JP2012186234A - Photovoltaic power generator - Google Patents

Photovoltaic power generator Download PDF

Info

Publication number
JP2012186234A
JP2012186234A JP2011047052A JP2011047052A JP2012186234A JP 2012186234 A JP2012186234 A JP 2012186234A JP 2011047052 A JP2011047052 A JP 2011047052A JP 2011047052 A JP2011047052 A JP 2011047052A JP 2012186234 A JP2012186234 A JP 2012186234A
Authority
JP
Japan
Prior art keywords
power generation
solar
sunlight
solar cell
generation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011047052A
Other languages
Japanese (ja)
Other versions
JP5615209B2 (en
Inventor
Masakazu Kobayashi
正和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO KNOWLEDGE SYSTEM KK
Original Assignee
TECHNO KNOWLEDGE SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO KNOWLEDGE SYSTEM KK filed Critical TECHNO KNOWLEDGE SYSTEM KK
Priority to JP2011047052A priority Critical patent/JP5615209B2/en
Publication of JP2012186234A publication Critical patent/JP2012186234A/en
Application granted granted Critical
Publication of JP5615209B2 publication Critical patent/JP5615209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generator capable of efficiently ensuring a constant amount of photovoltaic power generation even during time of day when photovoltaic energy is low.SOLUTION: A photovoltaic power generator 1 comprises: a plurality of solar cell panels 2; a plurality of sunlight reflection plates 4 on which sunlight is reflected so as to be projected on the solar cell panels 2; a reflection plate drive unit 5 which changes the angle of reflection surfaces of the sunlight reflection plates 4; a tilt control unit 7 which drives the reflection plate drive unit 5 in conjunction with the solar azimuth, thereby controlling the tilt of the sunlight reflection plates 4; and a power generation mode control unit 8 which drives the reflection plate drive unit 5 to select between a first power generation mode for causing the sunlight reflection plates 4 to project the sunlight on each of the plurality of solar cell panels 2, and a second power generation mode for intensively projecting the sunlight on a specific one of the solar cell panels 2.

Description

本発明は、太陽光発電装置に係り、特に、複数の太陽電池パネル及び太陽光反射板を用いた太陽光発電装置に関する。   The present invention relates to a solar power generation device, and more particularly to a solar power generation device using a plurality of solar battery panels and a solar light reflector.

太陽電池とは、光起電力効果を利用し、受光した光エネルギーを即時に電気に変換する電力機器をいう。この太陽電池の内部に入射した光エネルギーは、電子によって直接的に吸収され、予め設けられた電界に導かれ、電力として太陽電池の外部に出力される。そして、太陽電池セルを複数枚直並列接続して必要な電圧と電流を得られるようにしたパネル状の製品単体は太陽電池パネルと呼ばれる。   A solar cell refers to a power device that uses the photovoltaic effect to immediately convert received light energy into electricity. The light energy incident on the inside of the solar cell is directly absorbed by electrons, guided to an electric field provided in advance, and output as electric power to the outside of the solar cell. A panel-like product unit in which a plurality of solar cells are connected in series and parallel to obtain necessary voltages and currents is called a solar cell panel.

太陽電池パネルを用いた太陽電池発電システムについてはいくつかの技術が考案されている。例えば特許文献1には、高い発電効率と低発電コストを両立させた太陽光エネルギー利用装置が開示されている。ここでは、巨大な集光光学系を構成して太陽電池パネルで太陽光発電をしつつ、ホットミラーで焦点に集光された太陽光成分を用いて熱電変換機において太陽熱発電を行うことが記載されている。   Several technologies have been devised for solar cell power generation systems using solar cell panels. For example, Patent Document 1 discloses a solar energy utilization device that achieves both high power generation efficiency and low power generation cost. Here, it is described that solar power generation is performed in a thermoelectric converter using a solar component condensed at a focal point by a hot mirror while constituting a huge condensing optical system and generating solar power with a solar cell panel. Has been.

また、特許文献2には、太陽電池等の設置面積が小さくとも大きな光電変換出力を取り出すことができる光エネルギー収集装置が開示されている。ここでは、太陽光は凹面鏡により反射されて集光し、コールドミラーが、集光された光を入射してこの光に含まれる可視光を反射して赤外光を透過する。そして、太陽電池は可視光を受光して光起電力を発生することが記載されている。   Patent Document 2 discloses a light energy collecting device that can extract a large photoelectric conversion output even if the installation area of a solar cell or the like is small. Here, sunlight is reflected and collected by the concave mirror, and the cold mirror enters the collected light, reflects visible light contained in this light, and transmits infrared light. And it is described that a solar cell receives visible light and generate | occur | produces a photovoltaic power.

特開2009−218383号公報JP 2009-218383 A 特開2010−97973号公報JP 2010-97973 A

太陽電池パネルを用いた発電は、太陽光のエネルギーが低下する雨天時や曇天時、夕闇時、或いは夜間時にいかに効率的に発電量を確保できるかが問題となる。すなわち、太陽電池パネルを用いて発電した電力は照明に用いられる場合が多く、太陽光自体のエネルギーが低下する際に需要が高まるからである。この対策として電力を蓄電して使用することが考えられるが、蓄電設備を要すること、或いは電力のロスが発生するなどの問題がある。   A problem with power generation using solar cell panels is how efficiently the amount of power generation can be secured during rainy or cloudy weather, when the sun is low, at dusk, or at night. That is, the electric power generated using the solar cell panel is often used for illumination, and the demand increases when the energy of sunlight itself decreases. As a countermeasure, it is conceivable to store and use electric power. However, there are problems such as requiring an electric storage facility or a loss of electric power.

屋根などに設置する太陽電池パネルであるソーラパネルの場合には、太陽光のエネルギーが低下する雨天時や曇天時、夕闇時、或いは夜間時には、電力会社から供給される電力により補うことが可能である。しかし、台風や地震などの災害時に現場に持ち込まれる緊急用の太陽電池パネルの場合には、そもそも通常の電力供給が断絶しているために供給される場合が多く、その太陽電池パネルによりいかに効率的に発電量を確保するかが問題となる。   In the case of solar panels, which are solar panels installed on the roof, etc., it can be supplemented by electric power supplied by the power company during rainy or cloudy weather, when the sun is falling, at dusk, or at night. is there. However, in the case of an emergency solar panel that is brought into the field in the event of a disaster such as a typhoon or earthquake, it is often supplied because the normal power supply is interrupted in the first place. The problem is whether to secure the amount of power generation.

本願の目的は、かかる課題を解決し、太陽光のエネルギーが低い時間帯であっても太陽光による一定の発電量を効率的に確保できる簡易で運搬可能な太陽光発電装置を提供することである。   The purpose of the present application is to solve this problem and to provide a simple and transportable solar power generation device that can efficiently secure a certain amount of power generation by sunlight even in a time zone when the energy of solar light is low. is there.

上記目的を達成するため、本発明に係る太陽光発電装置は、複数の太陽電池パネルと、太陽光を反射させて太陽電池パネルに投射する複数の太陽光反射板と、太陽光反射板の反射面の角度を変化させる反射板駆動部と、太陽の方位に追従して、反射板駆動部を駆動させて太陽光反射板の傾きを制御する傾き制御部と、複数の太陽電池パネルにそれぞれ太陽光を投射する第1の発電モードと、特定の太陽電池パネルに太陽光を集中して投射する第2の発電モードと、を選択して反射板駆動部を駆動させる発電モード制御部と、を備えることを特徴とする。これにより、太陽光発電装置は、複数の太陽電池パネルと、それに向かって太陽光を反射させて投射する複数の太陽光反射板とにより太陽光による発電を効率的に確保することができる。そして、例えば太陽光エネルギーが低下する夜間や曇天の際には太陽光エネルギーが低下し、太陽電池パネルの発電効率が極端に低下するが、発電モード制御部が、特定の太陽電池パネルに太陽光を集中して投射させる第2の発電モードを選択することで太陽光による発電を効率的に行うことができる。   In order to achieve the above object, a photovoltaic power generation apparatus according to the present invention includes a plurality of solar battery panels, a plurality of solar light reflectors that reflect sunlight and project it onto the solar battery panel, and the reflection of the solar light reflectors. A reflector driving unit that changes the angle of the surface, an inclination control unit that controls the inclination of the solar reflector by driving the reflector driving unit following the sun's direction, and a plurality of solar cell panels. A power generation mode control unit that selects a first power generation mode for projecting light and a second power generation mode for concentrating and projecting sunlight on a specific solar battery panel to drive the reflector driving unit. It is characterized by providing. Thereby, the solar power generation device can efficiently secure power generation by sunlight by the plurality of solar battery panels and the plurality of solar light reflecting plates that project and reflect sunlight toward the solar cell panel. And, for example, at night when the solar energy decreases or when it is cloudy, the solar energy decreases and the power generation efficiency of the solar cell panel decreases extremely. By selecting the second power generation mode for projecting light in a concentrated manner, power generation by sunlight can be efficiently performed.

また、太陽光発電装置は、発電モード制御部が、太陽電池パネルの所定の電圧が予め定められた値以上である場合には第1の発電モードを選択し、太陽電池パネルの所定の電圧が予め定められた値を下回ると第2の発電モードに切り替えることが好ましい。これにより、第1の発電モードと第2の発電モードとの切り替えを効率的に判断することができる。   In the photovoltaic power generation device, the power generation mode control unit selects the first power generation mode when the predetermined voltage of the solar cell panel is equal to or greater than a predetermined value, and the predetermined voltage of the solar cell panel is When it falls below a predetermined value, it is preferable to switch to the second power generation mode. Thereby, it is possible to efficiently determine switching between the first power generation mode and the second power generation mode.

また、太陽光発電装置は、第1の発電モードでは、各太陽光反射板は、それぞれ対となる太陽電池パネルに対して太陽光を投射することが好ましい。これにより、太陽光エネルギーが十分に得られる際には、複数の太陽電池パネル全体に太陽光を投射させることで、太陽光による発電を効率的に行うことができる。   Moreover, it is preferable that a solar power generation device projects sunlight with respect to the solar cell panel which each solar light reflecting plate makes a pair in 1st electric power generation mode, respectively. Thereby, when sunlight energy is sufficiently obtained, it is possible to efficiently generate power by sunlight by projecting sunlight on the plurality of solar cell panels as a whole.

また、太陽光発電装置は、第2の発電モードでは、発電モード制御部が、各太陽電池パネルの電圧値を参照して太陽光を集中する太陽電池パネルを決定することが好ましい。これにより、発電モード制御部は、第2の発電モードにおいて、各太陽電池パネルの電圧値から最適な太陽光の振り分け方法を決定することができる。   In the second power generation mode, the solar power generation apparatus preferably determines a solar cell panel on which sunlight is concentrated with reference to the voltage value of each solar cell panel. Thereby, the power generation mode control unit can determine an optimal sunlight distribution method from the voltage value of each solar cell panel in the second power generation mode.

また、太陽光発電装置は、太陽の方位を検知する太陽位置センサーを備え、傾き制御部が、太陽位置センサーにより検出された太陽の方位に追従して反射板駆動部を駆動させ、各太陽光反射板の傾きを制御することが好ましい。これにより、太陽光発電装置に設置された少なくとも3つの位置センサーが検出した太陽光エネルギーのばらつきから太陽の方位が算出され、平面上の2方向に傾斜可能な架台を太陽の方位に向かって傾斜させることができる。その結果、太陽光発電装置を常に発電効率の良い方位に向けることができる。   Further, the solar power generation device includes a solar position sensor that detects the azimuth of the sun, and the tilt control unit drives the reflector driving unit to follow the azimuth of the sun detected by the solar position sensor. It is preferable to control the inclination of the reflector. As a result, the azimuth of the sun is calculated from variations in the solar energy detected by at least three position sensors installed in the photovoltaic power generation device, and the platform that can be tilted in two directions on the plane is tilted toward the azimuth of the sun. Can be made. As a result, the solar power generation device can be always directed in a direction with good power generation efficiency.

以上のように、本発明に係る太陽光発電装置によれば、太陽光のエネルギーが低い時間帯であっても太陽光による一定の発電量を効率的に確保できる太陽光発電装置を提供することができる。   As described above, according to the photovoltaic power generation apparatus according to the present invention, it is possible to provide a photovoltaic power generation apparatus that can efficiently secure a certain amount of power generated by sunlight even when the energy of sunlight is low. Can do.

本発明に係る太陽光発電装置の1つの実施形態の概略構成を示す側面図及びブロック図である。It is the side view and block diagram which show schematic structure of one Embodiment of the solar power generation device which concerns on this invention. 第1発電モードである場合の太陽光発電装置の配置及び太陽光の放射方向を示す平面図である。It is a top view which shows arrangement | positioning of the solar power generation device in the case of 1st electric power generation mode, and the radiation | emission direction of sunlight. 第2発電モードである場合の太陽光発電装置の配置及び太陽光の放射方向を示す平面図である。It is a top view which shows arrangement | positioning of the solar power generation device in the case of 2nd electric power generation mode, and the radiation | emission direction of sunlight. 太陽光発電装置の配置及び太陽光の放射方向について、他の実施形態を示す側面図及びブロック図である。It is the side view and block diagram which show other embodiment about the arrangement | positioning of a solar power generation device, and the radiation direction of sunlight. 放射照度に対する太陽光発電の発電効率を示す説明図である。It is explanatory drawing which shows the power generation efficiency of the solar power generation with respect to irradiance.

(太陽光発電装置の構成)
以下に、図面を用いて本発明に係る太陽光発電装置の実施形態につき、詳細に説明する。図1に、太陽光発電装置1の1つの実施形態の概略構成を側面図及びブロック図で示す。
(Configuration of solar power generator)
Below, it demonstrates in detail about embodiment of the solar power generation device which concerns on this invention using drawing. In FIG. 1, the schematic structure of one Embodiment of the solar power generation device 1 is shown with a side view and a block diagram.

太陽光発電装置1は、太陽電池パネル2、太陽光反射板4、反射板駆動部5、太陽位置センサー6、傾き制御部7、発電モード制御部8、電圧計測部9から構成される。太陽電池パネル2は、本実施形態では、パネル保持部3により保持され、地面に対して略垂直に立て掛けられるが、この構成に限らず、例えば、太陽電池パネル2が壁に取り付けられるなどの他の構成であっても良い。すなわち、太陽電池パネル2は、太陽電池パネル2に内蔵される太陽光発電部(太陽電池セル)10が、太陽光反射板4により反射される太陽光の方向に向いていれば良い。また、各太陽電池パネル2には、電圧計測部9が備えられ、電圧値が計測される。   The solar power generation device 1 includes a solar cell panel 2, a solar light reflector 4, a reflector drive unit 5, a solar position sensor 6, a tilt control unit 7, a power generation mode control unit 8, and a voltage measurement unit 9. In the present embodiment, the solar cell panel 2 is held by the panel holding unit 3 and leans substantially perpendicular to the ground. However, the present invention is not limited to this configuration. For example, the solar cell panel 2 is attached to a wall. It may be configured as follows. In other words, the solar battery panel 2 only needs to be oriented in the direction of sunlight in which the solar power generation unit (solar battery cell) 10 built in the solar battery panel 2 is reflected by the solar light reflector 4. Each solar cell panel 2 is provided with a voltage measuring unit 9 to measure a voltage value.

太陽電池パネル2には、太陽光発電部(太陽電池セル)10が組み込まれ、太陽光反射板4により反射して投射された太陽光により発電を行う。また、反射板駆動部5は、太陽光反射板4の反射面の角度を変化させる。この太陽光反射板4の反射面の角度変化は、2つの制御部である、傾き制御部7及び発電モード制御部8によりそれぞれ独立して行われる。すなわち、傾き制御部7は、太陽の方位に追従し、反射板駆動部5を駆動させて太陽光反射板4の傾きを制御する。これにより、太陽電池パネル2を常に発電効率の良い方位に向けることができる。また、発電モード制御部8は、後述するように、複数の太陽電池パネル2にそれぞれ太陽光を投射する第1発電モードと、特定の太陽電池パネル2に太陽光を集中して投射する第2発電モードとを選択する。   A solar power generation unit (solar battery cell) 10 is incorporated in the solar cell panel 2, and power is generated by the sunlight reflected and projected by the solar light reflector 4. In addition, the reflector driving unit 5 changes the angle of the reflecting surface of the sunlight reflector 4. The angle change of the reflection surface of the sunlight reflecting plate 4 is independently performed by the two control units, that is, the inclination control unit 7 and the power generation mode control unit 8. That is, the tilt control unit 7 follows the sun direction and drives the reflector driving unit 5 to control the tilt of the sunlight reflecting plate 4. Thereby, the solar cell panel 2 can be always directed to a direction with good power generation efficiency. Moreover, the power generation mode control unit 8, as will be described later, a first power generation mode in which sunlight is projected onto each of the plurality of solar cell panels 2, and a second in which sunlight is concentrated and projected onto a specific solar cell panel 2. Select the power generation mode.

図2に、第1発電モードである場合の太陽光発電装置1の構成を示し、図3に、第2発電モードである場合の太陽光発電装置1の構成を示す。図2に示すように、第1発電モードでは、太陽光反射板4a,4b,4cは、それぞれ対となる太陽電池パネル2a,2b,2cに対してそれぞれ太陽光を投射する。また、図3に示すように、本実施形態の第2発電モードでは、太陽光反射板4a及び太陽光反射板4cが、太陽電池パネル2bに向けて太陽光を反射するように傾斜し、特定の太陽電池パネル2bに太陽光を集中して投射する。   FIG. 2 shows the configuration of the solar power generation device 1 in the first power generation mode, and FIG. 3 shows the configuration of the solar power generation device 1 in the second power generation mode. As shown in FIG. 2, in the first power generation mode, the sunlight reflecting plates 4a, 4b, and 4c project sunlight to the solar cell panels 2a, 2b, and 2c that form a pair, respectively. Further, as shown in FIG. 3, in the second power generation mode of the present embodiment, the solar reflector 4a and the solar reflector 4c are tilted so as to reflect sunlight toward the solar cell panel 2b, and are specified. The sunlight is concentrated and projected on the solar cell panel 2b.

発電モード制御部8は、電圧計測部9で計測した太陽電池パネル2の所定の電圧が予め定められた値以上である場合には第1発電モードを選択し、電圧計測部9で計測した太陽電池パネル2の所定の電圧が予め定められた値を下回ると第2発電モードに切り替える。これにより、第1の発電モードと第2の発電モードとの切り替えを効率的に判断することができる。   The power generation mode control unit 8 selects the first power generation mode when the predetermined voltage of the solar battery panel 2 measured by the voltage measurement unit 9 is equal to or greater than a predetermined value, and the solar power measured by the voltage measurement unit 9 When the predetermined voltage of the battery panel 2 falls below a predetermined value, the mode is switched to the second power generation mode. Thereby, it is possible to efficiently determine switching between the first power generation mode and the second power generation mode.

この第1発電モードとは、太陽光エネルギーが高い晴天時などに太陽電池パネル2a,2b,2c全体にほぼ一様に太陽光を投射させる場合である。一方、第2発電モードとは、太陽光エネルギーが低下する雨天時や曇天時、夕闇時、或いは夜間時には、太陽電池パネル2a,2b,2c全体にほぼ一様に太陽光を投射させると各太陽電池パネル2a,2b,2cの発電効率が極端に低下するため、全体的に効率的な発電量が得られない場合に切り替えられるモードである。つまり、太陽光エネルギーを限定された太陽電池パネル2bに集光させることで発電効率を上げるのである。   This 1st electric power generation mode is a case where sunlight is projected on the whole solar cell panel 2a, 2b, 2c substantially uniformly at the time of fine weather with high sunlight energy. On the other hand, in the second power generation mode, the solar panels 2a, 2b, and 2c are projected almost uniformly on the entire solar cell panels 2a, 2b, and 2c during rainy weather, cloudy weather, dusk, or nighttime when the solar energy decreases. Since the power generation efficiency of the battery panels 2a, 2b, and 2c is extremely reduced, the mode is switched when the overall power generation amount cannot be obtained. That is, the power generation efficiency is increased by concentrating solar energy on the limited solar cell panel 2b.

図4に、太陽光発電装置の配置及び太陽光の放射方向について、他の実施形態を示す。この実施形態では、平面上で太陽光反射板4a,4b,4cの列と異なる列に太陽光反射板4d,4eが配置され、全部で5台の太陽光反射板4a,4b,4c,4d,4eが、太陽電池パネル2a,2b,2cに対向する。   In FIG. 4, other embodiment is shown about the arrangement | positioning of a solar power generation device, and the radiation | emission direction of sunlight. In this embodiment, the sunlight reflecting plates 4d, 4e are arranged in a row different from the row of the sunlight reflecting plates 4a, 4b, 4c on the plane, and a total of five sunlight reflecting plates 4a, 4b, 4c, 4d are arranged. , 4e oppose the solar cell panels 2a, 2b, 2c.

この実施形態の第1発電モードでは、各太陽光反射板4は、それぞれ対となる太陽電池パネル2に対して太陽光を投射する。例えば、太陽光反射板4a,4dと太陽電池パネル2aとが対となり、太陽光反射板4bと太陽電池パネル2bとが対となり、太陽光反射板4c,4eと太陽電池パネル2cとが対となり太陽光を反射しても良い。また、この実施形態の第2発電モードでは、発電モード制御部8が、各太陽電池パネル2a,2b,2cの電圧値を参照して太陽光を集中する太陽電池パネル2を選択する。すなわち、図4に示すように、全ての太陽光反射板4a〜4eが太陽光を太陽電池パネル2bに集中させても良い。発電モード制御部8は、この場合に太陽電池パネル2bの電圧値が過剰となる場合には、太陽電池パネル2a及び2cを選択し、太陽光反射板4a,4b,4dを太陽電池パネル2aに向け、太陽光反射板4c,4eを太陽電池パネル2cに向けて太陽光を反射しても良い。   In the first power generation mode of this embodiment, each sunlight reflecting plate 4 projects sunlight onto the solar cell panel 2 that forms a pair. For example, the solar reflectors 4a and 4d and the solar battery panel 2a are paired, the solar reflector 4b and the solar battery panel 2b are paired, and the solar reflectors 4c and 4e and the solar battery panel 2c are paired. Sunlight may be reflected. Moreover, in the 2nd electric power generation mode of this embodiment, the electric power generation mode control part 8 selects the solar cell panel 2 which concentrates sunlight with reference to the voltage value of each solar cell panel 2a, 2b, 2c. That is, as shown in FIG. 4, all the sunlight reflecting plates 4a to 4e may concentrate sunlight on the solar cell panel 2b. In this case, when the voltage value of the solar cell panel 2b becomes excessive, the power generation mode control unit 8 selects the solar cell panels 2a and 2c, and converts the solar reflectors 4a, 4b, and 4d into the solar cell panel 2a. The sunlight reflecting plates 4c and 4e may be directed toward the solar cell panel 2c to reflect sunlight.

図5に、放射照度(W/m)に対する太陽光発電の発電効率(Vp)を示す。図5の横軸は太陽の放射照度(W/m)を示す。真夏の直射日光の放射照度は、440W/m(110,000lux)程度である(図5中“X”)。また、曇天午前10時の太陽光の放射照度は、100W/m(25,000lux)程度である(図5中“Y”)。さらに、曇天日出1時間後の太陽光の放射照度は、40W/m(10,000lux)程度である(図5中“Z”)。このように、太陽光エネルギーが低下する雨天時や曇天時、夕闇時、或いは夜間時には、太陽光の放射照度は、真夏の直射日光の放射照度の10分の1以下に低下し、その時の発電効率は0.2以下となることが分かる。 FIG. 5 shows the power generation efficiency (Vp) of solar power generation with respect to irradiance (W / m 2 ). The horizontal axis of FIG. 5 shows solar irradiance (W / m 2 ). The irradiance of direct sunlight in midsummer is about 440 W / m 2 (110,000 lux) (“X” in FIG. 5). Further, the irradiance of sunlight at 10 am on a cloudy day is about 100 W / m 2 (25,000 lux) (“Y” in FIG. 5). Furthermore, the irradiance of sunlight after 1 hour of cloudy sunrise is about 40 W / m 2 (10,000 lux) (“Z” in FIG. 5). In this way, during rainy weather, cloudy weather, dusk, or at night when the solar energy decreases, the irradiance of sunlight decreases to less than one-tenth of the irradiance of direct sunlight in midsummer, and power generation at that time It can be seen that the efficiency is 0.2 or less.

図3に示すように実施形態において、太陽光エネルギーを限定された太陽電池パネル2bに集光させることで発電効率を上げるという上述した効果を以下に具体的な数値例で示す。まず、3個の太陽電池パネル2a〜2cの有する個々の発電量をWとし、発電効率をすべて1.0とする。第1発電モードでは発電効率は1.0であるので、太陽電池パネル2a〜2c全体で最大3Wの発電量が得られる。一方、太陽光エネルギーが低下する雨天時や曇天時、夕闇時、或いは夜間時には、太陽電池パネル全体にほぼ一様に太陽光を投射させると各太陽電池パネル2a〜2cの発電効率が、例えば0.2程度に極端に低下する。その結果、太陽電池パネル2a〜2c全体の発電量は0.6Wとなる。ここで太陽光反射板を第2発電モードに切り替えて、太陽電池パネル2bに太陽光エネルギーを集中させると太陽電池パネル2bの発電効率は1.0に上昇することから発電量は3.0Wとなり、第1発電モードの0.6Wのほぼ5倍になる。このように、太陽光による発電を効率的に行うことができる。   As shown in FIG. 3, in the embodiment, the above-described effect of increasing the power generation efficiency by concentrating solar energy on the limited solar cell panel 2b will be described below with specific numerical examples. First, it is assumed that the individual power generation amounts of the three solar cell panels 2a to 2c are W, and the power generation efficiency is 1.0. Since the power generation efficiency is 1.0 in the first power generation mode, a maximum power generation amount of 3 W can be obtained in the entire solar cell panels 2a to 2c. On the other hand, when it is raining, cloudy, dusk, or at night when the solar energy is reduced, the solar panel 2a to 2c has a power generation efficiency of, for example, 0 when the solar panel is projected almost uniformly. .It decreases extremely to about 2. As a result, the power generation amount of the entire solar cell panels 2a to 2c is 0.6W. Here, when the solar reflector is switched to the second power generation mode and the solar energy is concentrated on the solar cell panel 2b, the power generation efficiency of the solar cell panel 2b increases to 1.0, so the power generation amount becomes 3.0W. This is approximately 5 times the 0.6 W of the first power generation mode. In this way, power generation by sunlight can be performed efficiently.

傾き制御部7は、太陽位置センサー6により検出された太陽の方位に追従して反射板駆動部5を駆動させ、各太陽光反射板4の傾きを制御する。図2に示すように太陽光発電装置1の周辺には、太陽の方位を検知する太陽位置センサー6が設けられ、透明又は半透明なドーム状のカバーにより保護される。この太陽位置センサー6には、十字に設けられた4つの部屋12内に太陽光センサー11がそれぞれ設置される。この4つの太陽光センサー11が受光した太陽光エネルギーの量の分布から太陽光の方位が求められる。   The tilt control unit 7 drives the reflector driving unit 5 following the direction of the sun detected by the sun position sensor 6 to control the tilt of each solar reflector 4. As shown in FIG. 2, a solar position sensor 6 that detects the direction of the sun is provided around the solar power generation device 1 and is protected by a transparent or translucent dome-shaped cover. The solar position sensor 6 is provided with a solar sensor 11 in each of four rooms 12 provided in a cross shape. The direction of sunlight is obtained from the distribution of the amount of solar energy received by the four solar sensors 11.

そして、図1に示すように、太陽光反射板4は平面上の2方向に傾斜可能な傾斜架台12上に設置される。傾き制御部7は、傾き駆動部8を制御し、太陽位置センサー6により検出された太陽の方位に追従して太陽光反射板4が太陽の方位に向かうように傾斜架台12を傾斜させる。その結果、太陽光反射板4を常に発電効率の良い方位に向けることができる。なお、太陽光センサー11の数量は、本実施形態では4個とするが、太陽光反射板4を常に発電効率の良い方位に向けることができるのであれば、これに限らず、2個、或いは3個であっても良い。   And as shown in FIG. 1, the sunlight reflecting plate 4 is installed on the inclination mount frame 12 which can incline in two directions on a plane. The tilt control unit 7 controls the tilt driving unit 8 to tilt the tilt base 12 so that the solar light reflector 4 faces the sun direction following the sun direction detected by the sun position sensor 6. As a result, it is possible to always direct the solar reflector 4 in a direction with good power generation efficiency. Note that the number of the solar sensors 11 is four in the present embodiment. However, the number of the solar sensors 11 is not limited to this as long as the solar reflector 4 can be always directed in a direction with good power generation efficiency. Three may be sufficient.

1 太陽光発電装置、2a,2b,2c,2d,2e 太陽電池パネル、3 パネル保持部、4a,4b,4c,4d,4e 太陽光反射板、5a,5b,5c,5d,5e 反射板駆動部、6 太陽位置センサー、7 傾き制御部、8 発電モード制御部、9 電圧計測部、10 太陽光発電部(太陽電池セル)、11 太陽光センサー、12 傾斜架台。   DESCRIPTION OF SYMBOLS 1 Solar power generation device, 2a, 2b, 2c, 2d, 2e Solar cell panel, 3 Panel holding part, 4a, 4b, 4c, 4d, 4e Sunlight reflector, 5a, 5b, 5c, 5d, 5e Reflector drive Unit, 6 solar position sensor, 7 tilt control unit, 8 power generation mode control unit, 9 voltage measurement unit, 10 solar power generation unit (solar cell), 11 solar sensor, 12 tilt mount.

Claims (5)

複数の太陽電池パネルと、
太陽光を反射させて太陽電池パネルに投射する複数の太陽光反射板と、
太陽光反射板の反射面の角度を変化させる反射板駆動部と、
太陽の方位に追従して、反射板駆動部を駆動させて太陽光反射板の傾きを制御する傾き制御部と、
複数の太陽電池パネルにそれぞれ太陽光を投射する第1の発電モードと、特定の太陽電池パネルに太陽光を集中して投射する第2の発電モードと、を選択して反射板駆動部を駆動させる発電モード制御部と、を備えることを特徴とする太陽光発電装置。
A plurality of solar panels;
A plurality of solar reflectors that reflect sunlight and project it onto the solar cell panel;
A reflector driving unit that changes the angle of the reflecting surface of the solar reflector,
An inclination control unit that controls the inclination of the solar reflector by driving the reflector drive unit following the direction of the sun,
The reflector driving unit is driven by selecting a first power generation mode in which sunlight is projected onto each of the plurality of solar cell panels and a second power generation mode in which sunlight is concentrated and projected onto a specific solar cell panel. And a power generation mode control unit.
請求項1に記載の太陽光発電装置であって、発電モード制御部は、太陽電池パネルの所定の電圧が予め定められた値以上である場合には第1の発電モードを選択し、太陽電池パネルの所定の電圧が予め定められた値を下回ると第2の発電モードに切り替えることを特徴とする太陽光発電装置。   The solar power generation device according to claim 1, wherein the power generation mode control unit selects the first power generation mode when the predetermined voltage of the solar cell panel is equal to or higher than a predetermined value, and the solar cell. When the predetermined voltage of the panel falls below a predetermined value, the photovoltaic power generation apparatus is switched to the second power generation mode. 請求項1又は2に記載の太陽光発電装置であって、第1の発電モードでは、各太陽光反射板は、それぞれ対となる太陽電池パネルに対して太陽光を投射することを特徴とする太陽光発電装置。   It is a solar power generation device of Claim 1 or 2, Comprising: In 1st power generation mode, each solar reflective plate projects sunlight with respect to the solar cell panel used as a pair, respectively. Solar power generator. 請求項1乃至3のいずれか1項に記載の太陽光発電装置であって、第2の発電モードでは、発電モード制御部は、各太陽電池パネルの電圧値を参照して太陽光を集中する太陽電池パネルを決定することを特徴とする太陽光発電装置。   It is a solar power generation device of any one of Claims 1 thru | or 3, Comprising: In 2nd power generation mode, a power generation mode control part concentrates sunlight with reference to the voltage value of each solar cell panel. A solar power generation apparatus characterized by determining a solar battery panel. 請求項1乃至4のいずれか1項に記載の太陽光発電装置であって、太陽の方位を検知する太陽位置センサーを備え、傾き制御部は、太陽位置センサーにより検出された太陽の方位に追従して反射板駆動部を駆動させ、各太陽光反射板の傾きを制御することを特徴とする太陽光発電装置。   It is a solar power generation device of any one of Claims 1 thru | or 4, Comprising: The solar position sensor which detects the azimuth | direction of a sun is provided, An inclination control part tracks the azimuth | direction of the sun detected by the solar position sensor. Then, the reflecting plate driving unit is driven to control the inclination of each sunlight reflecting plate.
JP2011047052A 2011-03-04 2011-03-04 Solar power plant Active JP5615209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047052A JP5615209B2 (en) 2011-03-04 2011-03-04 Solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047052A JP5615209B2 (en) 2011-03-04 2011-03-04 Solar power plant

Publications (2)

Publication Number Publication Date
JP2012186234A true JP2012186234A (en) 2012-09-27
JP5615209B2 JP5615209B2 (en) 2014-10-29

Family

ID=47016062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047052A Active JP5615209B2 (en) 2011-03-04 2011-03-04 Solar power plant

Country Status (1)

Country Link
JP (1) JP5615209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726361B1 (en) * 2014-10-28 2015-05-27 株式会社アクシア Solar power system
GB2558245A (en) * 2016-12-22 2018-07-11 Nashat Sahawneh Faris Photovoltaic systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155060A (en) * 1981-02-20 1982-09-25 Aerospatiale Concave mirror composed of plurality of small surfaces and solar-power generator comprising it
JP2000227573A (en) * 1999-02-08 2000-08-15 Hitachi Zosen Corp Light condenser for solar light generation
JP2001298209A (en) * 2000-04-18 2001-10-26 Shinzo Arai Solar cell power generator equipped with reflector
JP2002073184A (en) * 2000-08-31 2002-03-12 Matsushita Electric Works Ltd Photovoltaic power generation system
JP2003028514A (en) * 2001-07-16 2003-01-29 Mikio Kinoshita System and method for converging solar radiation
JP2008159866A (en) * 2006-12-25 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converter
JP2008258436A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Solar power generator
US20100059042A1 (en) * 2008-09-10 2010-03-11 Sunplus Mmedia Inc. Solar tracking and concentration device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155060A (en) * 1981-02-20 1982-09-25 Aerospatiale Concave mirror composed of plurality of small surfaces and solar-power generator comprising it
JP2000227573A (en) * 1999-02-08 2000-08-15 Hitachi Zosen Corp Light condenser for solar light generation
JP2001298209A (en) * 2000-04-18 2001-10-26 Shinzo Arai Solar cell power generator equipped with reflector
JP2002073184A (en) * 2000-08-31 2002-03-12 Matsushita Electric Works Ltd Photovoltaic power generation system
JP2003028514A (en) * 2001-07-16 2003-01-29 Mikio Kinoshita System and method for converging solar radiation
JP2008159866A (en) * 2006-12-25 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converter
JP2008258436A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Solar power generator
US20100059042A1 (en) * 2008-09-10 2010-03-11 Sunplus Mmedia Inc. Solar tracking and concentration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726361B1 (en) * 2014-10-28 2015-05-27 株式会社アクシア Solar power system
GB2558245A (en) * 2016-12-22 2018-07-11 Nashat Sahawneh Faris Photovoltaic systems

Also Published As

Publication number Publication date
JP5615209B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
Huang et al. Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector
US20080149162A1 (en) Spectral Splitting-Based Radiation Concentration Photovoltaic System
JP2009524245A (en) Concentrating solar panel and related systems and methods
US20120255594A1 (en) Solar Power Generator Module
RU2377472C1 (en) Solar power plant
RU2286517C1 (en) Solar photoelectric plant
US9070806B2 (en) Self-powered solar tracker
EA032692B1 (en) Solar and wind power plant
JP3154115U (en) Double-sided light receiving solar panel and solar panel power generator
JP2010040779A (en) Sun-tracking solar power generating apparatus
JP5507375B2 (en) Solar power plant
RU124440U1 (en) SOLAR PHOTOELECTRIC INSTALLATION
KR20120049503A (en) Photovoltaic power generating apparatus with foldable reflector plate
JP6867771B2 (en) Fixed-mounted tracking solar panels and methods
GB201212559D0 (en) The sunphlower mobile solar panel array
JP5615209B2 (en) Solar power plant
US20040261786A1 (en) Solar energy conversion system
JP4378257B2 (en) Solar tracking system
TWI554859B (en) Sun tracking device and solar cell system
JP2000227573A (en) Light condenser for solar light generation
EP3635859A1 (en) Solar panel assembly
Soderstrand et al. Mini-dish based hybrid Concentrated Solar Power (CSP) system for home use
KR101554144B1 (en) Concentrating solar photovoltaic power generator
JP3174079U (en) Solar power system
RU2764866C1 (en) Solar photoelectric station and method for its orientation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140206

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5615209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250