiconductor elements. With one semiconductor element Comprising a capacitor leg between switches 41 and 42 has been made.

(効果)
第2実施形態によれば、電力変換器の扱う電圧を高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。
(effect)
According to the second embodiment, it is possible not only to increase the voltage handled by the power converter, but also to increase the output voltage level and to provide a power converter that can output a smoother voltage.

また、図2では中性点スイッチ61、62をIGBTの逆直列接続で構成する例を示したが、逆方向阻止ができる半導体素子(例えばIGBTとダイオードの直列回路)を、電流方向を逆にして並列に接続しても良いし、またダイオードブリッジとIGBTとの組合せで構成するなど、他の等価な回路構成としてもかまわない。   In addition, FIG. 2 shows an example in which the neutral point switches 61 and 62 are configured by the reverse series connection of the IGBT. However, a semiconductor element (for example, a series circuit of an IGBT and a diode) that can prevent the reverse direction is reversed in the current direction. May be connected in parallel, or may be another equivalent circuit configuration such as a combination of a diode bridge and an IGBT.

[第3実施形態]
(構成)
図3は第3実施形態に係る電力変換装置の構成を示す図である。本実施形態は、図1のダイオードクランプ回路の代わりに、中性点スイッチ6を用いた他の構成である。
[Third embodiment]
(Constitution)
FIG. 3 is a diagram illustrating a configuration of a power conversion device according to the third embodiment. The present embodiment is another configuration in which a neutral point switch 6 is used instead of the diode clamp circuit of FIG.

中性点スイッチ6は、前述の図12の構成とは異なり、扱う直流電圧が高くなるので、スイッチ61、62、63の直列接続から構成されている。スイッチの構成は図2と同様である。   Unlike the configuration of FIG. 12 described above, the neutral point switch 6 includes a series connection of switches 61, 62, and 63 because the DC voltage to be handled is high. The configuration of the switch is the same as in FIG.

(作用)
図3において、交流電圧出力端子Uに0を出力する場合は、中性点スイッチ6をオンすることが図1の場合と異なるが、その他の動作と作用は図1の回路と同様である。
(Function)
In FIG. 3, when 0 is output to the AC voltage output terminal U, the neutral point switch 6 is turned on, which is different from the case of FIG. 1, but the other operations and actions are the same as those of the circuit of FIG.

図3に示す箇所にスイッチ41、44を接続することで、一方向性半導体素子でスイッチを構成でき、またレグを構成する半導体素子の直列数を有効に活用できることは、図1の例と同様である。   Similar to the example of FIG. 1, by connecting the switches 41 and 44 to the locations shown in FIG. 3, the switch can be configured with a unidirectional semiconductor element, and the series number of semiconductor elements constituting the leg can be effectively utilized. It is.

(効果)
第3実施形態によれば、図1の実施形態と同様、電力変換器の扱う電圧を更に高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。
(effect)
According to the third embodiment, as in the embodiment of FIG. 1, not only the voltage handled by the power converter is further increased, but also the output voltage level can be increased, and power conversion capable of smoother voltage output is possible. Equipment can be provided.

尚、図2、図3では、直流電圧レベルを5レベル、7レベルで説明したが、同様な考えで、更に高電圧多レベルの電力変換装置を実現できる。   2 and 3, the DC voltage level is described as being at the 5th level and the 7th level. However, a power converter having a higher voltage and multilevel can be realized with the same idea.

[第4実施形態]
(構成)
図4は第4実施形態に係る電力変換装置の構成を示す図である。
[Fourth embodiment]
(Constitution)
FIG. 4 is a diagram illustrating a configuration of a power conversion device according to the fourth embodiment.

高電圧を扱うため、前述した図14の電圧形変換器のレグおよび中性点スイッチを複数の半導体素子の直列接続で構成する。経済性に考慮し、定格電圧および定格電流が全て同一の半導体素子を用いる。また、直流回路も高電圧となるので、直流コンデンサの直列接続で構成する。また、この構成において、レグを構成する半導体素子相互の接続点M、Nと、中性点スイッチ相互の接続点Oを、コンデンサ7、8でそれぞれ接続する。   In order to handle a high voltage, the above-mentioned leg of the voltage source converter and the neutral point switch of FIG. 14 are configured by connecting a plurality of semiconductor elements in series. In consideration of economy, semiconductor devices having the same rated voltage and rated current are used. Further, since the DC circuit also has a high voltage, it is configured by connecting DC capacitors in series. Further, in this configuration, the connection points M and N between the semiconductor elements constituting the leg and the connection point O between the neutral point switches are connected by the capacitors 7 and 8, respectively.

(作用)
作用を図4を用いて説明する。
(Function)
The operation will be described with reference to FIG.

図4では、直流コンデンサを4つ直列接続した構成を示す。   FIG. 4 shows a configuration in which four DC capacitors are connected in series.

直流電圧が全体では、+2E、−2Eと高い電圧になるため、その電圧に見合うよう半導体素子の直列数を定める。図4では、101〜108の8つの半導体素子を直列して、レグ1を構成する。中性点スイッチ6を構成するスイッチも電圧に合わせ直列構成としている。スイッチの構成は、図2と同様である。   Since the DC voltage as a whole is as high as + 2E and -2E, the series number of semiconductor elements is determined so as to meet the voltage. In FIG. 4, the leg 1 is configured by serially connecting eight semiconductor elements 101 to 108. The switches constituting the neutral point switch 6 are also configured in series according to the voltage. The configuration of the switch is the same as in FIG.

レグ1、中性点スイッチ6を用いることで、従来例と同様、交流出力端子Uに、+2E、0、−2Eの3つの電圧レベルを出力可能である。しかし、負荷から見ると、レグのスイッチングに伴う電圧レベルの変化が2Eと大きくなり、ケーブルでの反射による電圧サージなど負荷にとってはストレスが大きくなるおそれがある。   By using the leg 1 and the neutral point switch 6, three voltage levels of + 2E, 0, and −2E can be output to the AC output terminal U as in the conventional example. However, when viewed from the load, the change in the voltage level due to the switching of the leg becomes as large as 2E, and there is a possibility that the stress is increased for the load such as a voltage surge due to reflection on the cable.

そこで図4においては、半導体素子101と102との接続点M、中性点スイッチ61と62との接続点Oの間をコンデンサ7で接続し、半導体素子107と108との接続点N’、中性点スイッチ61と62との接続点Oの間をコンデンサ8で接続する。このような構成とし、コンデンサ7、8の電圧をEとすることで、直流コンデンサ電圧Eあるいは−Eが、交流出力端子Uに発生でき、+2E、+E、0、−E、−2Eという5レベルの電圧が出力できる。これにより、スイッチングに伴う電圧変化はEとなるので、負荷の電圧ストレスは小さくなる。尚、コンデンサ7の電圧+Eおよびコンデンサ8の電圧−Eは、装置起動時に充電するものとする。   Therefore, in FIG. 4, the connection point M between the semiconductor elements 101 and 102 and the connection point O between the neutral point switches 61 and 62 are connected by the capacitor 7, and the connection point N ′ between the semiconductor elements 107 and 108 is connected. A capacitor 8 connects between the connection points O between the neutral point switches 61 and 62. By adopting such a configuration and setting the voltages of the capacitors 7 and 8 to E, a DC capacitor voltage E or -E can be generated at the AC output terminal U, and five levels of + 2E, + E, 0, -E, and -2E. Can be output. Thereby, since the voltage change accompanying switching becomes E, the voltage stress of the load is reduced. Note that the voltage + E of the capacitor 7 and the voltage -E of the capacitor 8 are charged when the apparatus is activated.

5レベルの電圧出力は、次のように行う。   The 5-level voltage output is performed as follows.

+2Eの出力は、半導体素子101〜104を全てオンする。+Eの出力は2通りある。すなわち、中性点スイッチ61と半導体素子102、103、104をオンする。あるいは、半導体素子101と中性点スイッチ62をオンする。0の出力は、中性点スイッチ61、62を両方オンする。−Eの出力は2通りある。すなわち、中性点スイッチ61と半導体素子105、106、107をオンする。あるいは、半導体素子108と中性点スイッチ62をオンする。+2Eの出力は、半導体素子105〜108を全てオンする。   The output of + 2E turns on all the semiconductor elements 101 to 104. There are two + E outputs. That is, the neutral point switch 61 and the semiconductor elements 102, 103, and 104 are turned on. Alternatively, the semiconductor element 101 and the neutral point switch 62 are turned on. An output of 0 turns on both neutral point switches 61 and 62. There are two outputs of -E. That is, the neutral point switch 61 and the semiconductor elements 105, 106, and 107 are turned on. Alternatively, the semiconductor element 108 and the neutral point switch 62 are turned on. The output of + 2E turns on all the semiconductor elements 105 to 108.

また、図4に示す点M、N、Oにコンデンサを接続することで、レグを構成する半導体素子の直列数を有効に活用できる。例えば、−2Eを出力している場合、交流出力端子Uの電位は−2Eである。このとき、コンデンサ7を接続している点Mの電位は+Eであり、その電位差は3Eとなるが、その2点間には半導体素子102、103、104の3つが直列されている。半導体素子1つで電圧Eを扱えるので、3つの直列により3Eの電圧を扱うことができ問題ない。   In addition, by connecting capacitors to the points M, N, and O shown in FIG. 4, the number of series semiconductor elements constituting the leg can be effectively utilized. For example, when −2E is output, the potential of the AC output terminal U is −2E. At this time, the potential at the point M connecting the capacitor 7 is + E, and the potential difference is 3E, but three semiconductor elements 102, 103, and 104 are connected in series between the two points. Since the voltage E can be handled by one semiconductor element, a voltage of 3E can be handled by three series, and there is no problem.

図4では、半導体素子の直列数を8個で説明したが、直列数が更に増加しても同様である。   In FIG. 4, the number of series of semiconductor elements is described as eight, but the same applies even if the number of series is further increased.

以上のように本実施形態に係る電力変換装置は、ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子とし、複数の同一電圧定格の直流コンデンサ201〜204が2n個(nは自然数)直列接続された直流回路2と、複数の同一電圧定格の半導体素子101〜108を4n個直列に接続した直列回路であって、正及び負の母線P、Nにより前記直流回路と並列に接続されたレグ1と、前記直流回路2の中性点とレグ中点の間に接続され、2n個の同一電圧定格の半導体素子が直列接続された中性点スイッチ6と、前記レグの正の母線Pからk番目(kは自然数)とk+1番目の半導体素子相互の接続点と前記中性点スイッチ6を構成する半導体素子相互の接続点との間に接続されたレグ・スイッチ間第1コンデンサ7と、前記レグ1の負の母線Nからk番目とk+1番目の半導体素子相互の接続点と前記中性点スイッチ6を構成する半導体素子相互の前記接続点との間に接続されたレグ・スイッチ間第2コンデンサ8とを具備する。   As described above, in the power conversion device according to the present embodiment, the circuit element including the anti-parallel connection of the diode and the switching element is a semiconductor element, and there are 2n DC capacitors 201 to 204 having the same voltage rating (n is a natural number). A DC circuit 2 connected in series and a series circuit in which 4n semiconductor elements 101 to 108 having the same voltage rating are connected in series, and connected in parallel to the DC circuit by positive and negative buses P and N. A neutral point switch 6 connected between the neutral point of the DC circuit 2 and the neutral point of the DC circuit 2 and connected in series with 2n semiconductor elements having the same voltage rating, and the positive bus of the leg Leg-switch first capacitor 7 connected between the connection point between the kth (k is a natural number) and k + 1th semiconductor elements from P and the connection point between the semiconductor elements constituting the neutral point switch 6. , Between the leg and switch connected between the connection point between the kth and k + 1th semiconductor elements from the negative bus N of the leg 1 and the connection point between the semiconductor elements constituting the neutral point switch 6 And a second capacitor 8.

(効果)
第4実施形態によれば、他の実施例と同様、電力変換器の扱う電圧を高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。
(effect)
According to the fourth embodiment, as in the other examples, the power converter that not only increases the voltage handled by the power converter, but also increases the output voltage level and enables smoother voltage output. Can be provided.

[第5実施形態]
(構成)
図5は第5実施形態に係る電力変換装置の構成を示す図である。本実施形態は図4と同様であるが、コンデンサのレグ側接続点が異なる構成である。
[Fifth Embodiment]
(Constitution)
FIG. 5 is a diagram illustrating a configuration of a power conversion device according to the fifth embodiment. Although this embodiment is the same as that of FIG. 4, it is the structure from which the leg side connection point of a capacitor | condenser differs.

コンデンサ7は半導体素子102と103の接続点P’と中性点スイッチ61と62の接続点Oの間、コンデンサ8は半導体素子106と107の接続点Qと中性点スイッチ61と62の接続点Oの間に接続される。   The capacitor 7 is connected between the connection point P ′ of the semiconductor elements 102 and 103 and the connection point O of the neutral point switches 61 and 62, and the capacitor 8 is connected to the connection point Q of the semiconductor elements 106 and 107 and the neutral point switches 61 and 62. Connected between points O.

(作用)
このような構成としても、図4と同じ作用が実現できる。
(Function)
Even with such a configuration, the same operation as in FIG. 4 can be realized.

(効果)
また、このような構成としても、図4と同じ効果が得られる。
(effect)
In addition, even with such a configuration, the same effect as in FIG. 4 can be obtained.

[第6実施形態]
(構成)
図6は第6実施形態に係る電力変換装置の構成を示す図である。本実施形態は図5と同様であるが、中性点スイッチ62の代わりに、ダイオードクランプ回路3を設けている点が異なる構成である。
[Sixth Embodiment]
(Constitution)
FIG. 6 is a diagram illustrating a configuration of a power conversion device according to the sixth embodiment. The present embodiment is the same as that of FIG. 5 except that a diode clamp circuit 3 is provided instead of the neutral point switch 62.

(作用)
このような構成としても、図5と同じ作用が実現できる。
(Function)
Even with such a configuration, the same operation as in FIG. 5 can be realized.

(実施例の効果)
また、この構成としても、図5と同じ効果が得られる。
(Effect of Example)
Also, with this configuration, the same effect as in FIG. 5 can be obtained.

[第7実施形態]
(構成)
図7は第7実施形態に係る電力変換装置の構成を示す図である。本実施形態は図4と同様であるが、直流コンデンサを6つ用いており、更に扱う直流電圧が高くなるので、中性点スイッチ6はスイッチ61、62、63の直列接続から構成されている。スイッチの構成は図2と同様である。
[Seventh embodiment]
(Constitution)
FIG. 7 is a diagram illustrating a configuration of a power conversion device according to the seventh embodiment. This embodiment is the same as that of FIG. 4, but uses six DC capacitors and further increases the DC voltage to be handled. Therefore, the neutral point switch 6 is composed of a series connection of switches 61, 62 and 63. . The configuration of the switch is the same as in FIG.

コンデンサ9、10および11、12は扱う電圧を2Eとするため、2直列したものである。コンデンサ9、10は半導体素子101と102の接続点Rと中性点スイッチ61と62の接続点Sの間、コンデンサ7は半導体素子102と103の接続点Tと中性点スイッチ62と63の接続点U’の間、コンデンサ8は半導体素子110と111の接続点Vと中性点スイッチ62と63の接続点U’の間、コンデンサ11、12は半導体素子111と112の接続点Wと中性点スイッチ61と62の接続点Sの間に接続される。   Capacitors 9, 10 and 11, 12 are two in series in order to handle a voltage of 2E. Capacitors 9 and 10 are connected between the connection point R of the semiconductor elements 101 and 102 and the connection point S of the neutral point switches 61 and 62, and the capacitor 7 is connected between the connection point T of the semiconductor elements 102 and 103 and the neutral point switches 62 and 63. Between the connection point U ′, the capacitor 8 is connected between the connection point V of the semiconductor elements 110 and 111 and the connection point U ′ of the neutral point switches 62 and 63, and the capacitors 11 and 12 are connected to the connection point W of the semiconductor elements 111 and 112. Connected between the connection points S of the neutral point switches 61 and 62.

この構成を用いれば、+3E、+2E、+E、0、−E、−2E、−3Eの7レベルの出力が可能となる。図7に示した接続構成により、図5の場合と同様にレグを構成する半導体素子の直列数を有効に活用できる。   If this configuration is used, + 7E, + 2E, + E, 0, -E, -2E, and -3E can be output at seven levels. With the connection configuration shown in FIG. 7, the number of semiconductor elements that form the leg can be used effectively as in the case of FIG. 5.

(作用)
図7において、出力レベルが7レベルとなっている点が図4の場合と異なるが、その他の動作と作用は図4の回路と同様である。
(Function)
7 is different from the case of FIG. 4 in that the output level is 7 levels, but other operations and actions are the same as those of the circuit of FIG.

(効果)
本実施形態によれば、図3の実施形態と同様、電力変換器の扱う電圧を更に高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。
(effect)
According to the present embodiment, as in the embodiment of FIG. 3, not only the voltage handled by the power converter can be further increased, but also the output voltage level can be increased and a smoother voltage output is possible. Can provide.

[第8実施形態)
(構成)
図8は第8実施形態に係る電力変換装置の構成を示す図である。本実施形態の構成は図6と同様であるが、コンデンサのレグ側接続点が異なる構成である。
[Eighth embodiment]
(Constitution)
FIG. 8 is a diagram illustrating a configuration of a power conversion device according to the eighth embodiment. The configuration of the present embodiment is the same as that of FIG. 6, but the configuration is different in the connection point on the leg side of the capacitor.

コンデンサ9、10は半導体素子102と103の接続点Tと中性点スイッチ61と62の接続点Sの間、コンデンサ7は半導体素子104と105の接続点Xと中性点スイッチ62と63の接続点U’の間に接続される。コンデンサ8は半導体素子108と109の接続点Yと中性点スイッチ62と63の接続点U’の間、コンデンサ11、12は半導体素子110と111の接続点Vと中性点スイッチ61と62の接続点Sの間に接続される。   Capacitors 9 and 10 are connected between the connection point T of the semiconductor elements 102 and 103 and the connection point S of the neutral point switches 61 and 62, and the capacitor 7 is connected between the connection point X of the semiconductor elements 104 and 105 and the neutral point switches 62 and 63. Connected between connection points U ′. The capacitor 8 is between the connection point Y of the semiconductor elements 108 and 109 and the connection point U ′ of the neutral point switches 62 and 63, and the capacitors 11 and 12 are the connection point V of the semiconductor elements 110 and 111 and the neutral point switches 61 and 62. Are connected between the connection points S.

(作用)
このよな構成としても、図7と同じ作用が実現できる。
(Function)
Even with such a configuration, the same operation as in FIG. 7 can be realized.

尚、コンデンサのレグ側の接続は、複数のコンデンサ相互間で重複しない限り、図6、図7に示した接続以外の接続構成でも良い。   The connection on the leg side of the capacitor may be a connection configuration other than the connections shown in FIGS. 6 and 7 as long as it does not overlap between a plurality of capacitors.

つまり本実施形態に係る電力変換装置は、中性点スイッチ6が2n(nは自然数)個の同一電流電圧定格(同一定格)の半導体素子の直列接続から構成され、レグが複数の同一定格の半導体素子を4n個の直列接続で構成されている場合、直流中性点Cから数えて第2k番目と第(2k+1)番目の半導体素子の相互接続点に、コンデンサの第1の端子を接続した場合、レグ1の正・負の直流母線から数えて第k番目と第(k+1)番目の半導体素子相互接続点(図7)、またはレグ1の正・負の直流母線から数えて第2k番目と第(2k+1)番目の半導体素子相互接続点(図8)との間にコンデンサの第2の端子が接続される。   That is, in the power conversion device according to the present embodiment, the neutral point switch 6 is configured by serial connection of 2n (n is a natural number) semiconductor elements having the same current voltage rating (same rating), and the leg has a plurality of the same rating. When the semiconductor element is configured by 4n series connections, the first terminal of the capacitor is connected to the interconnection point of the 2kth and (2k + 1) th semiconductor elements counted from the DC neutral point C. In this case, the k-th and (k + 1) -th semiconductor element interconnection points counting from the positive and negative DC buses of the leg 1 (FIG. 7), or the 2k-th counting from the positive and negative DC buses of the leg 1 And a second terminal of the capacitor is connected between the (2k + 1) th semiconductor element interconnection point (FIG. 8).

(効果)
図8のような構成としても、図7と同じ効果が得られる。
(effect)
Even with the configuration as shown in FIG. 8, the same effect as in FIG. 7 can be obtained.

[第9実施形態]
(構成)
図9は第9実施形態に係る電力変換装置の構成を示す図である。本実施形態は図4と同様であるが、1つのパッケージに2つの半導体素子が同一方向に直列接続された組を収納した構造のものを適用する場合に有利な構成を示したものである。
[Ninth Embodiment]
(Constitution)
FIG. 9 is a diagram illustrating a configuration of a power conversion device according to the ninth embodiment. This embodiment is the same as that of FIG. 4, but shows an advantageous configuration when a structure in which a set in which two semiconductor elements are connected in series in the same direction is accommodated in one package is applied.

この例では中性点スイッチ6は図2などとは異なり、直列半導体構成64、65がそれぞれ、同一方向の2つの半導体素子の直列接続で構成され、直列半導体構成64、65を互いに逆方向で直列接続した構成である点が異なる。直列半導体構成64、65はそれぞれ、半導体素子641と642の直列接続および半導体素子651と652の直列接続から構成される。レグ1も中性点スイッチと同様、2つの半導体素子を直列した直列半導体構成を用いて構成できる。   In this example, the neutral point switch 6 is different from FIG. 2 and the like, and the series semiconductor configurations 64 and 65 are each configured by connecting two semiconductor elements in the same direction in series, and the series semiconductor configurations 64 and 65 are connected in opposite directions. The difference is that the configuration is connected in series. Each of the series semiconductor structures 64 and 65 includes a series connection of semiconductor elements 641 and 642 and a series connection of semiconductor elements 651 and 652. Like the neutral switch, the leg 1 can also be configured using a series semiconductor configuration in which two semiconductor elements are connected in series.

図9の構成で、図4と同様な動作を行うためには、コンデンサ7の中性点スイッチ側端子を、半導体素子641と642の接続点aに接続する。コンデンサ8の中性点スイッチ側端子を、半導体素子651と652の接続点bに接続する。   9, the neutral point switch side terminal of the capacitor 7 is connected to the connection point a of the semiconductor elements 641 and 642 in order to perform the same operation as in FIG. The neutral point switch side terminal of the capacitor 8 is connected to the connection point b of the semiconductor elements 651 and 652.

図9に示した接続構成とすることで、レグと中性点スイッチを、同じ構成の半導体素子で構成することができる。   With the connection configuration shown in FIG. 9, the leg and the neutral point switch can be configured by semiconductor elements having the same configuration.

(作用)
図9において、+2E、0、−2Eを出力する場合は、図4と同様な制御をすれば良い。
(Function)
In FIG. 9, when outputting + 2E, 0, and −2E, the same control as in FIG. 4 may be performed.

しかし、+Eを出力する場合は、中性点スイッチの中の半導体642と102〜104オンするか、あるいは半導体素子101と半導体素子641、651、652をオンする。また、−Eを出力する場合、半導体素子641、642、651と半導体素子105をオンするか、あるいは半導体素子106〜108と半導体素子652をオンする。   However, when outputting + E, the semiconductors 642 and 102 to 104 in the neutral point switch are turned on, or the semiconductor element 101 and the semiconductor elements 641, 651, and 652 are turned on. When outputting -E, the semiconductor elements 641, 642, 651 and the semiconductor element 105 are turned on, or the semiconductor elements 106 to 108 and the semiconductor element 652 are turned on.

(効果)
本実施形態によれば、図4の実施例と同様な効果が得られるとともに、レグと中性点を同一構成の半導体素子で構成でき、より経済的な電力変換装置を提供できる。
(effect)
According to the present embodiment, the same effects as those of the example of FIG. 4 can be obtained, and the leg and the neutral point can be configured by semiconductor elements having the same configuration, and a more economical power conversion device can be provided.

[第10実施形態]
(構成)
図10は第10実施形態に係る電力変換装置の構成を示す図である。本実施形態は図9と同様の構成であるが、コンデンサのレグ側接続点が異なる。
[Tenth embodiment]
(Constitution)
FIG. 10 is a diagram illustrating a configuration of a power conversion device according to the tenth embodiment. Although this embodiment has the same configuration as that of FIG. 9, the connection point on the leg side of the capacitor is different.

コンデンサ7は半導体素子102と103の接続点c’と中性点スイッチ641と642の接続点aの間、コンデンサ8は半導体素子106と107の接続点dと中性点スイッチ651と652の接続点bの間に接続される。   The capacitor 7 is connected between the connection point c ′ of the semiconductor elements 102 and 103 and the connection point a of the neutral point switches 641 and 642, and the capacitor 8 is connected between the connection point d of the semiconductor elements 106 and 107 and the neutral point switches 651 and 652. Connected between points b.

(作用)
このような構成としても、図9と同じ作用が実現できる。
(Function)
Even with such a configuration, the same operation as in FIG. 9 can be realized.

尚、コンデンサのレグ側の接続は、複数のコンデンサ相互間で重複しない限り、図9、図10に示した以外の他の接続の組合せでも良い。   The connections on the leg side of the capacitors may be other connection combinations than those shown in FIGS. 9 and 10 as long as they do not overlap among a plurality of capacitors.

(効果)
このような構成としても、図9と同じ効果が得られる。
(effect)
Even with such a configuration, the same effect as in FIG. 9 can be obtained.

尚、図4〜10では直流電圧レベルを5レベル、7レベルで説明したが、同様な考えで更に高電圧の電力変換装置を実現できる。   4 to 10, the DC voltage level has been described as being at the 5th level and the 7th level, but a higher voltage power conversion device can be realized with the same idea.

[第11実施形態]
(構成)
図11は第11実施形態に係る電力変換装置の構成を示す図である。本実施形態はレグを構成する半導体素子相互の接続点と、中性点スイッチ相互の接続点をコンデンサで接続する。図11では、直流コンデンサを4つ直列接続した構成を示す。
[Eleventh embodiment]
(Constitution)
FIG. 11 is a diagram illustrating the configuration of the power conversion device according to the eleventh embodiment. In this embodiment, a connection point between semiconductor elements constituting a leg and a connection point between neutral point switches are connected by a capacitor. FIG. 11 shows a configuration in which four DC capacitors are connected in series.

(作用)
直流電圧が全体では、+2E、−2Eと高い電圧になるため、その電圧に見合うよう半導体素子の直列数を定める。図11では、101〜108の8つの半導体素子を直列して、レグ1を構成する。図11に示す位置にスイッチ41、42を設け直列コンデンサ2とレグ1間を接続する。更にコンデンサ7、8を設け、スイッチ41、42とレグ1を接続する。
(Function)
Since the DC voltage as a whole is as high as + 2E and -2E, the series number of semiconductor elements is determined so as to meet the voltage. In FIG. 11, leg 1 is configured by serially connecting eight semiconductor elements 101 to 108. Switches 41 and 42 are provided at the positions shown in FIG. 11 to connect between the series capacitor 2 and the leg 1. Further, capacitors 7 and 8 are provided, and the switches 41 and 42 and the leg 1 are connected.

レグ1、スイッチ41、42を用いることで、従来例と同様、交流出力端子Uに、+2E、0、−2Eの3つの電圧レベルを出力可能である。コンデンサ7、8の電圧を起動時にEに充電することで、+Eの出力は、半導体素子101、412、103、104をオンする。または、半導体素子411、102、103、104をオンする。同様に−Eの出力は、108、422、106、105、または、421、107、106、105をオンする。これにより、直流コンデンサ電圧Eあるいは−Eが、交流出力端子Uに発生され、+2E、+E、0、−E、−2Eという5レベルの電圧を出力できる。   By using the leg 1 and the switches 41 and 42, three voltage levels of + 2E, 0, and −2E can be output to the AC output terminal U as in the conventional example. By charging E to the voltage of the capacitors 7 and 8, the output of + E turns on the semiconductor elements 101, 412, 103, and 104. Alternatively, the semiconductor elements 411, 102, 103, and 104 are turned on. Similarly, the output of -E turns on 108, 422, 106, 105 or 421, 107, 106, 105. As a result, a DC capacitor voltage E or -E is generated at the AC output terminal U, and five levels of voltages + 2E, + E, 0, -E, and -2E can be output.

以上のように本実施形態に係る電力変換装置は、ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子とし、複数の同一電圧定格の直流コンデンサ201〜204が2n個(nは自然数)直列接続された直流回路2と、複数の同一電圧定格の半導体素子101〜108を4n個直列に接続した直列回路であって、正及び負の母線P、Nにより前記直流回路2と並列に接続されたレグ1と、前記直流回路2の中性点Cと、前記レグの正の母線Pからk番目(kは自然数)とk+1番目の半導体素子相互の接続点fとの間に接続され、半導体素子がn個直列に接続された第1スイッチ41と、前記第1スイッチ41の半導体素子相互接続点gと、前記レグの正の母線Pからk番目とk―1番目の半導体素子相互の接続点eとの間に接続された第1コンデンサ7と、前記直流回路の中性点Cと、前記レグの負の母線Nからk番目とk+1番目の半導体素子相互の接続点hとの間に接続され、半導体素子がn個直列に接続された第2スイッチ42と、前記第2スイッチ42の半導体素子相互接続点iと、前記レグの負の母線Nからk番目とk―1番目の半導体素子相互の接続点jとの間に接続された第2コンデンサ8とを具備する。   As described above, in the power conversion device according to the present embodiment, the circuit element including the anti-parallel connection of the diode and the switching element is a semiconductor element, and there are 2n DC capacitors 201 to 204 having the same voltage rating (n is a natural number). A DC circuit 2 connected in series and a series circuit in which 4n semiconductor elements 101 to 108 having the same voltage rating are connected in series, and connected in parallel with the DC circuit 2 by positive and negative buses P and N And connected between the neutral point C of the DC circuit 2 and the connection point f between the kth (k is a natural number) and k + 1th semiconductor elements from the positive bus P of the leg, A first switch 41 in which n semiconductor elements are connected in series; a semiconductor element interconnection point g of the first switch 41; and a kth and a k−1th semiconductor element from the positive bus P of the leg. Connection point e A first capacitor 7 connected in between, a neutral point C of the DC circuit, and a connection point h between the kth and k + 1th semiconductor elements from the negative bus N of the leg, A second switch 42 in which n elements are connected in series, a semiconductor element interconnection point i of the second switch 42, and a connection between the kth and k−1th semiconductor elements from the negative bus N of the leg. And a second capacitor 8 connected between the point j.

(効果)
本実施形態によれば、他の実施形態と同様、電力変換器の扱う電圧を高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。
(effect)
According to the present embodiment, as in the other embodiments, not only the voltage handled by the power converter is increased, but also the output voltage level can be increased, and a power conversion device capable of smoother voltage output is provided. it can.

[第12実施形態]
(構成)
図12は第12実施形態に係る電力変換装置の構成を示す図である。本実施形態は、図11と同様の構成であるが、直流コンデンサを6つ用い、更に扱う直流電圧が高くなるので、レグ1の半導体素子を12個直列としている。スイッチ41、42は半導体素子411、412、413、421、422、423から構成されている。更にコンデンサ7、8を設け、スイッチ41、42とレグ1を接続する。
[Twelfth embodiment]
(Constitution)
FIG. 12 is a diagram illustrating a configuration of a power conversion device according to the twelfth embodiment. This embodiment has the same configuration as that of FIG. 11, but uses six DC capacitors and further increases the DC voltage to be handled. Therefore, twelve semiconductor elements of leg 1 are connected in series. The switches 41 and 42 are composed of semiconductor elements 411, 412, 413, 421, 422, and 423. Further, capacitors 7 and 8 are provided, and the switches 41 and 42 and the leg 1 are connected.

この構成を用いれば、+3E、+2E、+E、0、−E、−2E、−3Eの7レベルの出力が可能となる。   If this configuration is used, + 7E, + 2E, + E, 0, -E, -2E, and -3E can be output at seven levels.

(作用)
レグ1、スイッチ41、42を用いることで、交流出力端子Uに、+3E、0、−3Eの3つの電圧レベルを出力可能である。コンデンサ7、8の電圧をEとすることで、+2Eの出力は、半導体素子101、102、413、104、105、106をオンする。+Eの出力は、半導体素子411、412、103、104、105、106をオンする。同様に−Eの出力は、半導体素子421、422、110、109、108、107を、−2Eの出力は、半導体素子112、111、423、109、108、107をオンする。これにより、交流出力端子Uに、+3E、+2E、+E、0、−E、−2E、−3Eという7レベルの電圧が出力できる。
(Function)
By using the leg 1 and the switches 41 and 42, three voltage levels of + 3E, 0, and −3E can be output to the AC output terminal U. By setting the voltage of the capacitors 7 and 8 to E, the output of + 2E turns on the semiconductor elements 101, 102, 413, 104, 105, and 106. The output of + E turns on the semiconductor elements 411, 412, 103, 104, 105, and 106. Similarly, the output of −E turns on the semiconductor elements 421, 422, 110, 109, 108, and 107, and the output of −2E turns on the semiconductor elements 112, 111, 423, 109, 108, and 107. As a result, 7-level voltages of + 3E, + 2E, + E, 0, −E, −2E, and −3E can be output to the AC output terminal U.

(実施例の効果)
本発明によれば、図11の実施例と同様、電力変換器の扱う電圧を更に高くするだけではなく、出力電圧レベルを増加させることができ、より滑らかな電圧出力が可能な電力変換装置を提供できる。尚、図12の例では半導体素子の直列数を12個で説明したが、直列数が更に増加しても、同様である。
(Effect of Example)
According to the present invention, as in the embodiment of FIG. 11, not only can the voltage handled by the power converter be further increased, but also the output voltage level can be increased and a power converter capable of smoother voltage output is provided. Can be provided. In the example of FIG. 12, the number of series of semiconductor elements has been described as twelve, but the same applies even if the number of series is further increased.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…レグ、2…直流回路、3…ダイオードクランプ回路、6…中性点スイッチ、141〜44…スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Leg, 2 ... DC circuit, 3 ... Diode clamp circuit, 6 ... Neutral point switch, 141-44 ... Switch

Claims (8)

ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子として構成され、
複数の同一電圧定格のコンデンサが2n個(nは自然数)直列接続された直流回路と、
複数の同一電圧定格の半導体素子を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグと、
前記正及び負の直流母線からそれぞれ数えてk番目(kは自然数)と(k+1)番目のコンデンサの相互接続点と、k番目と(k+1)番目の半導体素子の相互接続点との間に直列に接続されるk個の半導体素子で構成されたスイッチと、
レグの中点から正および負の母線側に共にn番目と(n+1)番目の半導体素子の相互接続点の間に直列接続された同一方向及び偶数個のダイオードを含み、前記偶数個のダイオードの中点が前記直流回路の中性点に接続されたダイオードクランプ回路と、
を具備することを特徴とする電圧形自励式の電力変換装置。
A circuit element consisting of an anti-parallel connection of a diode and a switching element is configured as a semiconductor element,
A DC circuit in which 2n capacitors (n is a natural number) of the same voltage rating are connected in series;
A series circuit in which a plurality of 4n semiconductor devices having the same voltage rating are connected in series, the legs being connected in parallel with the DC circuit by positive and negative buses;
A series connection is made between the interconnection point of the kth (k + 1) th capacitor and the interconnection point of the kth and (k + 1) th semiconductor elements, counting from the positive and negative DC buses, respectively. A switch composed of k semiconductor elements connected to
Including in the same direction and an even number of diodes connected in series between the interconnection points of the nth and (n + 1) th semiconductor elements on the positive and negative bus side from the midpoint of the leg, A diode clamp circuit in which a midpoint is connected to a neutral point of the DC circuit;
A voltage-type self-excited power conversion device comprising:
前記レグ及びスイッチを構成する半導体素子は互いに同一電圧定格であって、各半導体素子としてIGBTを含む一方向性半導体素子が用いられることを特徴とする請求項1記載の電力変換装置。   2. The power converter according to claim 1, wherein the semiconductor elements constituting the legs and the switches have the same voltage rating, and unidirectional semiconductor elements including IGBTs are used as the semiconductor elements. ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子として構成され、
複数の同一電圧定格のコンデンサが2n個(nは自然数)直列接続された直流回路と、
複数の同一電圧定格の半導体素子を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグと、
前記直流回路の中性点とレグ中点の間に接続され、2n個の同一電圧定格の半導体素子が直列接続された中性点スイッチと、
前記正及び負の直流母線からそれぞれ数えてk番目(kは自然数)と(k+1)番目のコンデンサの相互接続点と、k番目と(k+1)番目の半導体素子の相互接続点との間に直列に接続されるk個の半導体素子で構成されたコンデンサ・レグ間スイッチと、
を具備することを特徴とする電圧形自励式の電力変換装置。
A circuit element consisting of an anti-parallel connection of a diode and a switching element is configured as a semiconductor element,
A DC circuit in which 2n capacitors (n is a natural number) of the same voltage rating are connected in series;
A series circuit in which a plurality of 4n semiconductor devices having the same voltage rating are connected in series, the legs being connected in parallel with the DC circuit by positive and negative buses;
A neutral point switch connected between a neutral point of the DC circuit and a midpoint of the leg, and 2n semiconductor elements having the same voltage rating connected in series;
A series connection is made between the interconnection point of the kth (k + 1) th capacitor and the interconnection point of the kth and (k + 1) th semiconductor elements, counting from the positive and negative DC buses, respectively. A capacitor-leg switch composed of k semiconductor elements connected to
A voltage-type self-excited power conversion device comprising:
前記レグ、中性点スイッチ及びコンデンサ・レグ間スイッチを構成する半導体素子は互いに同一電圧定格であって、各半導体素子としてIGBTを含む一方向性半導体素子が用いられることを特徴とする請求項3記載の電力変換装置。   4. The semiconductor elements constituting the leg, the neutral point switch and the capacitor-leg switch have the same voltage rating, and a unidirectional semiconductor element including an IGBT is used as each semiconductor element. The power converter described. ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子として構成され、
複数の同一電圧定格の直流コンデンサが2n個(nは自然数)直列接続された直流回路と、
複数の同一電圧定格の半導体素子を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグと、
前記直流回路の中性点とレグ中点の間に接続され、2n個の同一電圧定格の半導体素子が直列接続された中性点スイッチと、
前記レグの正及び負の母線から共にk番目(kは自然数)とk+1番目の半導体素子相互の接続点と、前記中性点スイッチを構成する半導体素子相互の接続点との間に接続されたレグ・スイッチ間第1及び第2コンデンサと、
を具備することを特徴とする電圧形自励式の電力変換装置。
A circuit element consisting of an anti-parallel connection of a diode and a switching element is configured as a semiconductor element,
A DC circuit in which a plurality of DC capacitors having the same voltage rating are connected in series (n is a natural number);
A series circuit in which a plurality of 4n semiconductor devices having the same voltage rating are connected in series, the legs being connected in parallel with the DC circuit by positive and negative buses;
A neutral point switch connected between a neutral point of the DC circuit and a midpoint of the leg, and 2n semiconductor elements having the same voltage rating connected in series;
Both the kth (k is a natural number) and k + 1th semiconductor element connection points from the positive and negative buses of the leg and the connection points of the semiconductor elements constituting the neutral switch are connected. First and second capacitors between the legs and the switches;
A voltage-type self-excited power conversion device comprising:
前記中性点スイッチは、互いに異なる方向の2つの半導体素子の直列回路が1以上直列に接続され、前記第1及び第2コンデンサの前記中性点スイッチ側接続点が同一であることを特徴とする請求項5記載の電力変換装置。   The neutral point switch is characterized in that one or more series circuits of two semiconductor elements in different directions are connected in series, and the neutral point switch side connection points of the first and second capacitors are the same. The power conversion device according to claim 5. 前記中性点スイッチは、互いに同一方向の2つの半導体素子の直列回路が1以上直列に接続され、前記第1及び第2コンデンサの前記中性点スイッチ側接続点が、互いに異なることを特徴とする請求項5記載の電力変換装置。   The neutral point switch is characterized in that one or more series circuits of two semiconductor elements in the same direction are connected in series, and the neutral point switch side connection points of the first and second capacitors are different from each other. The power conversion device according to claim 5. ダイオードとスイッチング素子の逆並列接続からなる回路要素が半導体素子として構成され、
複数の同一電圧定格の直流コンデンサが2n個(nは自然数)直列接続された直流回路と、
複数の同一電圧定格の半導体素子を4n個直列に接続した直列回路であって、正及び負の母線により前記直流回路と並列に接続されたレグと、
前記直流回路の中性点と、前記レグの正の母線から数えてk番目(kは自然数)とk+1番目の半導体素子相互の接続点との間に接続され、半導体素子がn個直列に接続された第1スイッチと、
前記第1スイッチの半導体素子相互接続点と、前記レグの正の母線からk番目とk―1番目の半導体素子相互の接続点との間に接続された第1コンデンサと、
前記直流回路の中性点と、前記レグの負の母線から数えてk番目とk+1番目の半導体素子相互の接続点との間に接続され、半導体素子がn個直列に接続された第2スイッチと、
前記第2スイッチの半導体素子相互接続点と、前記レグの負の母線からk番目とk―1番目の半導体素子相互の接続点との間に接続された第2コンデンサと、
を具備することを特徴とする電圧形自励式の電力変換装置。
A circuit element consisting of an anti-parallel connection of a diode and a switching element is configured as a semiconductor element,
A DC circuit in which a plurality of DC capacitors having the same voltage rating are connected in series (n is a natural number);
A series circuit in which a plurality of 4n semiconductor devices having the same voltage rating are connected in series, the legs being connected in parallel with the DC circuit by positive and negative buses;
Connected between the neutral point of the DC circuit and the connection point between the kth (k is a natural number) and the k + 1th semiconductor elements counted from the positive bus of the leg, and n semiconductor elements are connected in series. A first switch,
A first capacitor connected between a semiconductor element interconnection point of the first switch and a k-th and k−1th semiconductor element interconnection point from the positive bus of the leg;
A second switch connected between a neutral point of the DC circuit and a connection point between the kth and k + 1th semiconductor elements counted from the negative bus of the leg, and n semiconductor elements connected in series When,
A second capacitor connected between a semiconductor element interconnection point of the second switch and a k-th and k−1th semiconductor element interconnection point from the negative bus of the leg;
A voltage-type self-excited power conversion device comprising:
JP2011216541A 2011-09-30 2011-09-30 Power converter Active JP5780907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216541A JP5780907B2 (en) 2011-09-30 2011-09-30 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216541A JP5780907B2 (en) 2011-09-30 2011-09-30 Power converter

Publications (2)

Publication Number Publication Date
JP2013078204A true JP2013078204A (en) 2013-04-25
JP5780907B2 JP5780907B2 (en) 2015-09-16

Family

ID=48481293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216541A Active JP5780907B2 (en) 2011-09-30 2011-09-30 Power converter

Country Status (1)

Country Link
JP (1) JP5780907B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780117A (en) * 2014-02-12 2014-05-07 宁波绿凯节能科技有限公司 Eleven-level single-phase inverter
JP2014239641A (en) * 2013-06-05 2014-12-18 エルエス産電株式会社Lsis Co., Ltd. Multi-level inverter
WO2015015885A1 (en) * 2013-08-02 2015-02-05 株式会社明電舎 Multilevel power conversion device
JP2015208210A (en) * 2014-04-18 2015-11-19 台達電子企業管理(上海)有限公司 Converter and voltage clamp circuit thereof
WO2023173529A1 (en) * 2022-03-18 2023-09-21 苏州大学 Active converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149657A (en) * 1995-11-17 1997-06-06 Toyo Electric Mfg Co Ltd Inverter
JP2002247862A (en) * 2001-02-20 2002-08-30 Hitachi Ltd Power converter
JP2006223009A (en) * 2005-02-08 2006-08-24 Fuji Electric Holdings Co Ltd Five-level inverter and drive method therefor
JP2007312451A (en) * 2006-05-16 2007-11-29 Fuji Electric Systems Co Ltd Multilevel converter and control method therefor
JP2011142783A (en) * 2010-01-08 2011-07-21 Toshiba Corp Power converter
WO2013005498A1 (en) * 2011-07-05 2013-01-10 富士電機株式会社 Multilevel conversion circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149657A (en) * 1995-11-17 1997-06-06 Toyo Electric Mfg Co Ltd Inverter
JP2002247862A (en) * 2001-02-20 2002-08-30 Hitachi Ltd Power converter
JP2006223009A (en) * 2005-02-08 2006-08-24 Fuji Electric Holdings Co Ltd Five-level inverter and drive method therefor
JP2007312451A (en) * 2006-05-16 2007-11-29 Fuji Electric Systems Co Ltd Multilevel converter and control method therefor
JP2011142783A (en) * 2010-01-08 2011-07-21 Toshiba Corp Power converter
WO2013005498A1 (en) * 2011-07-05 2013-01-10 富士電機株式会社 Multilevel conversion circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239641A (en) * 2013-06-05 2014-12-18 エルエス産電株式会社Lsis Co., Ltd. Multi-level inverter
US9419541B2 (en) 2013-06-05 2016-08-16 Lsis Co., Ltd. Multilevel inverter
WO2015015885A1 (en) * 2013-08-02 2015-02-05 株式会社明電舎 Multilevel power conversion device
JP2015047056A (en) * 2013-08-02 2015-03-12 株式会社明電舎 Multilevel power conversion device
US9948206B2 (en) 2013-08-02 2018-04-17 Meidensha Corporation Multilevel power conversion device with flying capacitor
CN103780117A (en) * 2014-02-12 2014-05-07 宁波绿凯节能科技有限公司 Eleven-level single-phase inverter
JP2015208210A (en) * 2014-04-18 2015-11-19 台達電子企業管理(上海)有限公司 Converter and voltage clamp circuit thereof
WO2023173529A1 (en) * 2022-03-18 2023-09-21 苏州大学 Active converter

Also Published As

Publication number Publication date
JP5780907B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5803683B2 (en) Multi-level power conversion circuit
Nami et al. Five level cross connected cell for cascaded converters
JP5974516B2 (en) 5-level power converter
Angkititrakul et al. Control and implementation of a new modular matrix converter
US9036379B2 (en) Power converter based on H-bridges
JP5977282B2 (en) Multi-level inverter
CN108292896B (en) Medium voltage transformerless multilevel converter and method for controlling a medium voltage transformerless multilevel converter
JP5417641B2 (en) Power converter
CN108352777B (en) Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
US20160218637A1 (en) A new four-level converter cell topology for cascaded modular multilevel converters
BR102014011275A2 (en) Multilevel Power Converter and Power Conversion System
JP2014023420A (en) Multi-level voltage converter
KR101791290B1 (en) Multi-level medium voltage inverter
JP5780907B2 (en) Power converter
KR20090126993A (en) Multilevel converter consisting of building-block module having power regeneration capability
JP2011142783A (en) Power converter
CA2894127C (en) Switching stage, energy conversion circuit, and conversion stage for wind turbines comprising the energy conversion circuit
Ghosh et al. A comparative study of different multilevel inverters
Yarlagadda et al. A modified seven level cascaded H bridge inverter
Singh et al. Analysis of THD and output voltage for seven level asymmetrical cascaded H-bridge multilevel inverter using LSCPWM technique
WO2013151542A1 (en) Multilevel converter
CN111133668A (en) Inverter system
Chaudhari et al. Asymmetrical modular multilevel converter (a-mmc) with mixed cell sub-modules (sm) for improved dc fault blocking capability and reduced component count
Chen et al. Nine-Switch Detroit Rectifier
Gautam et al. A modified structure for symmetrical and asymmetrical configuration of multilevel inverter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5780907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350