JP2013074792A - Method for compensating instantaneous power failure in high voltage inverter and high voltage inverter system using the same - Google Patents

Method for compensating instantaneous power failure in high voltage inverter and high voltage inverter system using the same Download PDF

Info

Publication number
JP2013074792A
JP2013074792A JP2012205900A JP2012205900A JP2013074792A JP 2013074792 A JP2013074792 A JP 2013074792A JP 2012205900 A JP2012205900 A JP 2012205900A JP 2012205900 A JP2012205900 A JP 2012205900A JP 2013074792 A JP2013074792 A JP 2013074792A
Authority
JP
Japan
Prior art keywords
output frequency
voltage
power failure
power cells
instantaneous power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012205900A
Other languages
Japanese (ja)
Other versions
JP5529942B2 (en
Inventor
Jung Muk Choi
チュン ムク チェ
Seung Ho Na
スン ホ ナ
Jae Hyun Jeon
ジェ ヒュン ジョン
Sung Guk Ahn
スン グク アン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LSIS Co Ltd
LS Industrial Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSIS Co Ltd, LS Industrial Systems Co Ltd filed Critical LSIS Co Ltd
Publication of JP2013074792A publication Critical patent/JP2013074792A/en
Application granted granted Critical
Publication of JP5529942B2 publication Critical patent/JP5529942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/062Avoiding or suppressing excessive transient voltages or currents

Abstract

PROBLEM TO BE SOLVED: To provide a method for compensating instantaneous power failure and a high voltage inverter system using the same in which, instantaneous power failure occurs in a high voltage inverter, mechanical dynamic energy being stored in a load is converted into electrical energy to deal with a power failure zone, thereby continuously operating the high voltage inverter without stop.SOLUTION: In a high voltage inverter including a plurality of power cells supplying a phase voltage to a motor by being connected in series, at a relevant point where an input voltage of the plurality of power cells is less than a reference value, an output frequency of the plurality of power cells is decreased by as much as a predetermined value, the output frequency is decreased with a predetermined deceleration gradient, and in a case where the input voltage is restored, the output frequency during restoration of the input voltage is maintained as long as a predetermined time.

Description

本発明は、高圧インバータにおける瞬時停電補償方法とこれを利用した高圧インバータシステムに関するものである。   The present invention relates to an instantaneous power failure compensation method in a high-voltage inverter and a high-voltage inverter system using the same.

一般に、インバータは、入力電源に停電が発生した場合、数ms以内にパルス幅変調(Pulse Width Modulation、PWM)出力を遮断する。この時、負荷の慣性が大きい場合、電源が復旧した時に負荷を加速するのに長時間を要する。このような動作は、産業現場で大きい損失に繋がるため、インバータが停止する場合、工程障害によって莫大な被害が予想される所ではインバータの瞬間停電補償技術が適用されている。   In general, an inverter cuts off a pulse width modulation (PWM) output within a few ms when a power failure occurs in an input power supply. At this time, if the inertia of the load is large, it takes a long time to accelerate the load when the power supply is restored. Such an operation leads to a large loss at the industrial site. Therefore, when the inverter stops, the instantaneous power failure compensation technology of the inverter is applied in a place where a huge damage is expected due to a process failure.

図1A及び図1Bは、従来のインバータの瞬時停電補償装置の動作を説明するための一例であり、図1Aは正常状態の場合、図1Bは電源遮断が生じた場合を示した図面である。   1A and 1B are examples for explaining the operation of a conventional inverter instantaneous power failure compensation device. FIG. 1A is a diagram showing a normal state, and FIG. 1B is a diagram showing a case where a power shutdown occurs.

一般に、インバータ200に組み込まれる電解コンデンサ210(説明の便宜のためにインバータ200の外部に図示する)は、正常状態ではインバータ200から電力を充電し(図1A)、停電によって電源100が遮断されると、電解コンデンサ210に充電された電力を利用して負荷300を駆動する(図1B)。この時、一般の電解コンデンサ210は、瞬時停電時間が16msecの場合には、正常に動作するようにその容量が設計されるため、瞬時停電時間が16msec以内であればインバータ200は停止せずに負荷300を駆動することができる。   In general, an electrolytic capacitor 210 (illustrated outside the inverter 200 for convenience of description) incorporated in the inverter 200 is charged with power from the inverter 200 in a normal state (FIG. 1A), and the power supply 100 is cut off due to a power failure. Then, the load 300 is driven using the electric power charged in the electrolytic capacitor 210 (FIG. 1B). At this time, the capacity of the general electrolytic capacitor 210 is designed so that it operates normally when the instantaneous power failure time is 16 msec. Therefore, if the instantaneous power failure time is within 16 msec, the inverter 200 does not stop. The load 300 can be driven.

しかし、電源事情が良くない地域での停電は、16msec以上になる場合があり、この場合インバータ200は停止する問題があり、これは産業現場の大きい被害を惹き起こす問題がある。   However, a power outage in an area where the power supply situation is not good may be 16 msec or more. In this case, there is a problem that the inverter 200 stops, which causes a serious damage to the industrial site.

一方、現在エネルギー節減に対する要求が大きくなると同時に高圧インバータの需要が増えている傾向である。このような高圧インバータとして、直列連結H−ブリッジ(Cascaede H−Bridge、以下、「CHB」という)方式が主に利用される。CHB方式の高圧インバータは、産業現場で重要設備に設置されるため、信頼性が重要となる。   On the other hand, the demand for high voltage inverters is increasing at the same time as the demand for energy saving is increasing. As such a high-voltage inverter, a series-connected H-bridge (Cascade H-Bridge, hereinafter referred to as “CHB”) system is mainly used. Since the CHB type high-voltage inverter is installed in an important facility at an industrial site, reliability is important.

しかし、図1Aの従来のインバータの瞬時停電補償装置は、CHB方式の高圧インバータに適用する場合、瞬時停電を克服できない問題がある。その理由は、下記の通りである。   However, when the conventional inverter instantaneous power failure compensation device of FIG. 1A is applied to a CHB type high voltage inverter, there is a problem that the instantaneous power failure cannot be overcome. The reason is as follows.

第一に、従来の瞬時停電補償装置は、高圧インバータの複数の単位電力セルのDCリンクを制御できない。   First, the conventional instantaneous power failure compensation device cannot control the DC links of a plurality of unit power cells of the high-voltage inverter.

第二に、従来の瞬時停電補償装置は、フィードバックされた基準電圧をDCリンクの電圧指令とするが、高圧インバータで実際適用される場合、各電力セルのDCリンク電圧はキャパシタが有する寄生成分によって互いに異なるようになるため、実際駆動時に一つの電圧指令で駆動するのが不可能である。   Second, the conventional instantaneous power failure compensation device uses the fed back reference voltage as a DC link voltage command. However, when actually applied in a high voltage inverter, the DC link voltage of each power cell depends on the parasitic component of the capacitor. Since they are different from each other, it is impossible to drive with one voltage command during actual driving.

第三に、従来の瞬時停電補償装置には、CHB方式の高圧インバータが取り付けられる大容量負荷の外部環境を考慮した解決策が提示されなかった。   Thirdly, the conventional instantaneous power failure compensation device has not presented a solution that takes into account the external environment of a large-capacity load to which a CHB type high-voltage inverter is attached.

本発明の目的は、高圧インバータにおいて瞬時停電が生じる場合、負荷が保存している機械的運動エネルギーを電気的エネルギーに変換して停電区間に対応することによって、高圧インバータが停止せずに運転し続けるようにする瞬時停電補償方法及びこれを利用した高圧インバータシステムを提供することである。   The object of the present invention is to operate the high-voltage inverter without stopping by converting the mechanical kinetic energy stored in the load into electrical energy and corresponding to the power failure section when an instantaneous power failure occurs in the high-voltage inverter. It is an object of the present invention to provide an instantaneous power failure compensation method and a high-voltage inverter system using the same.

前述の技術的課題を解決するために、直列連結されて電動機に供給する一つの相電圧を構成する複数の電力セルを備える高圧インバータにおいて、本発明の瞬時停電補償方法は、複数の電力セルの入力電圧が基準値以下の場合、該当時点で複数の電力セルの出力周波数を所定値だけ減少させる段階、所定の減速勾配で出力周波数を減少させる段階、及び入力電圧が復帰する場合、復帰時出力周波数を所定時間だけ維持する段階を含む。   In order to solve the above-described technical problem, in the high-voltage inverter including a plurality of power cells that are connected in series and form one phase voltage supplied to the motor, the instantaneous power failure compensation method of the present invention includes a plurality of power cells. When the input voltage is lower than the reference value, the output frequency of multiple power cells is decreased by a predetermined value at the corresponding time, the output frequency is decreased by a predetermined deceleration gradient, and the output is restored when the input voltage is restored. Maintaining the frequency for a predetermined time.

本発明の一実施形態において、所定の加速勾配で出力周波数を増加させる段階をさらに含んでもよい。   In one embodiment of the present invention, the method may further include increasing the output frequency with a predetermined acceleration gradient.

本発明の一実施形態において、出力周波数を増加させる段階は、瞬時停電以前の出力周波数まで出力周波数を増加させてもよい。   In one embodiment of the present invention, increasing the output frequency may increase the output frequency up to the output frequency before the momentary power failure.

本発明の一実施形態において、複数の電力セルの直流(DC)リンクの電圧が上昇する場合、出力周波数を電圧の増加分だけ増加させる段階をさらに含んでもよい。   In an embodiment of the present invention, when the voltage of the direct current (DC) links of the plurality of power cells increases, the method may further include increasing the output frequency by an increase in voltage.

本発明の一実施形態において、複数の電力セルの出力周波数を所定値だけ減少させる段階は、電動機の速度より小さくなるように出力周波数を減少させてもよい。   In one embodiment of the present invention, the step of reducing the output frequency of the plurality of power cells by a predetermined value may reduce the output frequency to be smaller than the speed of the electric motor.

本発明の一実施形態において、出力周波数の減少幅はスリップ周波数より大きくてもよい。   In one embodiment of the present invention, the output frequency may be decreased by a larger amount than the slip frequency.

本発明の一実施形態において、復帰時出力周波数を所定時間だけ維持する段階は、電動機の速度が出力周波数より小さくなるように出力周波数を維持してもよい。   In one embodiment of the present invention, the step of maintaining the return output frequency for a predetermined time may maintain the output frequency so that the speed of the motor is smaller than the output frequency.

また、前述の技術的課題を解決するために、直列連結されて電動機に供給する一つの相電圧を構成する複数の電力セルを備える高圧インバータにおいて、本発明の瞬時停電補償方法は、複数の電力セルの入力電圧が基準値以下になってから復電する場合、復電時の出力周波数を所定時間維持することができる。   In order to solve the above technical problem, in the high voltage inverter including a plurality of power cells that are connected in series and constitute one phase voltage supplied to the motor, the instantaneous power failure compensation method of the present invention includes a plurality of power When power is restored after the input voltage of the cell becomes lower than the reference value, the output frequency at the time of power restoration can be maintained for a predetermined time.

また、前述の技術的課題を解決するために、本発明の高圧インバータシステムは、直列連結されて電動機に供給する一つの相電圧を構成する複数の電力セル、及び複数の電力セルとネットワークを介して各々連結され、複数の電力セルの入力電圧が基準値以下の場合、該当時点で複数の電力セルの出力周波数を所定値だけ減少させ、所定の減速勾配で出力周波数を減少させ、入力電圧が復帰する場合、復帰時の出力周波数を所定時間だけ維持する制御部を含む。   In order to solve the above technical problem, the high-voltage inverter system of the present invention includes a plurality of power cells that are connected in series and constitute one phase voltage supplied to the motor, and a plurality of power cells and a network. When the input voltages of the plurality of power cells are below the reference value, the output frequency of the plurality of power cells is decreased by a predetermined value at the corresponding time, the output frequency is decreased at a predetermined deceleration gradient, and the input voltage is When returning, a control unit is included that maintains the output frequency at the time of return for a predetermined time.

本発明の一実施形態において、制御部は、出力周波数を所定時間だけ維持した後、所定の加速勾配で出力周波数を増加させてもよい。   In an embodiment of the present invention, the control unit may increase the output frequency with a predetermined acceleration gradient after maintaining the output frequency for a predetermined time.

本発明の一実施形態において、制御部は、瞬時停電以前の出力周波数まで出力周波数を増加させてもよい。   In one embodiment of the present invention, the control unit may increase the output frequency up to the output frequency before the momentary power failure.

本発明の一実施形態において、制御部は、所定の減速勾配で出力周波数を減少する間に、複数の電力セルのDCリンクの電圧が上昇する場合、出力周波数を電圧の増加分だけ増加させてもよい。   In one embodiment of the present invention, when the voltage of the DC link of a plurality of power cells increases while decreasing the output frequency at a predetermined deceleration gradient, the control unit increases the output frequency by the increase in voltage. Also good.

本発明の一実施形態において、制御部は、複数の電力セルの出力周波数を電動機の速度より小さくなるように減少してもよい。   In one embodiment of the present invention, the control unit may reduce the output frequency of the plurality of power cells to be lower than the speed of the electric motor.

本発明は、高圧インバータにおいて瞬時停電が生じる場合、負荷が保存している機械的運動エネルギーを電気的エネルギーに変換して停電区間に対応することによって、高圧インバータが停止せず運転し続けるようにして、従来のCHB方式の高圧インバータでは不可能だった16ms以上の瞬時停電に対応することができる。
これにより、本発明はインバータが瞬間的に停止することによって生じる被害を防ぐことができ、これによって製品工程の信頼性を確保して製品の品質向上が可能となる。
When an instantaneous power failure occurs in the high voltage inverter, the present invention converts the mechanical kinetic energy stored in the load into electrical energy and corresponds to the power failure section so that the high voltage inverter continues to operate without stopping. Thus, it is possible to cope with an instantaneous power failure of 16 ms or more, which is impossible with a conventional CHB type high voltage inverter.
As a result, the present invention can prevent damage caused by an instantaneous stop of the inverter, thereby ensuring the reliability of the product process and improving the product quality.

従来のインバータの瞬時停電補償装置の動作を説明するための一例示図である。It is an example figure for demonstrating operation | movement of the conventional instantaneous power failure compensation apparatus of an inverter. 従来のインバータの瞬時停電補償装置の動作を説明するための一例示図である。It is an example figure for demonstrating operation | movement of the conventional instantaneous power failure compensation apparatus of an inverter. 本発明が適用されるCHB方式の高圧インバータの一実施形態の構成図である。It is a block diagram of one Embodiment of the high voltage inverter of the CHB system to which this invention is applied. 図2の電力セルの一実施形態の詳細構成図である。FIG. 3 is a detailed configuration diagram of an embodiment of the power cell of FIG. 2. 本発明に係る瞬時停電補償方法を説明するための一実施形態のフローチャートである。It is a flowchart of one Embodiment for demonstrating the instantaneous power failure compensation method which concerns on this invention. 本発明に係る瞬時停電補償方法を説明するための一実施形態グラフである。It is one Embodiment graph for demonstrating the instantaneous power failure compensation method which concerns on this invention. 従来のインバータの瞬時停電時入力電圧に対する電動機出力電流を示したグラフである。It is the graph which showed the motor output current with respect to the input voltage at the time of the momentary power failure of the conventional inverter. 本発明に係る瞬時停電補償方法によって高圧インバータの出力電流が補償されたことを説明するための一例示図である。It is an example for explaining that the output current of the high-voltage inverter is compensated by the instantaneous power failure compensation method according to the present invention. 本発明に係る瞬時停電補償方法によって高圧インバータの出力電流が補償されたことを説明するための一例示図である。It is an example for explaining that the output current of the high-voltage inverter is compensated by the instantaneous power failure compensation method according to the present invention. 本発明に係る瞬時停電補償方法によって高圧インバータの出力電流が補償されたことを説明するための一例示図である。It is an example for explaining that the output current of the high-voltage inverter is compensated by the instantaneous power failure compensation method according to the present invention. 本発明に係る瞬時停電補償方法によって高圧インバータの出力電流が補償されたことを説明するための一例示図である。It is an example for explaining that the output current of the high-voltage inverter is compensated by the instantaneous power failure compensation method according to the present invention.

本発明は、多様な変更を加えて多様な実施形態を有することができ、特定実施形態を図面に例示して詳細に説明する。しかし、これは本発明を特定の実施形態に限定するものではなく、本発明の思想及び技術範囲に含まれる全ての変更、均等物乃至代替物を含むことに理解しなければならない。   The present invention may have various embodiments with various modifications, and specific embodiments will be described in detail with reference to the drawings. However, this should not be construed as limiting the invention to the specific embodiments, but includes all modifications, equivalents or alternatives that fall within the spirit and scope of the invention.

本発明は、瞬時停電が生じる場合にも高圧インバータが停止せずに継続的に運転できるようにするものである。即ち、本発明は瞬時停電発生時、高圧インバータを停止せずに停電を認知して継続的な運転のために負荷の機械的運動エネルギーをインバータで回生する。この時、回生量に応じて電力セルのDCリンク電圧が変わるため、適正な電圧を維持するインバータ制御を介して停電区間を回避することができる。   The present invention enables a high-voltage inverter to be continuously operated without stopping even when an instantaneous power failure occurs. That is, when an instantaneous power failure occurs, the present invention recognizes the power failure without stopping the high-voltage inverter and regenerates the mechanical kinetic energy of the load with the inverter for continuous operation. At this time, since the DC link voltage of the power cell changes according to the amount of regeneration, a power failure section can be avoided through inverter control that maintains an appropriate voltage.

以下、添付図を参照して本発明に係る好ましい一実施形態を詳細に説明する。
図2は、本発明が適用されるCHB方式の高圧インバータの一実施形態の構成図である。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 2 is a configuration diagram of an embodiment of a CHB type high-voltage inverter to which the present invention is applied.

図示したように、本発明が適用される高圧インバータは、CHB方式であり、移相変圧器10、電力セル20、制御部30及び電動機40を含む。   As illustrated, the high-voltage inverter to which the present invention is applied is a CHB system and includes a phase shift transformer 10, a power cell 20, a control unit 30, and an electric motor 40.

移相変圧器10は、入力電源の位相を置換してこれを複数の電力セル20に供給する。これについては本発明の技術分野で広く知られているため、その詳細な説明は省略する。   The phase shift transformer 10 replaces the phase of the input power supply and supplies it to the plurality of power cells 20. Since this is widely known in the technical field of the present invention, its detailed description is omitted.

制御部30は、複数の電力セル20とネットワークを介して各々連結され、この時、ネットワークの種類は、例えば、計測制御ネットワーク(Controller Area Network、CAN)であるが、これに限定されるものではない。制御部30は電力セル20との通信を介して、電力セル20を制御して本発明の瞬時停電補償を行う。これについては下記で図面を参照して説明する。   The control unit 30 is connected to each of the plurality of power cells 20 via a network, and at this time, the type of the network is, for example, a measurement control network (Controller Area Network, CAN), but is not limited thereto. Absent. The control unit 30 controls the power cell 20 through communication with the power cell 20 to perform instantaneous power failure compensation of the present invention. This will be described below with reference to the drawings.

電力セル20は、単相インバータであり、直列連結されて電動機40に供給する一つの相電圧を構成するもので、全体的に高圧出力を得ることができる三相インバータとなる。本発明の一実施形態を説明するために、単相インバータの電力セル20が18個(各相当り6個)備えられたものを挙げて説明するが、これに限定されないことは、本発明が属する技術分野で通常の知識を有する者には自明である。電力セル20の数が多いほど、電動機40により大きい電力を出力できる。   The power cell 20 is a single-phase inverter, which is connected in series and constitutes one phase voltage supplied to the motor 40, and is a three-phase inverter that can obtain a high-voltage output as a whole. In order to describe one embodiment of the present invention, a description will be given of a case where 18 power cells 20 of a single-phase inverter (each corresponding to 6) are provided. However, the present invention is not limited to this. It is obvious to those who have ordinary knowledge in the technical field to which they belong. The greater the number of power cells 20, the greater the power that can be output to the motor 40.

また、電力セル20は、制御部30とネットワークを介して通信し、制御部30の制御によって瞬時電力補償を行う。これのために、その内部に制御部30と通信する電力セル制御部を含む。以下、電力セルの詳細な構成を説明する。   In addition, the power cell 20 communicates with the control unit 30 via a network, and performs instantaneous power compensation under the control of the control unit 30. For this purpose, a power cell control unit communicating with the control unit 30 is included therein. Hereinafter, a detailed configuration of the power cell will be described.

図3は、図2のセルの一実施形態の詳細構成図であり、複数の各電力セル20の構成は互いに同一であることは自明である。   FIG. 3 is a detailed configuration diagram of an embodiment of the cell of FIG. 2, and it is obvious that the configuration of each of the plurality of power cells 20 is the same.

図示したように、本発明に係る電力セル20は、整流部21、DCリンク部22、インバータ部23及び電力セル制御部24を含む。   As illustrated, the power cell 20 according to the present invention includes a rectifying unit 21, a DC link unit 22, an inverter unit 23, and a power cell control unit 24.

整流部21は、3相の交流入力電圧を直流に変換し、DCリンク部22は、整流部21により直流に変換された電圧を保存する。また、DCリンク部22は、整流された波形を平滑キャパシタを介して安定した直流に変換することもできる。   The rectifying unit 21 converts a three-phase AC input voltage into a direct current, and the DC link unit 22 stores the voltage converted into a direct current by the rectifying unit 21. The DC link unit 22 can also convert the rectified waveform into a stable direct current via a smoothing capacitor.

インバータ部23は、整流された直流をスイッチングして交流を生成して、電動機40に印加する。インバータ部23は、電力セル制御部24の出力周波数によりスイッチングを行い、インバータ部23のトランジスタは、例えば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)であってもよいが、これに限定されるものではない。   The inverter unit 23 switches the rectified direct current to generate alternating current, and applies it to the electric motor 40. The inverter unit 23 performs switching according to the output frequency of the power cell control unit 24, and the transistor of the inverter unit 23 may be, for example, an insulated gate bipolar transistor (IGBT), but is not limited thereto. It is not something.

整流部21、DCリンク部22及びインバータ23の動作については、すでに本発明が属する技術分野で通常の知識を有する者に広く知られているため、その詳細な説明は省略する。   Since the operations of the rectifying unit 21, the DC link unit 22, and the inverter 23 are already widely known to those who have ordinary knowledge in the technical field to which the present invention belongs, detailed description thereof will be omitted.

電力セル制御部24は、DCリンク部22の電圧を制御部30に伝送し、制御部30の制御によってインバータ部23の出力周波数を伝達する。制御部30のスイッチング制御によって、インバータ部23の出力周波数と電圧を調整できる。即ち、電力セル制御部24は、制御部30の制御によって制御信号を伝達する。   The power cell control unit 24 transmits the voltage of the DC link unit 22 to the control unit 30 and transmits the output frequency of the inverter unit 23 under the control of the control unit 30. The switching frequency of the control unit 30 can adjust the output frequency and voltage of the inverter unit 23. That is, the power cell control unit 24 transmits a control signal under the control of the control unit 30.

図2のような複数の電力セルを含む高圧インバータにおいて、従来の瞬時停電補償装置では複数の電力セル20のDCリンク部22を同一にすることが不可能であったが、本発明によると可能になる。以下、本発明の補償方法を図面を参照して説明する。   In the high-voltage inverter including a plurality of power cells as shown in FIG. 2, it is impossible to make the DC link portions 22 of the plurality of power cells 20 identical in the conventional instantaneous power failure compensation device. become. The compensation method of the present invention will be described below with reference to the drawings.

図4は、本発明に係る瞬時停電補償方法を説明するための一実施形態のフローチャートであり、図3の制御部30で行われることは説明済みである。   FIG. 4 is a flowchart of an embodiment for explaining the instantaneous power failure compensation method according to the present invention, and it has already been explained that it is performed by the control unit 30 of FIG.

図示したように、電力セル制御部24は、電力セル20に入力される入力電圧を確認して、基準値以下の入力電圧が電力セル20に入力されると(S41)、これは停電と判断して、これを制御部30に知らせる。   As shown in the figure, the power cell control unit 24 checks the input voltage input to the power cell 20, and if an input voltage equal to or lower than the reference value is input to the power cell 20 (S41), it is determined that this is a power failure. This is notified to the control unit 30.

従来の高圧インバータでは、このような状況が生じると、直ちにインバータが停止する。これは、負荷である電動機40の容量が、電力セル20のDCリンク部22のキャパシタの容量に比べて大きいため、制御ループが作動する前に低電圧トリップが生じるためである。   In the conventional high-voltage inverter, when such a situation occurs, the inverter immediately stops. This is because the capacity of the electric motor 40 that is a load is larger than the capacity of the capacitor of the DC link unit 22 of the power cell 20, and thus a low voltage trip occurs before the control loop operates.

本発明の制御部30は、このような低電圧トリップを防止するために、基準値以下の電源が入力される場合(S41)、即ち、瞬時停電が発生する場合、これと同時に回生手続きが始まるようにインバータ部23の出力周波数を減少させる(S42)。このような出力周波数の減少によって、停電初期に停電区間を制御できる回生エネルギーを得ることができる。この時、好ましくは出力周波数が、電動機40の実際速度より小さくなるように減少させる。   In order to prevent such a low voltage trip, the control unit 30 of the present invention starts the regenerative procedure at the same time when a power source below the reference value is input (S41), that is, when an instantaneous power failure occurs. Thus, the output frequency of the inverter unit 23 is decreased (S42). Due to such a decrease in output frequency, regenerative energy capable of controlling the power outage section at the beginning of the power outage can be obtained. At this time, the output frequency is preferably decreased so as to be smaller than the actual speed of the electric motor 40.

以後、負荷(電動機40)の負荷量に適当な所定の減速勾配でインバータ部23の出力周波数を減少させる(S43)。電動機40の速度は、インバータ部23から出力する出力周波数よりスリップ周波数(slip frequency)だけ小さいため、これによって電動機40の速度もインバータ部23の出力周波数が減速勾配に比例して減速される。   Thereafter, the output frequency of the inverter unit 23 is decreased at a predetermined deceleration gradient suitable for the load amount of the load (electric motor 40) (S43). Since the speed of the electric motor 40 is smaller than the output frequency output from the inverter unit 23 by the slip frequency, the speed of the electric motor 40 is also reduced in proportion to the deceleration gradient of the output frequency of the inverter unit 23.

この時、電力セル制御部24は、継続的にDCリンク部22の電圧を確認して、これを制御部30に伝送する。これは過電圧トリップが発生しないようにするためである。   At this time, the power cell control unit 24 continuously checks the voltage of the DC link unit 22 and transmits it to the control unit 30. This is to prevent an overvoltage trip from occurring.

即ち、回生量が多くてDCリンク部22の電圧が上昇する場合には(S44)、制御部30は減少させた出力周波数を電圧の増加分だけ増加してエネルギーを消費するようにする(S45)。   That is, when the regenerative amount is large and the voltage of the DC link unit 22 increases (S44), the control unit 30 increases the decreased output frequency by the increase of the voltage to consume energy (S45). ).

以後、入力電圧が上昇して停電区間を抜けるように復電すると(S46)、従来のインバータでは既存の速度指令に復帰するように出力周波数を上昇させるが、本発明の制御部30は、電動機40の慣性が大きくて復電時にスリップが過度に広がって過電流トリップが発生するのを防止するために、復電時の出力周波数を維持する(S47)。   Thereafter, when the input voltage rises and power is restored so as to exit the power failure section (S46), the conventional inverter increases the output frequency so as to return to the existing speed command, but the control unit 30 of the present invention In order to prevent an excessive current trip due to the excessive inertia of 40 and the occurrence of an overcurrent trip due to excessive slippage during power recovery, the output frequency during power recovery is maintained (S47).

即ち、本発明の制御部30は、復電モードでインバータの過電流限界値を越えないように所定時間復電時の出力周波数を維持する(S47)。出力周波数を維持する時間は、電動機40の負荷量に応じて予め決定されるのが好ましい。   That is, the control unit 30 of the present invention maintains the output frequency at the time of power recovery for a predetermined time so as not to exceed the inverter overcurrent limit value in the power recovery mode (S47). The time for maintaining the output frequency is preferably determined in advance according to the load amount of the electric motor 40.

以後、制御部30は、電動機40が瞬時停電前の速度に復帰するように、設定された加速勾配で出力周波数が増加するようにする(S48)。この時の加速勾配は、ユーザによってあらかじめ設定される。これによって、電動機40の速度は、出力周波数の加速勾配と同じ勾配で増加して、瞬時停電前の速度に復帰することができる(S49)。
本発明の制御部30の瞬時停電補償シーケンスを、次のグラフを参照して説明するとより明確になる。
Thereafter, the control unit 30 causes the output frequency to increase at the set acceleration gradient so that the electric motor 40 returns to the speed before the instantaneous power failure (S48). The acceleration gradient at this time is preset by the user. As a result, the speed of the electric motor 40 increases at the same gradient as the acceleration gradient of the output frequency, and can return to the speed before the instantaneous power failure (S49).
The instantaneous power failure compensation sequence of the control unit 30 of the present invention will be more clearly described with reference to the following graph.

図5は、本発明に係る瞬時停電補償方法を説明するための一実施形態グラフであり、停電発生時の出力周波数、電動機速度、入力電圧及び電動機のパワーの関係を示した一例示図である。図5のグラフを図4の各段階と対比して説明する。   FIG. 5 is a graph illustrating an instantaneous power failure compensation method according to the present invention, and is an exemplary diagram illustrating a relationship among an output frequency, a motor speed, an input voltage, and a motor power when a power failure occurs. . The graph of FIG. 5 will be described in comparison with each stage of FIG.

図示したように、入力電圧が一定値を維持しながらt1まで入力される。一般に、入力電圧は交流であるが、図5では実効値(rms)を示した。正常状態で、インバータ部23の出力周波数と電動機40の実際速度の差を「スリップ周波数」という。   As shown in the figure, the input voltage is input until t1 while maintaining a constant value. In general, the input voltage is alternating current, but the effective value (rms) is shown in FIG. In a normal state, the difference between the output frequency of the inverter unit 23 and the actual speed of the electric motor 40 is referred to as “slip frequency”.

t1で入力電圧が基準値以下になると(S41)、制御部30は、停電と判断して、出力周波数を所定値だけ減少させる(S42)(A部分)。   When the input voltage becomes equal to or less than the reference value at t1 (S41), the control unit 30 determines that a power failure has occurred, and decreases the output frequency by a predetermined value (S42) (A portion).

以後、復電時点のt2まで制御部30は、予め設定された減速勾配で出力周波数を減少させる(S43)。このような出力周波数の減少は、復電時点のt2まで繰り返される。   Thereafter, the control unit 30 decreases the output frequency with a preset deceleration gradient until t2 at the time of power recovery (S43). Such a decrease in output frequency is repeated until t2 at the time of power recovery.

t2で入力電圧が復帰して(S46)、復電された場合には、所定時間(t2からt4まで)復電時の出力周波数を維持する(S47)。所定時間が経過したt4では、設定された加速勾配で出力周波数が増加するようにし(S48)、t5で停電以前の状態に復帰する(S49)。以後、出力周波数は一定に維持されることが分かる。   When the input voltage returns at t2 (S46) and power is restored, the output frequency at the time of power recovery is maintained for a predetermined time (from t2 to t4) (S47). At t4 when a predetermined time has elapsed, the output frequency is increased at the set acceleration gradient (S48), and the state before the power failure is restored at t5 (S49). Thereafter, it can be seen that the output frequency is kept constant.

この時、t3時点は、インバータ部23の出力周波数と電動機40の実際速度が同じになる時点である。即ち、出力周波数が維持される時間は、インバータ部23の出力周波数と電動機40の実際の速度が同じになる時間以後と設定されてもよい。   At this time, time t3 is a time when the output frequency of the inverter unit 23 and the actual speed of the electric motor 40 become the same. That is, the time during which the output frequency is maintained may be set after the time when the output frequency of the inverter unit 23 and the actual speed of the electric motor 40 are the same.

これをエネルギーの側面から説明する。t1で瞬時停電が始まると、電動機40のエネルギーは、インバータ側に回生されるため、エネルギーが減少する。この時、回復エネルギーが多いと、過電圧トリップが発生しうるため、電圧対周波数(Voltage to Frequency、以下、「V/F」という)比を減少しなければならない。   This will be explained from the energy aspect. When the instantaneous power failure starts at t1, the energy of the electric motor 40 is regenerated to the inverter side, so that the energy decreases. At this time, if the recovery energy is large, an overvoltage trip may occur. Therefore, the voltage-to-frequency (hereinafter referred to as “V / F”) ratio must be reduced.

t2で復電すると、t3までは入力電圧と回復エネルギーが同時にインバータ部23に供給されるため、t3までエネルギーは抑制される。   When power is restored at t2, the input voltage and the recovery energy are simultaneously supplied to the inverter unit 23 until t3, so that the energy is suppressed until t3.

図6は、従来のインバータの瞬時停電時入力電圧に対する電動機出力電流を示したグラフである。   FIG. 6 is a graph showing the motor output current with respect to the input voltage during an instantaneous power failure of the conventional inverter.

図示したように、電力セルに入力される入力電圧が16msec以上停電される場合、高圧インバータの出力電流が0となって、電動機が停止する。   As shown in the drawing, when the input voltage input to the power cell is interrupted for 16 msec or longer, the output current of the high-voltage inverter becomes 0 and the motor stops.

図7A及び図7Bは、本発明に係る瞬時停電補償方法によって高圧インバータの出力電流が補償されたことを説明するための一例示図であり、電動機40が4000V負荷量を有する場合に、電動機40が各々54Hz及び56Hzの周波数で動作する場合を示したものである。   7A and 7B are exemplary diagrams for explaining that the output current of the high-voltage inverter is compensated by the instantaneous power failure compensation method according to the present invention. When the motor 40 has a load amount of 4000 V, the motor 40 is shown in FIG. Shows the case of operating at frequencies of 54 Hz and 56 Hz, respectively.

図7Aに示したように、停電時間が177msである場合にも、即ち、電力セル20に177msの間入力電圧が印加されない場合でも、高圧インバータの出力電流は安定的に停止せずに駆動し、電動機40で電流を出力していることが分かる。   As shown in FIG. 7A, even when the power failure time is 177 ms, that is, even when the input voltage is not applied to the power cell 20 for 177 ms, the output current of the high-voltage inverter is driven without stopping stably. It can be seen that the electric motor 40 outputs a current.

また、図7Bに示したように、停電時間が173msである場合にも、即ち、電力セル20に173msの間入力電圧が印加されない場合でも、高圧インバータの出力電流は安定的に停止せずに駆動し、電動機40で電流を出力していることが分かる。   Further, as shown in FIG. 7B, even when the power failure time is 173 ms, that is, even when the input voltage is not applied to the power cell 20 for 173 ms, the output current of the high-voltage inverter does not stop stably. It can be seen that the motor 40 is driven and the electric motor 40 outputs a current.

図8A及び図8Bは、本発明に係る瞬時停電補償方法によって高圧インバータの出力電流が補償されたことを説明するための一例示図であり、電動機40が3000V負荷量を有する場合に、電動機40が各々49Hz及び51Hzの周波数で動作している場合を示したものである。   8A and 8B are exemplary diagrams for explaining that the output current of the high-voltage inverter is compensated by the instantaneous power failure compensation method according to the present invention. When the motor 40 has a load of 3000 V, the motor 40 is shown in FIG. Are operating at frequencies of 49 Hz and 51 Hz, respectively.

図8A及び図8Bに示したように、各々停電時間が130msの場合でも、即ち、電力セル20に130msの間入力電圧が印加されない場合でも、高圧インバータの出力電流は安定的に停止せずに駆動し、電動機40で電流を出力していることが分かる。   As shown in FIGS. 8A and 8B, even when the power failure time is 130 ms, that is, even when the input voltage is not applied to the power cell 20 for 130 ms, the output current of the high-voltage inverter does not stop stably. It can be seen that the motor 40 is driven and the electric motor 40 outputs a current.

本発明の補償方法は、複数の電力セルを同時に制御して、従来のCHB方式の高圧インバータでは不可能であった16ms以上の瞬時停電に対応することができる。   The compensation method of the present invention can simultaneously control a plurality of power cells and cope with an instantaneous power failure of 16 ms or more, which is impossible with a conventional CHB type high voltage inverter.

前述の本発明の補償方法は、インバータが瞬間的に停止することによって生じる被害を防ぎ、これによって製品工程の信頼性を確保して製品の品質向上することを目的とする。   The compensation method of the present invention described above aims to prevent damage caused by an instantaneous stop of the inverter, thereby ensuring the reliability of the product process and improving the quality of the product.

以上、代表的な実施形態を持って本発明について詳細に説明したが、本発明が属する技術分野で通常の知識を有する者は、前述の実施形態に対して本発明の範囲から逸脱しない限度内で多様な変形ができることを理解するだろう。従って、本発明の権利範囲は説明された実施形態に限定されて定まってはならず、後述する特許請求の範囲だけでなくこの特許請求の範囲と均等物等によって定まらなければならない。   Although the present invention has been described in detail with representative embodiments, those having ordinary knowledge in the technical field to which the present invention pertains are within the limits that do not depart from the scope of the present invention with respect to the aforementioned embodiments. You will understand that various modifications can be made. Accordingly, the scope of rights of the present invention should not be limited to the described embodiments, but should be determined not only by the claims described below, but also by the equivalents of the claims.

10 移相変圧器
20 電力セル
21 整流部
22 DCリンク部
23 インバータ部
24 電力セル制御部
30 制御部
40 電動機
100 電源
200 インバータ
210 電解コンデンサ
300 負荷
DESCRIPTION OF SYMBOLS 10 Phase-shift transformer 20 Power cell 21 Rectification part 22 DC link part 23 Inverter part 24 Power cell control part 30 Control part 40 Electric motor 100 Power supply 200 Inverter 210 Electrolytic capacitor 300 Load

Claims (13)

直列連結されて電動機に供給する一つの相電圧を構成する複数の電力セルを備える高圧インバータの瞬時停電補償方法において、
前記複数の電力セルの入力電圧が基準値以下の場合、該当時点で前記複数の電力セルの出力周波数を所定値だけ減少させる段階、
所定の減速勾配で出力周波数を減少させる段階、及び
入力電圧が復帰する場合、復帰時の出力周波数を所定時間だけ維持する段階を含むことを特徴とする、瞬時停電補償方法。
In the instantaneous power failure compensation method for a high-voltage inverter including a plurality of power cells that constitute one phase voltage that is connected in series and supplied to an electric motor,
If the input voltage of the plurality of power cells is below a reference value, reducing the output frequency of the plurality of power cells by a predetermined value at a corresponding time;
An instantaneous power failure compensation method, comprising: decreasing an output frequency at a predetermined deceleration gradient; and maintaining an output frequency at the time of recovery for a predetermined time when the input voltage returns.
所定の加速勾配で出力周波数を増加させる段階をさらに含むことを特徴とする、請求項1に記載の瞬時停電補償方法。   The method of claim 1, further comprising increasing the output frequency at a predetermined acceleration gradient. 前記出力周波数を増加させる段階は、瞬時停電以前の出力周波数まで出力周波数を増加させることを特徴とする、請求項2に記載の瞬時停電補償方法。   The method according to claim 2, wherein the step of increasing the output frequency increases the output frequency up to an output frequency before the instantaneous power failure. 前記複数の電力セルの直流(DC)リンクの電圧が上昇する場合、出力周波数を電圧の増加分だけ増加させる段階をさらに含むことを特徴とする、請求項1乃至3のいずれか一項に記載の瞬時停電補償方法。   4. The method according to claim 1, further comprising increasing an output frequency by an increase in voltage when a voltage of a direct current (DC) link of the plurality of power cells increases. 5. Instantaneous blackout compensation method. 前記複数の電力セルの出力周波数を所定値だけ減少させる段階は、前記電動機の速度より小さくなるように出力周波数を減少させることを特徴とする、請求項1乃至4のいずれか一項に記載の瞬時停電補償方法。   5. The method according to claim 1, wherein the step of reducing the output frequency of the plurality of power cells by a predetermined value reduces the output frequency to be lower than a speed of the electric motor. 6. Instantaneous power failure compensation method. 前記出力周波数の減少幅は、スリップ周波数より大きいことを特徴とする、請求項5に記載の瞬時停電補償方法。   6. The instantaneous power failure compensation method according to claim 5, wherein a decrease width of the output frequency is larger than a slip frequency. 前記復帰時出力周波数を所定時間だけ維持する段階は、前記電動機の速度が出力周波数より小さくなるように出力周波数を維持することを特徴とする、請求項1乃至6のいずれか一項に記載の瞬時停電補償方法。   7. The step of maintaining the return output frequency for a predetermined time maintains the output frequency so that the speed of the electric motor is smaller than the output frequency. Instantaneous power failure compensation method. 直列連結されて電動機に供給する一つの相電圧を構成する複数の電力セルを備える高圧インバータの瞬時停電補償方法において、
前記複数の電力セルの入力電圧が基準値以下となってから復電する場合、復電時の出力周波数を所定時間維持することを特徴とする、瞬時停電補償方法。
In the instantaneous power failure compensation method for a high-voltage inverter including a plurality of power cells that constitute one phase voltage that is connected in series and supplied to an electric motor,
An instantaneous power failure compensation method, wherein when the power is restored after the input voltages of the plurality of power cells become below a reference value, the output frequency at the time of power restoration is maintained for a predetermined time.
直列連結されて電動機に供給する一つの相電圧を構成する複数の電力セル、及び
前記複数の電力セルとネットワークを介して各々連結され、前記複数の電力セルの入力電圧が基準値以下の場合、該当時点で前記複数の電力セルの出力周波数を所定値だけ減少させ、所定の減速勾配で出力周波数を減少させ、入力電圧が復帰する場合、復帰時の出力周波数を所定時間だけ維持する制御部を含むことを特徴とする、高圧インバータシステム。
A plurality of power cells that are connected in series and constitute one phase voltage supplied to the motor, and connected to each of the plurality of power cells via a network, and when the input voltage of the plurality of power cells is below a reference value, A controller that reduces the output frequency of the plurality of power cells by a predetermined value at a corresponding time, decreases the output frequency at a predetermined deceleration gradient, and maintains the output frequency at the time of return for a predetermined time when the input voltage is restored; A high-voltage inverter system comprising:
前記制御部は、出力周波数を所定時間だけ維持した後、所定の加速勾配で出力周波数を増加させることを特徴とする、請求項9に記載の高圧インバータシステム。   The high-voltage inverter system according to claim 9, wherein the control unit increases the output frequency with a predetermined acceleration gradient after maintaining the output frequency for a predetermined time. 前記制御部は、瞬時停電以前の出力周波数まで出力周波数を増加させることを特徴とする、請求項10に記載の高圧インバータシステム。   The high-voltage inverter system according to claim 10, wherein the control unit increases the output frequency to an output frequency before an instantaneous power failure. 前記制御部は、所定の減速勾配で出力周波数を減少する間に、前記複数の電力セルのDCリンクの電圧が上昇する場合、出力周波数を電圧の増加分だけ増加させることを特徴とする、請求項9乃至11のいずれか一項に記載の高圧インバータシステム。   The controller is configured to increase the output frequency by an increase in voltage when the DC link voltage of the plurality of power cells increases while decreasing the output frequency at a predetermined deceleration gradient. Item 12. The high-voltage inverter system according to any one of Items 9 to 11. 前記制御部は、前記複数の電力セルの出力周波数を前記電動機の速度より小さくなるように減少することを特徴とする、請求項9乃至12のいずれか一項に記載の高圧インバータシステム。   The high-voltage inverter system according to any one of claims 9 to 12, wherein the control unit reduces an output frequency of the plurality of power cells so as to be smaller than a speed of the electric motor.
JP2012205900A 2011-09-26 2012-09-19 Compensation method for instantaneous power failure of high-voltage inverter and high-voltage inverter system using the same Active JP5529942B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0096903 2011-09-26
KR1020110096903A KR101260608B1 (en) 2011-09-26 2011-09-26 Method for compensating instantaneous power failure in medium voltage inverter and medium voltage inverter system by using the same

Publications (2)

Publication Number Publication Date
JP2013074792A true JP2013074792A (en) 2013-04-22
JP5529942B2 JP5529942B2 (en) 2014-06-25

Family

ID=47910560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205900A Active JP5529942B2 (en) 2011-09-26 2012-09-19 Compensation method for instantaneous power failure of high-voltage inverter and high-voltage inverter system using the same

Country Status (3)

Country Link
US (1) US8970159B2 (en)
JP (1) JP5529942B2 (en)
KR (1) KR101260608B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050931A (en) * 2013-08-29 2015-03-16 エルエス産電株式会社Lsis Co., Ltd. Inverter including power cell of dual structure
JP2015233407A (en) * 2014-06-10 2015-12-24 エルエス産電株式会社Lsis Co., Ltd. Instantaneous blackout compensation method of inverter
JP2016093099A (en) * 2014-10-30 2016-05-23 エルエス産電株式会社Lsis Co.,Ltd. Apparatus for controlling inverter
JP2016135097A (en) * 2015-01-19 2016-07-25 エルエス産電株式会社Lsis Co., Ltd. Method for compensating instantaneous power failure in high voltage inverter
JP2017188650A (en) * 2016-04-05 2017-10-12 エルエス産電株式会社Lsis Co., Ltd. Oil type phase shift transformer for high voltage inverter system
WO2019077842A1 (en) * 2017-10-17 2019-04-25 三菱重工サーマルシステムズ株式会社 Power conversion device, electric motor drive device, and air conditioning device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213786B1 (en) * 2014-10-15 2021-02-08 엘에스일렉트릭(주) Apparatus for restarting medium-voltage inverter
KR101893240B1 (en) * 2014-10-30 2018-08-29 엘에스산전 주식회사 Apparatus for controlling inverter
US9800134B2 (en) 2015-02-25 2017-10-24 Rockwell Automation Technologies, Inc. Motor drive with LCL filter inductor with built-in passive damping resistor for AFE rectifier
KR102506215B1 (en) * 2016-04-25 2023-03-03 엘에스일렉트릭(주) Apparatus for controlling inverter
US9923469B2 (en) 2016-05-09 2018-03-20 Rockwell Automation Technologies, Inc. Motor drive filter damping
CN106056468B (en) * 2016-05-27 2019-11-26 国网陕西省电力公司经济技术研究院 A kind of medium-voltage line typical wiring mode selecting method based on reliability
US9837924B1 (en) 2016-06-02 2017-12-05 Rockwell Automation Technologies, Inc. Precharge apparatus for power conversion system
KR102105405B1 (en) * 2018-03-21 2020-04-28 엘에스일렉트릭(주) Precharge system for medium voltage inverter and method for controlling the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142482A (en) * 2000-10-31 2002-05-17 Mitsubishi Heavy Ind Ltd Inverter
JP2005045973A (en) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp Voltage type inverter
JP2011188584A (en) * 2010-03-05 2011-09-22 Fuji Electric Co Ltd Power conversion device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445167A (en) * 1981-10-05 1984-04-24 Tokyo Shibaura Denki Kabushiki Kaisha Inverter system
JPS58172927A (en) * 1982-04-02 1983-10-11 株式会社日立製作所 Overload protecting device
US5625545A (en) * 1994-03-01 1997-04-29 Halmar Robicon Group Medium voltage PWM drive and method
US6014323A (en) * 1997-08-08 2000-01-11 Robicon Corporation Multiphase power converter
US5986909A (en) * 1998-05-21 1999-11-16 Robicon Corporation Multiphase power supply with plural series connected cells and failed cell bypass
US6262555B1 (en) * 1998-10-02 2001-07-17 Robicon Corporation Apparatus and method to generate braking torque in an AC drive
JP4284478B2 (en) * 1998-12-28 2009-06-24 株式会社安川電機 Inverter device
JP3882496B2 (en) 2000-11-15 2007-02-14 三菱電機株式会社 Inverter device
US6847531B2 (en) * 2001-01-02 2005-01-25 General Electric Company System and method for regenerative PWM AC power conversion
US7088073B2 (en) * 2003-01-24 2006-08-08 Toshiba Internationl Corporation Inverter drive system
KR20110006936A (en) 2009-07-15 2011-01-21 엘에스산전 주식회사 Apparatus and method for controlling inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142482A (en) * 2000-10-31 2002-05-17 Mitsubishi Heavy Ind Ltd Inverter
JP2005045973A (en) * 2003-07-25 2005-02-17 Mitsubishi Electric Corp Voltage type inverter
JP2011188584A (en) * 2010-03-05 2011-09-22 Fuji Electric Co Ltd Power conversion device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331601B2 (en) 2013-08-29 2016-05-03 Lsis Co., Ltd. Inverter with power cell of dual structure
JP2015050931A (en) * 2013-08-29 2015-03-16 エルエス産電株式会社Lsis Co., Ltd. Inverter including power cell of dual structure
KR101768256B1 (en) 2013-08-29 2017-08-14 엘에스산전 주식회사 Inverter with power cell of dual structure
US9525363B2 (en) 2014-06-10 2016-12-20 Lsis Co., Ltd. Method for voltage dip compensation of inverter
JP2015233407A (en) * 2014-06-10 2015-12-24 エルエス産電株式会社Lsis Co., Ltd. Instantaneous blackout compensation method of inverter
JP2016093099A (en) * 2014-10-30 2016-05-23 エルエス産電株式会社Lsis Co.,Ltd. Apparatus for controlling inverter
US9742339B2 (en) 2014-10-30 2017-08-22 Lsis Co., Ltd. Apparatus for controlling inverter
KR20160089603A (en) * 2015-01-19 2016-07-28 엘에스산전 주식회사 Method for compensating instantaneous power failure in medium voltage inverter and medium voltage inverter system by using the same
JP2016135097A (en) * 2015-01-19 2016-07-25 エルエス産電株式会社Lsis Co., Ltd. Method for compensating instantaneous power failure in high voltage inverter
US10073485B2 (en) 2015-01-19 2018-09-11 Lsis Co., Ltd. Method for compensating instantaneous power failure in medium voltage inverter and medium voltage inverter system using the same
KR102009511B1 (en) * 2015-01-19 2019-10-22 엘에스산전 주식회사 Method for compensating instantaneous power failure in medium voltage inverter and medium voltage inverter system by using the same
JP2017188650A (en) * 2016-04-05 2017-10-12 エルエス産電株式会社Lsis Co., Ltd. Oil type phase shift transformer for high voltage inverter system
WO2019077842A1 (en) * 2017-10-17 2019-04-25 三菱重工サーマルシステムズ株式会社 Power conversion device, electric motor drive device, and air conditioning device
JP2019075907A (en) * 2017-10-17 2019-05-16 三菱重工サーマルシステムズ株式会社 Power conversion device, motor driving device, and air conditioner

Also Published As

Publication number Publication date
US20130076285A1 (en) 2013-03-28
JP5529942B2 (en) 2014-06-25
US8970159B2 (en) 2015-03-03
KR101260608B1 (en) 2013-05-03
KR20130033067A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5529942B2 (en) Compensation method for instantaneous power failure of high-voltage inverter and high-voltage inverter system using the same
WO2012169046A1 (en) Uninterruptible power supply system
JP6010187B2 (en) Inverter instantaneous power failure compensation method
US10008917B2 (en) Bus capacitor bank configuration for a multi-level regenerative drive
JP5631490B2 (en) Uninterruptible power supply system
US20120025609A1 (en) Very high efficiency uninterruptible power supply
CN107786150B (en) Driving power supply control system of electric automobile and control method thereof
KR102565431B1 (en) Switching operation method and an inverter device for grid connection considering transformer magnetization
WO2018198190A1 (en) Power supply device
CN108574307B (en) IGBT soft switch control method of column power main circuit
JP6220905B2 (en) Compensation method for instantaneous power failure of high voltage inverter
JP2022060744A (en) Power conversion device
JP5313493B2 (en) Motor drive device
JP2019149897A (en) Uninterruptible power supply device and control method therefor
KR20160064566A (en) Control apparatus of power generation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140417

R150 Certificate of patent or registration of utility model

Ref document number: 5529942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250