JP2012222998A - Voltage control circuit - Google Patents

Voltage control circuit Download PDF

Info

Publication number
JP2012222998A
JP2012222998A JP2011087921A JP2011087921A JP2012222998A JP 2012222998 A JP2012222998 A JP 2012222998A JP 2011087921 A JP2011087921 A JP 2011087921A JP 2011087921 A JP2011087921 A JP 2011087921A JP 2012222998 A JP2012222998 A JP 2012222998A
Authority
JP
Japan
Prior art keywords
transformer
circuit
circuits
voltage
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011087921A
Other languages
Japanese (ja)
Inventor
Takashi Masatome
高志 正留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2011087921A priority Critical patent/JP2012222998A/en
Publication of JP2012222998A publication Critical patent/JP2012222998A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a voltage control circuit which can convert an input voltage having a large range of changes to an output voltage having any definite magnitude in an easily controllable way.SOLUTION: The voltage control circuit includes a transformer primary side TP and a transformer secondary side TS. The transformer primary side TP includes a plurality of transformer primary windings TL11 and TL21, a plurality of resonance circuits RS1 and RS2, a plurality of switching element circuits SW1 and SW2, and a plurality of drive circuits DV1 and DV2. The transformer secondary side TS includes a plurality of transformer secondary windings TL21 and TL22, a rectification circuit DC including a plurality of diodes D1 to D4, and a synthesis circuit SUM which synthesizes outputs of the rectification circuit DC. The drive circuits DV1 and DV2 of the transformer primary side TP maintains the frequency of an input voltage Vi from a solar battery PV1 at the same level as f0 and also changes the phase thereof, whereby it is made possible to variably control the magnitude of an output voltage VO synthesized by the synthesis circuit SUM on the transformer secondary side.

Description

本発明は、広い入力電圧範囲に対して一定の出力電圧に制御することが可能な電圧制御回路に関するものである。   The present invention relates to a voltage control circuit capable of controlling a constant output voltage over a wide input voltage range.

太陽光発電システムは、太陽電池とパワーコンディショナとから構成されており、太陽電池は太陽エネルギーを電気に変換し、パワーコンディショナは負荷や電力系統への供給条件に対応した電力の変換機能を有している。こうした太陽光発電システムにおいて、パワーコンディショナは、太陽電池の入力電圧を別の出力電圧にDC/DC変換するDC/DCコンバータを備える。   A solar power generation system is composed of a solar cell and a power conditioner. The solar cell converts solar energy into electricity, and the power conditioner has a power conversion function corresponding to the supply conditions to the load and power system. Have. In such a solar power generation system, the power conditioner includes a DC / DC converter that DC / DC converts the input voltage of the solar cell into another output voltage.

一方、太陽電池は例えば日照や負荷等によりその入力電圧の変化範囲が広く、そのためにDC/DCコンバータでは、太陽電池からの広い範囲の入力電圧を安定的に一定の出力電圧にDC/DC変換できることが求められる。   On the other hand, a solar cell has a wide input voltage change range due to, for example, sunlight or a load. Therefore, in a DC / DC converter, a wide range of input voltage from the solar cell is stably DC / DC converted into a constant output voltage. We need to be able to do it.

もちろん、こうしたDC/DC変換は、太陽電池に限らず、他の分散電源、例えば風力発電システムにおける電源やその他の電源などでも同様の課題があり、そうした場合にも広い入力電圧の変化範囲に対して出力電圧を一定にDC/DC変換する制御を容易に可能とし、かつその際に高効率に電力伝送することが可能なDC/DCコンバータが求められる。   Of course, such DC / DC conversion is not limited to solar cells, but has the same problem with other distributed power sources such as power sources in wind power generation systems and other power sources. Therefore, there is a need for a DC / DC converter that can easily perform control for DC / DC conversion of the output voltage at a constant level and can transmit power efficiently at that time.

特開2009−038969号公報JP 2009-038969 A 特開2006−149170号公報JP 2006-149170 A

したがって、本発明においては、変化範囲が大きい直流の入力電圧に対応して制御容易に任意の大きさの直流の出力電圧に変換制御ができる電圧制御回路を提供することを解決すべき課題としている。   Therefore, in the present invention, it is an object to be solved to provide a voltage control circuit that can easily control conversion to a DC output voltage of an arbitrary magnitude in response to a DC input voltage having a large change range. .

本発明による電圧制御回路は、トランス一次側と、トランス二次側と、を含み、
上記トランス一次側は、複数のトランス一次巻線と、各トランス一次巻線に個別に接続され所定周波数で共振する複数の共振回路と、直流電源の入力電圧を所定周波数でスイッチングして各一次巻線に個別に印加する複数のスイッチング素子回路と、上記各スイッチング素子回路を個別にスイッチング駆動する複数の駆動回路と、を含み、
上記トランス二次側は、互いに直列接続される複数の二次巻線と、各二次巻線出力をそれぞれ整流する複数のダイオードを含む整流回路と、上記整流回路出力を合成する合成回路と、を含み、
上記トランス一次側の各駆動回路は、直流電源からの入力電圧に対してその周波数を同一に維持し、かつ、その位相を変えることでトランス二次側で合成回路により合成される出力電圧の大きさを可変する制御を可能とした、ことを特徴とする。
The voltage control circuit according to the present invention includes a transformer primary side and a transformer secondary side,
The transformer primary side includes a plurality of transformer primary windings, a plurality of resonance circuits that are individually connected to each transformer primary winding and resonate at a predetermined frequency, and a DC power supply input voltage is switched at a predetermined frequency to switch each primary winding. A plurality of switching element circuits that are individually applied to the lines, and a plurality of driving circuits that individually drive each of the switching element circuits,
The transformer secondary side includes a plurality of secondary windings connected in series with each other, a rectifier circuit including a plurality of diodes for rectifying each secondary winding output, and a combining circuit for combining the rectifier circuit outputs, Including
Each of the drive circuits on the primary side of the transformer maintains the same frequency as the input voltage from the DC power supply, and the magnitude of the output voltage synthesized by the synthesis circuit on the secondary side of the transformer by changing its phase. It is characterized by enabling control to vary the height.

本発明では、当該電圧制御回路に対して、太陽電池等の変化範囲が大きい直流の入力電圧を入力するように直流電源に対して、トランス一次側それぞれで入力電圧の位相を制御することで、容易に出力電圧の大きさを任意に調整することができる。   In the present invention, for the voltage control circuit, by controlling the phase of the input voltage on each of the transformer primary side with respect to the DC power supply so as to input a DC input voltage having a large change range such as a solar cell, The magnitude of the output voltage can be easily adjusted arbitrarily.

好ましくは、上記トランス一次側の上記複数のスイッチング素子回路は、それぞれ、ハーフブリッジ接続された複数のスイッチング素子を含み、上記複数の駆動回路は、それぞれ、対応する上記ハーフブリッジ回路内の各スイッチング素子を一定の同一周波数でかつ180度反対位相で交互にオンオフ駆動する。   Preferably, each of the plurality of switching element circuits on the primary side of the transformer includes a plurality of switching elements that are half-bridge connected, and each of the plurality of driving circuits is each switching element in the corresponding half-bridge circuit. Are alternately turned on and off at a constant frequency and 180 degrees opposite phase.

好ましくは、上記電圧制御回路は、スイッチング電源である。   Preferably, the voltage control circuit is a switching power supply.

好ましくは、上記電圧制御回路は、DC/DCコンバータである。   Preferably, the voltage control circuit is a DC / DC converter.

本発明では、直流電源からの入力電圧が大きく変化しても、出力電圧の大きさを任意一定の大きさに制御することができる。   In the present invention, even if the input voltage from the DC power supply changes greatly, the magnitude of the output voltage can be controlled to an arbitrary constant level.

図1は、本発明の実施形態に係る電圧制御回路の回路図である。FIG. 1 is a circuit diagram of a voltage control circuit according to an embodiment of the present invention. 図2は、図1の回路においてトランス一次側における駆動回路の駆動電圧波形を示す図である。FIG. 2 is a diagram showing a driving voltage waveform of the driving circuit on the primary side of the transformer in the circuit of FIG. 図3は、図1の回路においてトランス二次側における各二次巻線の出力電圧の位相状態を示す図である。FIG. 3 is a diagram showing the phase state of the output voltage of each secondary winding on the transformer secondary side in the circuit of FIG. 図4は、図1の回路においてトランス二次側における合成回路により合成された出力電圧の大きさをベクトルで示す図である。FIG. 4 is a diagram showing the magnitude of the output voltage synthesized by the synthesis circuit on the transformer secondary side in the circuit of FIG. 1 as a vector.

以下、添付した図面を参照して、本発明の実施形態に係る電圧制御回路を説明する。図1に本発明の実施形態に係る電圧制御回路の構成を示す。実施形態では電圧制御回路は、太陽光発電システムのパワーコンディショナにおけるDC/DCコンバータに適用するが、これに特に限定されるわけではなく、単にスイッチング電源やその他でもよい。そして、本実施形態の電圧制御回路における制御対象とする電圧は、直流電源である太陽電池からの入力電圧であり、実施形態の電圧制御回路は、その太陽光発電システムにおけるパワーコンディショナ内のDC/DCコンバータとして、太陽電池からの入力電圧を一定の出力電圧にDC/DC変換する例を示す。   Hereinafter, a voltage control circuit according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a configuration of a voltage control circuit according to an embodiment of the present invention. In the embodiment, the voltage control circuit is applied to the DC / DC converter in the power conditioner of the photovoltaic power generation system, but is not particularly limited to this, and may simply be a switching power supply or the like. And the voltage made into the control object in the voltage control circuit of this embodiment is the input voltage from the solar cell which is direct current power supply, and the voltage control circuit of embodiment is DC in the power conditioner in the solar power generation system. As an / DC converter, an example in which an input voltage from a solar cell is DC / DC converted into a constant output voltage is shown.

図1を参照して実施形態のDC/DCコンバータは、トランス一次側TPと、トランス二次側TSとを含む。これらは2つのトランスT1,T2それぞれの一次側と二次側である。トランス一次側TPは、複数のトランスT1,T2それぞれの一次巻線TL11,TL21と、各一次巻線TL11,TL21に個別に接続される所定周波数f0で共振する複数の共振回路RS1,RS2と、所定周波数f0でスイッチング動作して各一次巻線TL11,TL21に直流電源PV1の入力電圧Viを個別に印加する複数のスイッチング素子回路SW1,SW2と、上記各スイッチング素子回路SW1,SW2を所定周波数f0で個別にスイッチング駆動する複数の駆動回路DV1,DV2と、を含む。スイッチング素子回路SW1,SW2は、ハーフブリッジ構成に直列接続されたIGBTやMOSFET等のトランジスタQ1−Q4を含む。駆動回路DV1,DV2はパルス発振する発振回路V1,V2と、反転回路INV1,INV2とを含む。   Referring to FIG. 1, the DC / DC converter of the embodiment includes a transformer primary side TP and a transformer secondary side TS. These are the primary side and the secondary side of the two transformers T1 and T2, respectively. The transformer primary TP includes primary windings TL11 and TL21 of the transformers T1 and T2, and a plurality of resonance circuits RS1 and RS2 that resonate at a predetermined frequency f0 that are individually connected to the primary windings TL11 and TL21. A plurality of switching element circuits SW1 and SW2 that perform switching operation at a predetermined frequency f0 and individually apply the input voltage Vi of the DC power source PV1 to the primary windings TL11 and TL21, and the switching element circuits SW1 and SW2 are set to the predetermined frequency f0. And a plurality of drive circuits DV1 and DV2 that are individually switched and driven. Switching element circuits SW1 and SW2 include transistors Q1-Q4 such as IGBTs and MOSFETs connected in series in a half-bridge configuration. Drive circuits DV1 and DV2 include oscillation circuits V1 and V2 that oscillate in pulses and inversion circuits INV1 and INV2.

トランス二次側TSは、互いに直列接続される2つのトランスT1,T2それぞれの複数の二次巻線TL21,TL22と、各二次巻線TL21,TL22の出力VS1,VS2を個別に整流する整流回路DCと、この整流回路DC出力を合成して出力電圧Voとして出力する合成回路SUMと、を含む。   The transformer secondary TS is a rectifier that individually rectifies a plurality of secondary windings TL21 and TL22 of two transformers T1 and T2 connected in series with each other and outputs VS1 and VS2 of the secondary windings TL21 and TL22. A circuit DC and a synthesis circuit SUM that synthesizes the output of the rectifier circuit DC and outputs it as an output voltage Vo are included.

整流回路DCは、トランスT1の二次巻線TL12の一端側にアノードが接続されたダイオードD1と、トランスT2の二次巻線TL22の他端側にアノードが接続されたダイオードD2と、トランスT1の二次巻線TL12の一端側にカソードが接続されたダイオードD3と、トランスT2の二次巻線TL22の他端側にカソードが接続されたダイオードD4とを含む。ダイオードD1とD2とはカソードが共通に接続され、ダイオードD3とD4とはアノードが共通に接続されている。合成回路SUMは、ダイオードD1とD2とのカソード共通接続部aと、ダイオードD3とD4とのアノード共通接続部bとに並列接続された抵抗Rを含む。   The rectifier circuit DC includes a diode D1 having an anode connected to one end of the secondary winding TL12 of the transformer T1, a diode D2 having an anode connected to the other end of the secondary winding TL22 of the transformer T2, and a transformer T1. A diode D3 having a cathode connected to one end of the secondary winding TL12, and a diode D4 having a cathode connected to the other end of the secondary winding TL22 of the transformer T2. Diodes D1 and D2 have a cathode connected in common, and diodes D3 and D4 have an anode connected in common. The synthesis circuit SUM includes a resistor R connected in parallel to a common cathode connection a between the diodes D1 and D2 and an common anode connection b between the diodes D3 and D4.

以上の構成を備えたDC/DCコンバータにおいて、トランス一次側TPにおける駆動回路V1は図2(a)で示す波形のパルス出力S1を出力している。同トランス一次側TPにおける駆動回路V2は図2(b1)ではパルス出力S1と同相のパルス出力S2を出力し、図2(b2)ではパルス出力S1に対して90度位相遅れのパルス出力S2を出力し、図2(b3)ではパルス出力S1に対して180度位相遅れのパルス出力S2を出力している。これらパルス出力S1,S2の周波数はf0で同一である。   In the DC / DC converter having the above configuration, the drive circuit V1 on the transformer primary side TP outputs a pulse output S1 having a waveform shown in FIG. The drive circuit V2 on the primary side TP of the transformer outputs a pulse output S2 having the same phase as the pulse output S1 in FIG. 2B1, and a pulse output S2 having a phase delay of 90 degrees with respect to the pulse output S1 in FIG. In FIG. 2B3, a pulse output S2 having a phase delay of 180 degrees with respect to the pulse output S1 is output. The frequency of these pulse outputs S1 and S2 is the same at f0.

トランス一次側TPの駆動回路V1では図2(a)で示す周波数f0のパルス出力S1でスイッチング素子回路SW1をスイッチング駆動する。この場合、スイッチング素子Q1には、直接、パルス出力S1が、また、スイッチング素子Q2にはパルス出力S1が反転回路INV1で位相反転されて印加され、これによりスイッチング素子Q1,Q2は交互にオンオフする。これにより共振回路RS1にその周波数f0に対応するスイッチング素子回路SW1出力が入力され、共振回路RS1はこの出力に共振する。この結果、トランスT1の一次巻線TL11から二次巻線TL12の両端間に図3(a)で示す正弦波形の交流出力VS1が誘起される。   In the transformer primary side TP drive circuit V1, the switching element circuit SW1 is switched and driven by the pulse output S1 having the frequency f0 shown in FIG. In this case, the pulse output S1 is directly applied to the switching element Q1, and the pulse output S1 is applied to the switching element Q2 with the phase inverted by the inversion circuit INV1, thereby turning on and off the switching elements Q1 and Q2 alternately. . As a result, the output of the switching element circuit SW1 corresponding to the frequency f0 is input to the resonance circuit RS1, and the resonance circuit RS1 resonates with this output. As a result, a sinusoidal AC output VS1 shown in FIG. 3A is induced between the primary winding TL11 of the transformer T1 and both ends of the secondary winding TL12.

また、トランス一次側TPの駆動回路V2では図2(b1)で示す周波数f0のパルス出力S2でスイッチング素子回路SW2をスイッチング駆動する。この場合、スイッチング素子Q3には、直接、パルス出力S2が、また、スイッチング素子Q4にはパルス出力S2が反転回路INV2で位相反転されて印加され、これによりスイッチング素子Q3,Q4は交互にオンオフする。これにより共振回路RS2にその周波数f0に対応するスイッチング素子回路SW2出力が入力され、共振回路RS2はこの出力に共振する。この結果、トランスT2の一次巻線TL21から二次巻線TL22の両端間に図3(b1)で示す正弦波形の交流出力VS2が誘起される。   Further, the driving circuit V2 on the transformer primary side TP performs switching driving of the switching element circuit SW2 with the pulse output S2 having the frequency f0 shown in FIG. In this case, the pulse output S2 is directly applied to the switching element Q3, and the pulse output S2 is applied to the switching element Q4 with its phase inverted by the inversion circuit INV2, whereby the switching elements Q3 and Q4 are alternately turned on and off. . As a result, the output of the switching element circuit SW2 corresponding to the frequency f0 is input to the resonance circuit RS2, and the resonance circuit RS2 resonates with this output. As a result, a sinusoidal AC output VS2 shown in FIG. 3B1 is induced between the primary winding TL21 of the transformer T2 and both ends of the secondary winding TL22.

図2(a)のパルス出力S1と図2(b1)のパルス出力S2とは同相であるので、トランスT1の二次巻線TL12の両端間における図3(a)で示す正弦波形の交流出力VS1とトランスT2の二次巻線TL22の両端間における図3(b1)で示す正弦波形の交流出力VS2とは同相である。   Since the pulse output S1 of FIG. 2 (a) and the pulse output S2 of FIG. 2 (b1) are in phase, the AC output of the sine waveform shown in FIG. 3 (a) between both ends of the secondary winding TL12 of the transformer T1. The VS1 and the AC output VS2 having a sinusoidal waveform shown in FIG. 3B1 between both ends of the secondary winding TL22 of the transformer T2 are in phase.

また、同様に、図2(a)のパルス出力S1と図2(b2)のパルス出力S2とは90度位相ずれしているので、トランスT1の二次巻線TL12の両端間における図3(a)で示す正弦波形の交流出力VS1とトランスT2の二次巻線TL22の両端間における図3(b2)で示す正弦波形の交流出力VS2とは90度位相ずれしている。   Similarly, since the pulse output S1 in FIG. 2A and the pulse output S2 in FIG. 2B2 are 90 degrees out of phase, FIG. 3 (between both ends of the secondary winding TL12 of the transformer T1). The sine waveform AC output VS1 shown in a) and the sine waveform AC output VS2 shown in FIG. 3B2 between both ends of the secondary winding TL22 of the transformer T2 are 90 degrees out of phase.

さらに同様に、図2(a)のパルス出力S1と図2(b3)のパルス出力S2とは180度位相ずれしているので、トランスT1の二次巻線TL12の両端間における図3(a)で示す正弦波形の交流出力VS1とトランスT2の二次巻線TL22の両端間における図3(b3)で示す正弦波形の交流出力VS2とは180度位相ずれしている。   Similarly, since the pulse output S1 of FIG. 2A and the pulse output S2 of FIG. 2B3 are 180 degrees out of phase, FIG. 3A is shown between both ends of the secondary winding TL12 of the transformer T1. ) And the sinusoidal AC output VS2 shown in FIG. 3 (b3) between both ends of the secondary winding TL22 of the transformer T2 are 180 degrees out of phase.

そして、トランス二次側TSの整流回路DCでは、トランスT1,T2それぞれの二次巻線TL12,TL22の両端間電圧VS1,VS2それぞれを整流し、また、合成回路SUMでは整流回路DC出力を合成するが、二次巻線TL12,TL22の両端間電圧VS1,VS2が図3(a)と図3(b1)の関係にある場合では、図4(a)で示すように合成回路SUMにおける抵抗Rの両端間電圧つまりDC/DCコンバータの出力電圧VOはそれら両端間電圧VS1,VS2の合成ベクトルとなり最大の値をとる。また、二次巻線TL12,TL22の両端間電圧VS1,VS2が図3(a)と図3(b2)の関係にある場合では、図4(b)で示すように該出力電圧VOはそれら両端間電圧VS1,VS2の合成ベクトルとなりVO=√2VSとなる。ただし、VS1=VS2=VSとする。また、二次巻線TL12,TL22の両端間電圧VS1,VS2が図3(a)と図3(b3)の関係にある場合では、図4(c)で示すように該出力電圧Voはそれら両端間電圧VS1,VS2の合成ベクトルとなりVo=0となる。   The rectifier circuit DC of the transformer secondary TS rectifies the voltages VS1 and VS2 across the secondary windings TL12 and TL22 of the transformers T1 and T2, respectively, and the synthesizer circuit SUM synthesizes the rectifier circuit DC output. However, when the voltages VS1, VS2 across the secondary windings TL12, TL22 are in the relationship of FIG. 3A and FIG. 3B1, the resistance in the composite circuit SUM is shown in FIG. 4A. The voltage between both ends of R, that is, the output voltage VO of the DC / DC converter, is a combined vector of the voltages VS1 and VS2 between both ends and takes the maximum value. Further, when the voltages VS1, VS2 across the secondary windings TL12, TL22 are in the relationship of FIG. 3 (a) and FIG. 3 (b2), the output voltage VO is shown in FIG. 4 (b). It becomes a composite vector of the voltages VS1 and VS2 between both ends, and VO = √2VS. However, VS1 = VS2 = VS. Further, when the voltages VS1, VS2 across the secondary windings TL12, TL22 are in the relationship of FIG. 3 (a) and FIG. 3 (b3), the output voltage Vo is shown in FIG. 4 (c). It becomes a combined vector of the voltages VS1 and VS2 between both ends, and Vo = 0.

以上からトランス一次側TPにおける駆動回路DV1,DV2それぞれのパルス出力S1,S2の周波数をf0とし、パルス出力S1に対してパルス出力S2の位相を制御することで、DC/DCコンバータの出力電圧Voを任意の値に制御することができる。   From the above, the frequency of the pulse outputs S1 and S2 of the drive circuits DV1 and DV2 on the transformer primary side TP is set to f0, and the phase of the pulse output S2 is controlled with respect to the pulse output S1, thereby the output voltage Vo of the DC / DC converter. Can be controlled to an arbitrary value.

なお、上記実施形態ではトランスは2つであったが、それ以上の数のトランスで構成してもよい。   In the above embodiment, there are two transformers. However, a larger number of transformers may be used.

また、上記実施形態では電源PV1は太陽電池であったが、これ限定されず、風力発電における電源や電気自動車等の電池電源、その他を含む。   In the above embodiment, the power source PV1 is a solar cell, but is not limited to this, and includes a power source in wind power generation, a battery power source such as an electric vehicle, and others.

以上のように本実施形態では、トランス一次側TPと、トランス二次側TSと、を含み、トランス一次側TPは、複数のトランス一次巻線TL11,TL21と、各トランス一次巻線TL11,TL21に個別に接続され所定周波数f0で共振する複数の共振回路RS1,RS2と、直流電源PV1の入力電圧Viを所定周波数f0でスイッチングして各一次巻線TL11,TL21に個別に印加する複数のスイッチング素子回路SW1,SW2と、上記各スイッチング素子回路SW1,SW2を個別に所定周波数f0でスイッチング駆動する複数の駆動回路DV1,DV2と、を含み、トランス二次側TSは、互いに直列接続される複数の二次巻線TL21,TL22と、各二次巻線出力をそれぞれ整流する複数のダイオードD1−D4を含む整流回路DCと、整流回路DC出力を合成する合成回路SUMと、を含み、トランス一次側TPの駆動回路DV1,DV2は、太陽電池PV1からの入力電圧Viに対してその周波数をf0の同一に維持し、かつ、その位相を変えることでトランス二次側TSの合成回路SUMにより合成される出力電圧Voの大きさを可変する制御を可能としたので、トランス一次側TPそれぞれで駆動回路DV1,DV2のパルス出力S1,S2の位相を制御することでもって、太陽電池PV1のように入力電圧Viの変化範囲を大きい電源に対して、容易に出力電圧Voの大きさを0−2倍の内の一定に調整することができる。また、一定の周波数f0でトランスT1,T2を駆動するので、トランス一次側TPにおける共振回路RS1,RS2のQ値を大きくして高効率に電力伝送することが可能となる。   As described above, in this embodiment, the transformer primary side TP and the transformer secondary side TS are included, and the transformer primary side TP includes a plurality of transformer primary windings TL11 and TL21 and the transformer primary windings TL11 and TL21. And a plurality of switching circuits that individually connect to the primary windings TL11 and TL21 by switching the input voltage Vi of the DC power source PV1 at the predetermined frequency f0. Including element circuits SW1 and SW2 and a plurality of drive circuits DV1 and DV2 that individually switch drive each of the switching element circuits SW1 and SW2 at a predetermined frequency f0. A plurality of transformer secondary TS are connected in series with each other. Secondary windings TL21 and TL22 and a plurality of diodes D1-D4 for rectifying the respective secondary winding outputs. The rectifier circuit DC and the synthesis circuit SUM that synthesizes the output of the rectifier circuit DC. The drive circuits DV1 and DV2 of the transformer primary side TP have the same frequency f0 as the input voltage Vi from the solar cell PV1. And by changing the phase thereof, it is possible to control to vary the magnitude of the output voltage Vo synthesized by the synthesis circuit SUM of the transformer secondary TS, so that the drive circuit DV1 is provided on each transformer primary TP. By controlling the phase of the pulse outputs S1 and S2 of DV2, the output voltage Vo can be easily increased by 0-2 times with respect to a power source having a large change range of the input voltage Vi as in the solar cell PV1. Can be adjusted to constant within. Further, since the transformers T1 and T2 are driven at a constant frequency f0, it is possible to increase the Q value of the resonance circuits RS1 and RS2 in the transformer primary side TP and transmit power with high efficiency.

TP トランス一次側
DV1,DV2 駆動回路
SW1,SW2 スイッチング素子回路
RS1,RS2 共振回路
TS トランス二次側
DC 整流回路
SUM 合成回路
TP transformer primary side DV1, DV2 drive circuit SW1, SW2 switching element circuit RS1, RS2 resonance circuit TS transformer secondary side DC rectifier circuit SUM synthesis circuit

Claims (2)

トランス一次側と、トランス二次側と、を含み、
上記トランス一次側は、複数のトランス一次巻線と、各トランス一次巻線に個別に接続され所定周波数で共振する複数の共振回路と、直流電源の入力電圧を所定周波数でスイッチングして各一次巻線に個別に印加する複数のスイッチング素子回路と、上記各スイッチング素子回路を個別にスイッチング駆動する複数の駆動回路と、を含み、
上記トランス二次側は、互いに直列接続される複数の二次巻線と、各二次巻線出力をそれぞれ整流する複数のダイオードを含む整流回路と、上記整流回路出力を合成する合成回路と、を含み、
上記トランス一次側の各駆動回路は、直流電源からの入力電圧に対してその周波数を同一に維持し、かつ、その位相を変えることでトランス二次側で合成回路により合成される出力電圧の大きさを可変する制御を可能とした、
ことを特徴とする電圧制御回路。
Including a transformer primary side and a transformer secondary side,
The transformer primary side includes a plurality of transformer primary windings, a plurality of resonance circuits that are individually connected to each transformer primary winding and resonate at a predetermined frequency, and a DC power supply input voltage is switched at a predetermined frequency to switch each primary winding. A plurality of switching element circuits that are individually applied to the lines, and a plurality of driving circuits that individually drive each of the switching element circuits,
The transformer secondary side includes a plurality of secondary windings connected in series with each other, a rectifier circuit including a plurality of diodes for rectifying each secondary winding output, and a combining circuit for combining the rectifier circuit outputs, Including
Each of the drive circuits on the primary side of the transformer maintains the same frequency as the input voltage from the DC power supply, and the magnitude of the output voltage synthesized by the synthesis circuit on the secondary side of the transformer by changing its phase. Made it possible to change the control.
A voltage control circuit.
上記トランス一次側の上記複数のスイッチング素子回路は、それぞれ、ハーフブリッジ接続された複数のスイッチング素子を含み、上記複数の駆動回路は、それぞれ、対応する上記ハーフブリッジ回路内の各スイッチング素子を一定の同一周波数でかつ180度反対位相で交互にオンオフ駆動する、請求項1に記載の電圧制御回路。   The plurality of switching element circuits on the primary side of the transformer each include a plurality of switching elements that are half-bridge connected, and the plurality of driving circuits each have a constant switching element in the corresponding half-bridge circuit. The voltage control circuit according to claim 1, wherein the voltage control circuit is alternately turned on and off at the same frequency and with an opposite phase of 180 degrees.
JP2011087921A 2011-04-12 2011-04-12 Voltage control circuit Pending JP2012222998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087921A JP2012222998A (en) 2011-04-12 2011-04-12 Voltage control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087921A JP2012222998A (en) 2011-04-12 2011-04-12 Voltage control circuit

Publications (1)

Publication Number Publication Date
JP2012222998A true JP2012222998A (en) 2012-11-12

Family

ID=47273944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087921A Pending JP2012222998A (en) 2011-04-12 2011-04-12 Voltage control circuit

Country Status (1)

Country Link
JP (1) JP2012222998A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576604B1 (en) * 2018-12-18 2019-09-18 三菱電機株式会社 Power converter
JP2020509735A (en) * 2017-03-08 2020-03-26 株式会社エナーキャンプEnercamp Co., Ltd. Energy level conversion circuit for portable energy storage device
JP2020202645A (en) * 2019-06-10 2020-12-17 新電元工業株式会社 Converter and control method thereof
JP2020202644A (en) * 2019-06-07 2020-12-17 新電元工業株式会社 converter
CN113615064A (en) * 2019-03-25 2021-11-05 松下知识产权经营株式会社 Switching power supply device
JP7372178B2 (en) 2020-03-06 2023-10-31 新電元工業株式会社 power supply

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254074A (en) * 1985-04-30 1986-11-11 Toshiba Corp Power source
JPH04265A (en) * 1990-04-16 1992-01-06 Mitsubishi Electric Corp Power converter
JPH08205535A (en) * 1995-01-20 1996-08-09 Takasago Seisakusho:Kk Control method for voltage resonance dc to dc converter
JP2002315313A (en) * 2001-04-05 2002-10-25 Toyota Motor Corp Controller for dc-dc converter
JP2004274864A (en) * 2003-03-07 2004-09-30 Shindengen Electric Mfg Co Ltd Switching power unit
JP2011072076A (en) * 2009-09-24 2011-04-07 Sanken Electric Co Ltd Dc conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254074A (en) * 1985-04-30 1986-11-11 Toshiba Corp Power source
JPH04265A (en) * 1990-04-16 1992-01-06 Mitsubishi Electric Corp Power converter
JPH08205535A (en) * 1995-01-20 1996-08-09 Takasago Seisakusho:Kk Control method for voltage resonance dc to dc converter
JP2002315313A (en) * 2001-04-05 2002-10-25 Toyota Motor Corp Controller for dc-dc converter
JP2004274864A (en) * 2003-03-07 2004-09-30 Shindengen Electric Mfg Co Ltd Switching power unit
JP2011072076A (en) * 2009-09-24 2011-04-07 Sanken Electric Co Ltd Dc conversion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509735A (en) * 2017-03-08 2020-03-26 株式会社エナーキャンプEnercamp Co., Ltd. Energy level conversion circuit for portable energy storage device
JP6576604B1 (en) * 2018-12-18 2019-09-18 三菱電機株式会社 Power converter
WO2020129143A1 (en) * 2018-12-18 2020-06-25 三菱電機株式会社 Power conversion device
CN113615064A (en) * 2019-03-25 2021-11-05 松下知识产权经营株式会社 Switching power supply device
JP2020202644A (en) * 2019-06-07 2020-12-17 新電元工業株式会社 converter
JP7329971B2 (en) 2019-06-07 2023-08-21 新電元工業株式会社 converter
JP2020202645A (en) * 2019-06-10 2020-12-17 新電元工業株式会社 Converter and control method thereof
JP7329972B2 (en) 2019-06-10 2023-08-21 新電元工業株式会社 Converter and converter control method
JP7372178B2 (en) 2020-03-06 2023-10-31 新電元工業株式会社 power supply

Similar Documents

Publication Publication Date Title
US9831778B2 (en) Power-converting device and power conditioner using the same
US9806618B2 (en) Power converting device and power conditioner using the same
US9030857B2 (en) Five-stage neutral point clamped inverter
US9812949B2 (en) Poly-phase inverter with independent phase control
JP2012222998A (en) Voltage control circuit
US10177652B2 (en) Power supply device for sub-module controller of MMC converter
EP3633843B1 (en) Current converter and driving method therefor
US20160276964A1 (en) Power conversion device and power conversion method
Leu et al. A novel current-fed boost converter with ripple reduction for high-voltage conversion applications
US9866147B2 (en) Power-converting device and power conditioner using the same
JP2017147824A (en) Power conversion device
Iturriaga-Medina et al. A comparative analysis of grid-tied single-phase transformerless five-level NPC-based inverters for photovoltaic applications
US10587200B2 (en) Bidirectional insulated DC/DC converter and smart network
Ajami et al. Advanced cascade multilevel converter with reduction in number of components
JP2012055155A (en) Inverter circuit, power conversion circuit, and electric propulsion vehicle
KR20210004589A (en) Multi-level converter
US9007794B2 (en) Control system for a power supply having a first half-bridge leg and a second half-bridge leg
US9344003B2 (en) Inverter and power conversion device including the same
Arnaudov et al. Modelling and research of high-efficiency converter for energy storage systems
EP2953251B1 (en) Power conversion device
RU2503113C9 (en) Device for charging of accumulating capacitor
CN103187898A (en) Multifunctional (test) power supply for vehicle
Ghazali et al. Computer simulation model of multi-input multi-output converter using single-phase matrix converter
RU2656857C2 (en) Electronic transformer
Kang et al. A Cascaded Multilevel Inverter Using Bidirectional H-bridge Modules

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510