JP2011233851A - Piezoelectric power generating unit and piezoelectric power generation mat applying it - Google Patents

Piezoelectric power generating unit and piezoelectric power generation mat applying it Download PDF

Info

Publication number
JP2011233851A
JP2011233851A JP2010113657A JP2010113657A JP2011233851A JP 2011233851 A JP2011233851 A JP 2011233851A JP 2010113657 A JP2010113657 A JP 2010113657A JP 2010113657 A JP2010113657 A JP 2010113657A JP 2011233851 A JP2011233851 A JP 2011233851A
Authority
JP
Japan
Prior art keywords
piezoelectric
power generation
generation unit
elastic plate
unimorphs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010113657A
Other languages
Japanese (ja)
Inventor
Nobumasa Shiroi
信正 城井
Mitsuo Tamura
光男 田村
Ryotaro Matsumura
亮太郎 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SERATECH KK
Original Assignee
SERATECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SERATECH KK filed Critical SERATECH KK
Priority to JP2010113657A priority Critical patent/JP2011233851A/en
Publication of JP2011233851A publication Critical patent/JP2011233851A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a power generation unit and a power generation mat which has a breakable piezoelectric bimorph mounted as an piezoelectric element, which has water resistance, toughness, and high power generation performance, which can easily be instituted and wire-connected, and which can perform power generation operation sensitively detecting oscillation and pressure.SOLUTION: On one side of an elastic plate 1-2 made of rectangular insulator with the metalized sides, the ceramic sides of two piezoelectric unimorphs glued to a rectangular piezoelectric ceramics plate 1-1 shorter than the elastic plate in the long direction are glued facing inside with a spacer in-between made of insulator having a certain thickness and a purse on both sides of the longitudinal direction of the elastic plate, having such an organic material as silicone rubber and elastomer filling in the opposite gap. Also, the unit of this configuration is bedded in one or multiple steps as a tile in order to improve output power.

Description

本発明は断続的に得られる機械的荷重や振動などを圧電材料の歪みに変換し、これから電気エネルギーを取り出す圧電発電ユニットおよびそれを応用した発電マットに関するものである。The present invention relates to a piezoelectric power generation unit that converts intermittently obtained mechanical load, vibration, and the like into strain of a piezoelectric material and extracts electric energy therefrom, and a power generation mat using the piezoelectric power generation unit.

本発明は、圧電材料が外力によって変形や、振動を生じたときに発生する電気エネルギーを活用する発電装置に関するもので、その特徴は振動や衝撃等の機械的入力さえあれば発電装置として作用し、その電力を直接あるいはコンデンサ、二次電池などに備蓄しておき必要に応じて電気エネルギーを取り出す事が出来る圧電発電ユニットおよびそれを応用した圧電発電マットに関するものである。The present invention relates to a power generation device that utilizes electrical energy generated when a piezoelectric material is deformed or vibrated by an external force, and its features are that it functions as a power generation device as long as it has mechanical inputs such as vibration and impact. The present invention relates to a piezoelectric power generation unit capable of storing the electric power directly or in a capacitor, a secondary battery or the like and taking out electric energy as required, and a piezoelectric power generation mat using the piezoelectric power generation unit.

圧電材料に歪みを発生させたとき生ずる電気エネルギーを活用しようとする試みが広く行われている。圧電素子から電気エネルギーを得る手段としては通常、圧電素子に金属球、セラミック球などの衝撃体を衝突させたり、圧電素子の一端を固定してこの反対の端を押圧し変形させたりして、圧電素子の歪みによって発電させている。このとき発電した電力を発光ダイオードの発光に利用したり、二次電池に充電して必要に応じて取り出し信号処理装置の駆動などに利用したりされている。Attempts have been made to use electrical energy generated when a piezoelectric material is distorted. As means for obtaining electric energy from the piezoelectric element, usually, an impact body such as a metal sphere or ceramic sphere collides with the piezoelectric element, or one end of the piezoelectric element is fixed and the opposite end is pressed and deformed. Electric power is generated by distortion of the piezoelectric element. The electric power generated at this time is used for the light emission of the light emitting diode, or the secondary battery is charged and used as needed to drive the signal processing device.

引用文献1には片持ち梁構造の圧電バイモルフをユニットに組み込み歩行時の振動を受けて発電する振り子式の発電装置が提案されている。
引用文献2には圧電セラミックを組み込みこんで発電機能を持たせた建築用床板素材が提案されている。
引用文献3には階段の踏み板および昇降口周辺の床に押圧発電素子を配置して階段部の照明に利用する提案がなされている。
引用文献4には、複数の圧電素子を立体的に組み合わせて発電能力を改善し、これを組み込んだ路面プレートによって車両または歩行者の通過による圧力変化によって発電する発電システムが提案されている。
引用文献5にも路面に施設するブロック内に圧電素子を組み込んで発光ダイオードを点滅させる発電ブロックが提案されている。
特開2005−319013 特開平5−39661 特願平10−163095 特開2006−32935 特開2008190267
Cited Document 1 proposes a pendulum type power generation device that generates electric power by receiving vibration during walking by incorporating a piezoelectric bimorph having a cantilever structure into a unit.
Cited Document 2 proposes a building floor board material incorporating a piezoelectric ceramic and having a power generation function.
In Cited Document 3, a proposal is made that a pressing power generation element is arranged on the floor around the staircase and the staircase and used for illumination of the staircase.
Cited Document 4 proposes a power generation system in which a plurality of piezoelectric elements are three-dimensionally combined to improve power generation capability, and a road surface plate incorporating the piezoelectric element generates power by pressure change due to passage of a vehicle or a pedestrian.
Cited Document 5 also proposes a power generation block in which a piezoelectric element is incorporated in a block provided on a road surface and a light emitting diode blinks.
JP-A-2005-319013 JP-A-5-39661 Japanese Patent Application No. 10-163095 JP 2006-32935 A JP20080126767

前述のとおり、屋外の施設に圧電素子を組み込み、通行人や車両の通行時の圧力変化を発電に利用する提案が多くなされている。屋外施設の内部に圧電素子を装着して人の歩行時の圧力を受けて発光ダイオードを点滅することで路面案内などに応用するシステムの発電ユニット部に対して主に要求される点は、
・ 機械的に作用する衝撃力や圧力を充分に吸収して発電効率が高いこと
・ 機械的に堅牢な構成で破損しにくいこと
・ 耐水性に充分配慮された構造
・ 作りやすいシンプルな構造
・ 結線が容易であること
・ 施設しやすい構成であること
等が実用面で重要である
As described above, many proposals have been made to incorporate a piezoelectric element in an outdoor facility and use a pressure change during passage of a passerby or a vehicle for power generation. The point that is mainly required for the power generation unit part of the system applied to road surface guidance etc. by attaching the piezoelectric element inside the outdoor facility and receiving the pressure at the time of walking is blinking the light emitting diode,
・ Fully absorbs mechanically acting impact force and pressure and has high power generation efficiency. ・ It is mechanically robust and is not easily damaged. ・ Structure with sufficient consideration for water resistance. ・ Simple structure that is easy to make. It is important for practical use to be easy to construct

引用文献2では、床板として施設するブロック状のプレートの間に複数の円柱状の圧電素子を並べて軸方向に圧電素子が圧力を受ける構成が紹介されているが、圧電セラミックの弾性係数の大きさからすると荷重を受けて発生する歪み量が少なく発電効率は必ずしもよくない。人や車両の通行時の圧力変化を発電に利用する圧電発電においては、比較的少ない力で歪みが取りやすい、即ちコンプライアンスの小さな圧電バイモルフや圧電ユニモルフが主に利用される。ここで圧電バイモルフと圧電ユニモルフの違いは圧電素子を弾性材料の片面に貼り付けるか両面に貼り付けるかの違いであり、目的に応じて適宜選択すれば良いが、本発明は片面が弾性体である圧電ユニモルフの特徴を活用するものである。Cited Document 2 introduces a configuration in which a plurality of columnar piezoelectric elements are arranged between block-shaped plates provided as a floor plate, and the piezoelectric elements receive pressure in the axial direction. Therefore, the amount of distortion generated by receiving a load is small and the power generation efficiency is not necessarily good. In piezoelectric power generation that uses pressure changes during passage of people or vehicles for power generation, piezoelectric bimorphs and piezoelectric unimorphs that are easily distorted with relatively little force, that is, low compliance, are mainly used. Here, the difference between the piezoelectric bimorph and the piezoelectric unimorph is the difference between whether the piezoelectric element is attached to one side or both sides of the elastic material, and may be appropriately selected according to the purpose. It utilizes the characteristics of a certain piezoelectric unimorph.

コンプライアンスの小さな圧電バイモルフもしくは圧電ユニモルフは機械的に弱く壊れやすい圧電素子の部類に入る。従って、これらを活用するシステムでは堅牢で扱いやすいユニットとして提供されることが望ましい。破損対策の配慮として、引用文献4と引用文献5では外力を受けた圧電バイモルフの変形は一定値以内に抑えられるようにストッパーの役割を構成部材が担うように設計されている。Piezoelectric bimorphs or piezoelectric unimorphs with low compliance fall into the category of piezoelectric elements that are mechanically weak and fragile. Therefore, it is desirable to provide a unit that is robust and easy to handle in a system utilizing these. In consideration of measures against damage, the cited document 4 and the cited document 5 are designed such that the constituent member plays the role of a stopper so that the deformation of the piezoelectric bimorph subjected to external force can be suppressed within a certain value.

圧電バイモルフを発電に応用する場合、荷重を受けて変位を生ずる為の一定の空隙の確保も構成上の要件である。引用文献5ではブロックを形成する筐体の側面壁に圧電バイモルフの一端を固定して中央に位置する他端にて荷重を受ける片持ち梁型のバイモルフ構成が紹介されているが、このように側面壁にユニットを装着する場合、立体的な配置になり組み立て工数の増大になりやすい。特に、この種の用途では発電量の確保から複数のバイモルフ素子を組み込む場合が多く、その場合この問題はさらに現実的になってくる。When a piezoelectric bimorph is applied to power generation, it is a structural requirement to ensure a certain gap for generating a displacement under a load. Cited Document 5 introduces a cantilever type bimorph configuration in which one end of a piezoelectric bimorph is fixed to a side wall of a casing forming a block and a load is received at the other end located in the center. When the unit is mounted on the side wall, the arrangement becomes three-dimensional and the number of assembling steps tends to increase. In particular, in this type of application, a plurality of bimorph elements are often incorporated in order to ensure the amount of power generation, in which case this problem becomes more realistic.

本発明はかかる事情に鑑みてなされたものであり、圧電素子としては、破損しやすい
圧電バイモルフを組みこんだ発電ユニットについて、耐水性があり堅牢でかつ発電性能が高く、施設や結線も容易で振動や圧力を鋭敏に検知して発電作用を行うことが出来る発電ユニットを提供することを目的としている。
The present invention has been made in view of such circumstances, and as a piezoelectric element, a power generation unit incorporating a piezoelectric bimorph that is easily damaged is water-resistant and robust and has high power generation performance, and facilities and connections are easy. An object of the present invention is to provide a power generation unit capable of sensitively detecting vibration and pressure and generating power.

本発明の第一の観点によれば、両面をメタライズされた矩形状の絶縁体よりなる弾性板の片面に、長さ方向でやや前記弾性板より短い矩形状の圧電セラミックス板を貼り付けた圧電ユニモルフ2枚のセラミック側を、互いに内側に向けて前記弾性板の長手方向の両端に一定厚みと巾を有する絶縁体よりなるスペーサを介して貼り合わせたことを特徴とする圧電発電ユニットが提供される。According to the first aspect of the present invention, a piezoelectric material in which a rectangular piezoelectric ceramic plate slightly shorter than the elastic plate in the length direction is attached to one surface of an elastic plate made of a rectangular insulator metallized on both sides. There is provided a piezoelectric power generation unit characterized in that two unimorph ceramic sides are bonded to each other in the longitudinal direction of the elastic plate with spacers made of an insulator having a certain thickness and width facing each other inward. The

本発明の第二の観点によれば、二つの圧電ユニモルフについて並列接続もしくは直列接続した2極と外側のメタライズ面からなる2極は全波整流回路で結線されていることを特徴とする請求項1の圧電発電ユニットが提供される。According to a second aspect of the present invention, the two poles formed of the outer metallized surface and the two poles connected in parallel or in series with respect to the two piezoelectric unimorphs are connected by a full-wave rectifier circuit. One piezoelectric power generation unit is provided.

本発明の第三の観点によれば、二つの圧電ユニモルフが対向する間隙にシリコンゴムやエラストマーなどの有機材料が充填されていることを特徴とする請求項1、請求項2の圧電発電ユニットが提供される。According to a third aspect of the present invention, there is provided the piezoelectric power generation unit according to claim 1 or 2, wherein an organic material such as silicon rubber or elastomer is filled in a gap between two piezoelectric unimorphs facing each other. Provided.

本発明の第四の観点によれば、請求項3よりなる発電ユニットの長さ方向の中央部の下のみが硬く、他の部分はゴムのような弾性変形が容易な物質で構成されたベースの上に前記発電ユニットが敷き詰められたことを特徴とする圧電マットが提供される。According to a fourth aspect of the present invention, only the base portion in the lengthwise direction of the power generation unit according to claim 3 is hard, and the other portions are made of a material that is easily elastically deformed, such as rubber. There is provided a piezoelectric mat characterized in that the power generation unit is laid on the top.

本発明の第五の観点によれば、請求項3よりなる発電ユニットの長さ方向に半分の長さだけずらして厚み方向に複数段積み重ねて電気的に結線したことを特徴とする請求項4の圧電発電マットが提供される。According to a fifth aspect of the present invention, the power generation unit according to claim 3 is electrically connected by stacking a plurality of stages in the thickness direction while shifting by half the length in the length direction. A piezoelectric power generation mat is provided.

作用
圧電バイモルフによる発電作用は最初に荷重を受けて破断の限界点以内の変形の進行に伴う圧電素子が発生する歪みで行い、次に荷重が取り去られた後に圧電バイモルフを含む弾性系が蓄えたエネルギーが開放される過程で生じた衝撃振動で圧電素子が再び刺激されて歪みを発生することで行われる。
通行人の歩行や車両通行による荷重、振動もしくは衝撃の力学的な量は比較的大きく圧電素子に対して確実に一定の変位量を確保できるシステムをつくることは容易である。
弾性系に蓄えられるエネルギーの大きさEは荷重を受ける系のバネ定数をK、変位をδとしたとき

Figure 2011233851
Power generation by the piezoelectric bimorph is performed by the strain generated by the piezoelectric element as the deformation progresses within the critical point of breakage first, and then the elastic system including the piezoelectric bimorph accumulates after the load is removed. The piezoelectric element is stimulated again by the impact vibration generated in the process of releasing the energy and generates distortion.
It is easy to create a system that can ensure a certain amount of displacement with respect to the piezoelectric element with a relatively large mechanical amount of load, vibration, or impact due to a person walking or passing a vehicle.
The amount of energy E stored in the elastic system is K when the spring constant of the system receiving the load is K and the displacement is δ.
Figure 2011233851

前述の式(1)から分かるように、外部荷重を用いて常に一定量の変位δを確保できるという前提であれば、設計の可能な範囲でなるべくバネ定数Kを大きくしておけば蓄積エネルギーEを大きくすることができ発電ユニットには有利である。前述のようにバイモルフ素子はコンプライアンスの小さいことが発電に有利と説明したが、外力が大きく変位δが充分に確保出来るなら可能な範囲でコンプライアンスを大きく調整すれば蓄積エネルギーEが大きく効率の良い発電ユニットになる。As can be seen from the above equation (1), if it is assumed that a constant amount of displacement δ can always be secured by using an external load, the stored energy E can be obtained by increasing the spring constant K as much as possible within the possible design range. This is advantageous for the power generation unit. As described above, it has been explained that small compliance of the bimorph element is advantageous for power generation. However, if the external force is large and the displacement δ can be sufficiently secured, if the compliance is adjusted to a large extent as much as possible, the stored energy E is large and the power generation is efficient. Become a unit.

バイモルフ素子の支持方法で片持ち梁型は原理的に最もコンプライアンスが小さく弱い力でも反応しやすいが、このコンプライアンスを大きく調整する為には、バイモルフ素子の厚みを大きくするか、素子の有効長を短くすることで達成できる。しかしながら固定部近辺に発生する歪みが大きくなりセラミックが破損しやすく耐久性に劣ることが確認された。
また、バイモルフ素子を両面支持梁型にする場合もコンプライアンスを大きくできるがこの場合には固定上の不安定さは免れず結果的に安定した発電性能が得られないことが判明した。
バイモルフ素子の両端固定型については、コンプライアンスを最も大きくできる。ただし荷重を受けた場合に梁(圧電バイモルフ)上に正負の曲げモーメントが発生する箇所が両端近傍に生ずるので電極面に生ずる電荷がキャンセルする事が考えられる。そこでセラミック長さをスパン長さに比べて短く調整することで同一符号の曲げモーメントがセラミックに生ずる範囲を選ぶことが可能である。
この場合には両端支持構成がこの目的には好ましいことが判明した。
In principle, the cantilever type with a bimorph element support method has the smallest compliance and is easy to react even with a weak force.To adjust this compliance greatly, increase the thickness of the bimorph element or increase the effective length of the element. This can be achieved by shortening. However, it was confirmed that the distortion generated in the vicinity of the fixed part was increased and the ceramic was easily damaged and inferior in durability.
In addition, when the bimorph element is a double-sided support beam type, the compliance can be increased. However, in this case, it has been found that instability in fixing cannot be avoided and consequently stable power generation performance cannot be obtained.
Compliance can be maximized for the bimorph element fixed both ends type. However, when a load is applied, a place where positive and negative bending moments occur on the beam (piezoelectric bimorph) is generated near both ends, so that it is conceivable that the charge generated on the electrode surface is canceled. Therefore, by adjusting the ceramic length to be shorter than the span length, it is possible to select a range in which a bending moment having the same sign is generated in the ceramic.
In this case, it has been found that a double-ended support configuration is preferred for this purpose.

発明者らは鋭意検討した結果、両面を電気的に分離しメタライズされた矩形状の絶縁体よりなる弾性板の片面に、長さ方向でやや前記弾性板より短い矩形状の圧電セラミックス板を貼り付けた圧電ユニモルフ2枚のセラミック側を、互いに内側に向けて前記弾性板の長手方向の両端に一定厚みと巾を有する絶縁体よりなるスペーサを介して貼り合わせた構成を発明するに至った。As a result of intensive studies, the inventors attached a rectangular piezoelectric ceramic plate slightly shorter than the elastic plate in the length direction to one side of an elastic plate made of a rectangular insulator that is electrically separated and metallized on both sides. The inventors have come to invent a structure in which two ceramic unimorphs attached to each other are bonded to each other in the longitudinal direction of the elastic plate through spacers made of an insulator having a constant thickness and width toward the inside.

さらに、二つの圧電ユニモルフについては、電流出力を重視するなら並列接続とし、電圧出力重視なら直列接続した2端子と外側のメタライズ面からなる2極は全波整流回路で結練する構成を発明するに至った。さらに、このユニットの下面側は中央部のみが硬くそれ以外は、弾性的に柔らかいベース材の上に乗っていると効果的であることが分かった。Further, the two piezoelectric unimorphs are in parallel connection if importance is placed on current output, and if the importance is placed on voltage output, two poles consisting of two terminals connected in series and the outer metallized surface are invented by a full-wave rectifier circuit. It came to. Furthermore, it has been found that it is effective if the lower surface side of this unit is only on the center part and the rest is on an elastically soft base material.

この構成について説明する。図1に示すように荷重を受けると上下の中央部が内側に撓み弾性変形を生じて発電し、荷重が解放されると蓄えられた弾性エネルギーで再び圧電素子が変形して発電するが、この過程で弾性板の内側の電荷は正負が反転している。図2では二つのユニモルフが並列に接続されている場合を示している。上下の圧電素子で生ずる電荷の内側に面した電極は、向かい合う弾性板の内側の電極と相互に結線されているが、分極方向の調整により結線する双方の電極面は同じ符号の電荷が生じ、この電荷の和が内側の向き合うメタライズ面上にそれぞれ蓄えられる。そこで図2に示すように前記内側のメタライズ電極を2極とし、外側のメタライズ面2極との間に全波整流回路を接続すると外側電極では、常に同じ符号で同じ電極面から電気出力が得られ上下メタライズ面は直流の出力端子として機能させることが可能である。This configuration will be described. As shown in FIG. 1, when the load is received, the upper and lower central portions are bent inward to generate elastic deformation, and when the load is released, the piezoelectric element is deformed again by the stored elastic energy to generate power. In the process, the charge inside the elastic plate is reversed between positive and negative. FIG. 2 shows a case where two unimorphs are connected in parallel. The electrodes facing the inside of the electric charges generated by the upper and lower piezoelectric elements are mutually connected with the electrodes inside the elastic plate facing each other, but both electrode surfaces connected by adjusting the polarization direction generate the electric charges with the same sign, This sum of charges is stored on the inner facing metallized surfaces. Therefore, as shown in FIG. 2, when the inner metallized electrode is two poles and a full-wave rectifier circuit is connected between the two outer metallized surfaces, the outer electrode always obtains electric output from the same electrode surface with the same sign. The upper and lower metallized surfaces can function as DC output terminals.

最後に、耐湿性の改善を目的に二つの圧電ユニモルフが対向する間隙にシリコンゴムやエラストマーなどの有機材料で充填した。この処理で耐水性の大幅な改善が出来たが、発電の性能にはほとんど劣化は認められなかった。これは、圧電セラミックと弾性基板で構成する複合梁の曲げ弾性係数が、充填した有機材料の曲げ弾性係数に比べて5桁以上の差があるため影響を受けない為だと考えられる。Finally, in order to improve moisture resistance, the gap between the two piezoelectric unimorphs was filled with an organic material such as silicon rubber or elastomer. Although the water resistance was greatly improved by this treatment, the power generation performance was hardly deteriorated. This is considered to be because the bending elastic modulus of the composite beam composed of the piezoelectric ceramic and the elastic substrate is not affected because there is a difference of 5 digits or more compared to the bending elastic modulus of the filled organic material.

次に、以上で説明した発電ユニットを複数組み合わせて構成する発電マットについて説明する。発電ユニットを前後左右タイル上に矩形のベース上に敷き詰める。このベースは全体にはゴムやエラストマーのような弾性変形の容易な材質で構成するが、ベース内にライン状に弾性変形しにくい剛体が構成されている。発電ユニットはこの剛体が丁度中央を横切るように配置される。上からの荷重に対してスペーサのある両端部は変形できないが、中央部は上からも下からも荷重を受けてそれぞれの弾性板は内側に凹レンズ状に撓み効率よく発電される。Next, a power generation mat configured by combining a plurality of power generation units described above will be described. Spread the power generation unit on the rectangular base on the front, back, left, and right tiles. The base is entirely made of a material that is easily elastically deformed, such as rubber or elastomer, but a rigid body that is difficult to elastically deform in a line shape is formed in the base. The power generation unit is arranged so that this rigid body just crosses the center. Although both ends of the spacer cannot be deformed with respect to the load from above, the central portion receives the load from above and from below, and each elastic plate is bent into a concave lens shape to generate power efficiently.

発電量の増大を目的に厚み方向に複数重ねていくことも有効である。この場合、段毎に全長の半分だけ長さ方向に位置をずらせると、2段目以降も中央部の真下に下のユニットの弾性変形しないユニットの端部が来るために、上段のユニットの凹レンズ状の変形が促され効率の良い発電が可能になる。It is also effective to stack a plurality of layers in the thickness direction for the purpose of increasing the amount of power generation. In this case, if the position is shifted in the length direction by half of the total length for each step, the end of the unit that is not elastically deformed in the lower unit comes directly under the center after the second step. A concave lens-like deformation is promoted and efficient power generation becomes possible.

一層だけ敷き詰める場合、下側電極中央部接する剛体が銅やアルミニュームのような金属で直接コンタクトするようにすることで複数ユニットの並列結線の一部が構成できる。また上面に金属箔を一面もしくは部分的に複数配置することで、シンプルに好みの結線、例えば特定のユニット同志の並列結線が構成できる。When only one layer is laid, a part of the parallel connection of a plurality of units can be configured by making the rigid body contacting the center of the lower electrode directly contact with a metal such as copper or aluminum. In addition, by arranging a plurality of metal foils on the upper surface or partly, a desired connection, for example, a parallel connection between specific units can be configured.

厚み方向に重ねる場合、ユニット同志が直接コンタクトすれば丁度乾電池とおなじ直列結線が可能で発電電圧が増大する。重ねる場合、金属箔と絶縁シートを重ねて使用すると厚み方向に重ねたユニット間の並列接続も可能になる。このように本発明の構成の特徴を有効に活用すると複数のユニットをシンプルに結線して効率の良い発電マットが実現できることがわかる。In the case of stacking in the thickness direction, if the units are in direct contact, the same series connection as that of the dry battery is possible and the generated voltage increases. In the case of stacking, when the metal foil and the insulating sheet are used in a stacked state, parallel connection between the units stacked in the thickness direction is also possible. Thus, it can be seen that when the features of the configuration of the present invention are effectively used, an efficient power generation mat can be realized by simply connecting a plurality of units.

耐水性があり堅牢でかつ発電性能が高く、施設や結線も容易で振動や圧力を鋭敏に検知して発電作用を行うことが出来る発電ユニットと、この発電ユニットを複数組み合わせて配置と結線が容易な発電マットが提供できるようになった。Power generation unit that is water-resistant and robust, has high power generation performance, easy facility and connection, can detect vibration and pressure sensitively, and can generate power, and can be arranged and connected easily by combining multiple power generation units. Power generation mats can be provided.

実施例1
次に請求項に基づく実施の形態について詳細に説明する。
図3に本発明に係わる圧電発電ユニットの斜視図および断面図を示す。
矩形の圧電セラミックス板(35×18×0.6)1−1の表裏面に銀電極が形成され厚み方向に分極処理してある。圧電材料は電気機械結合係数k31が30%以上で比誘電率εrが1800,機械的品質係数Qmは1000程度の材料を用いている。なお圧電素子はこの形状に限定されるモノではなく設計に応じて必要に応じて縦横比を変えても良いし、複数の層に積層されていても良い。両面を銅でメタライズした弾性体基板(70×20×2)1−2はガラスエポキシFR−4を用いた。
Example 1
Next, embodiments based on the claims will be described in detail.
FIG. 3 shows a perspective view and a sectional view of the piezoelectric power generation unit according to the present invention.
Silver electrodes are formed on the front and back surfaces of a rectangular piezoelectric ceramic plate (35 × 18 × 0.6) 1-1 and polarized in the thickness direction. As the piezoelectric material, a material having an electromechanical coupling coefficient k31 of 30% or more, a relative dielectric constant εr of 1800, and a mechanical quality factor Qm of about 1000 is used. The piezoelectric element is not limited to this shape, and the aspect ratio may be changed as necessary according to the design, or may be laminated in a plurality of layers. Glass epoxy FR-4 was used for the elastic substrate (70 × 20 × 2) 1-2 whose surfaces were metallized with copper.

弾性基板上の中央部に圧電素子1−1をメタライズ面に接着した。対になる二つのユニモルフは接着面に対して分極方向を互いに反対にして接着してある。各電極表面と対面の弾性体基板のメタライズ面とはリード線1−3をはんだ付で結線した。前記内側のメタライズ面の対と外側のメタライズ面の対との間にダイオードブリッジ1−4を介してリード線1−5をはんだ付けで結線した。前記ダイオードブリッジ1−4は弾性体基板の片側の内面でセラミックを接着されていない部分にエポキシで固定した。Piezoelectric element 1-1 was bonded to the metallized surface at the center on the elastic substrate. The two unimorphs in pairs are bonded to the bonding surface with their polarization directions opposite to each other. Lead wires 1-3 were connected by soldering to the electrode surfaces and the metallized surface of the opposing elastic substrate. Lead wires 1-5 were connected by soldering between the inner metallized surface pair and the outer metallized surface pair via a diode bridge 1-4. The diode bridges 1-4 are fixed with epoxy on the inner surface of one side of the elastic substrate where the ceramic is not bonded.

対になる二つのユニモルフの両端面をスペーサ(20×5×2t)1−6を介してエポキシ系接着剤で固定した。スペーサは材質として特に限定する必要はなく一定の厚みで適度の強度を持つ絶縁物質で構成することが可能である。本実施例ではベークライトを使用している。前記圧電ユニットの中央の空隙部にシリコンゴムを注入して固化させた。これで圧電ユニット1の基本が完成した。Both end faces of two unimorphs to be paired were fixed with an epoxy adhesive via spacers (20 × 5 × 2t) 1-6. The spacer need not be particularly limited as a material, and can be made of an insulating material having a certain thickness and appropriate strength. In this embodiment, bakelite is used. Silicon rubber was injected into the gap in the center of the piezoelectric unit and solidified. This completes the basics of the piezoelectric unit 1.

前記ユニットの中央部に加えた荷重量と変位量から算出したバネ定数Kは210、000(N/m)であった。
人の踏みつける荷重からすれば適度のバネ性であり、充分に変位を与えることが出来る。実験によると人の荷重で100V〜200Vの電圧出力を確認した。
The spring constant K calculated from the load and displacement applied to the central part of the unit was 210,000 (N / m).
Considering the load that a person steps on, it has moderate springiness and can be displaced sufficiently. According to the experiment, a voltage output of 100V to 200V was confirmed by human load.

図4に示すように外形が縦220mm、横110mm、高さ5mmで内側に3本の横棒が等間隔に格子状に形成された銅製の枠2−1の間にシリコンゴム2−2を同じ厚みになるまで充填したベース2を準備した。このベース上に本実施例で作成した発電ユニット1を図5のように10ヶ配列した。
ベースの格子枠は各ユニットの長さ方向の軸と直交し、中央部の真下にあり、各ユニットの下側電極と電気的に接触している。上面には縦220mm、横110mmで厚さ50μmの銅箔を被せて更にその上に縦220mm、横110mmで厚みが5mmの生ゴム板を載せた。前記銅箔は各ユニットの上部電極を並列に結線し、前記銅製の枠との間で電気出力端子とする構成で圧電発電マットとした。
この構成でマットを踏みつけた場合、荷重がほぼ平均に加わるが、個々のユニットについてはほぼ凹レンズ状に変形し並列接続の効果により出力電流が10倍以上になることが確認できた。
As shown in FIG. 4, silicon rubber 2-2 is placed between copper frames 2-1 having an outer shape of 220 mm in length, 110 mm in width, and 5 mm in height, and three horizontal bars formed in a lattice at equal intervals inside. A base 2 filled to the same thickness was prepared. Ten power generation units 1 prepared in this example were arranged on this base as shown in FIG.
The lattice frame of the base is orthogonal to the longitudinal axis of each unit, is directly below the center portion, and is in electrical contact with the lower electrode of each unit. The upper surface was covered with a copper foil having a length of 220 mm, a width of 110 mm and a thickness of 50 μm, and a raw rubber plate having a length of 220 mm, a width of 110 mm and a thickness of 5 mm was placed thereon. The copper foil connected to the upper electrode of each unit in parallel, and used as an electric output terminal between the copper frame to form a piezoelectric power generation mat.
When the mat is stepped on in this configuration, the load is almost added to the average, but it was confirmed that each unit was deformed into a substantially concave lens shape, and the output current became 10 times or more due to the effect of parallel connection.

更に、前述のマット構成で2段目にベークライト製のダミー部材3を用いて、長さの半分だけずらした位置に2段目を5ヶ、更に3段目には1段と同じ位置に10のユニット1を配して上面には銅箔を被せて更にその上に生ゴム板を載せた。この構成を図6に模式的に示す。この場合は電池と同じように厚み方向は直列の結線ができるので、マットを踏みつけた場合の出力電圧はほぼ3倍となり重ねの効果が確認された。Furthermore, using the dummy structure 3 made of Bakelite at the second stage in the above-described mat structure, five pieces at the second stage are shifted by half the length, and 10 at the same position as the first stage at the third stage. The unit 1 was arranged and the upper surface was covered with a copper foil, and a raw rubber plate was further placed thereon. This configuration is schematically shown in FIG. In this case, as in the case of the battery, serial connection can be made in the thickness direction, so that the output voltage when the mat is stepped on is almost tripled, confirming the effect of overlapping.

産業上の利用の可能性Industrial applicability

本発明は、屋内外の施設に組み込むことによって、人や車両の通行時の圧力変化を電気エネルギーに変換することにより、この電力で発光ダイオードを点滅させて路面標示などに活用できるほか、発生する電気エネルギーをコンデンサに蓄積することにより信号処理系などの予備電源として活用できる。In addition to being able to be used for road marking etc. by flashing a light emitting diode with this electric power by converting pressure change when passing a person or vehicle into electric energy by incorporating it into an indoor or outdoor facility, the present invention occurs. By storing electrical energy in a capacitor, it can be used as a backup power source for signal processing systems.

本発明の原理に係わる変形状況の説明図Explanatory drawing of the deformation situation related to the principle of the present invention 本発明の原理に係わる発電作用の説明図Explanatory diagram of power generation action according to the principle of the present invention 本発明および実施例の発電ユニットの基本構成の斜視図および断面図The perspective view and sectional drawing of the basic composition of the power generation unit of this invention and an Example 本発明および実施例の基本構成の発電マットのベース部分斜視図The base part perspective view of the electric power generation mat of the basic composition of the present invention and an example 本発明および実施例の基本構成の発電マットの図(ユニットとベースの組み合わせ)Drawing of power generation mat of basic configuration of the present invention and embodiment (combination of unit and base) 本発明および実施例の基本構成の発電マットの断面図(厚み方向に積み重ねる場合)Sectional view of the power generation mat of the basic configuration of the present invention and the embodiment (when stacked in the thickness direction)

1;発電ユニット
1−1;圧電素子
1−2;弾性体基板
1−3;リード線
1−4;ダイオード
1−5;リード線
1−6;スペーサ
2;発電マットベース部
2−1;ベース部枠
2−2;ベース部変形可能部
3;ダミー部材
DESCRIPTION OF SYMBOLS 1; Electric power generation unit 1-1; Piezoelectric element 1-2; Elastic board 1-3; Lead wire 1-4; Diode 1-5; Lead wire 1-6; Spacer 2; Part frame 2-2; base part deformable part 3; dummy member

Claims (5)

両面をメタライズされた矩形状の絶縁体よりなる弾性板の片面に、長さ方向で前記弾性板より短い矩形状の圧電セラミックス板を貼り付けた圧電ユニモルフ2枚のセラミック側を、互いに内側に向けて前記弾性板の長手方向の両端に一定厚みと巾を有する絶縁体よりなるスペーサを介して貼り合わせたことを特徴とする圧電発電ユニットTwo piezoelectric unimorphs with a rectangular piezoelectric ceramic plate that is shorter than the elastic plate in the length direction on one side of an elastic plate made of a rectangular insulator metallized on both sides face each other inward. The piezoelectric power generation unit is bonded to both ends in the longitudinal direction of the elastic plate through spacers made of an insulator having a constant thickness and width. 二つの圧電ユニモルフについて圧電セラミックスの分極方向は弾性板に対して互いに反対の向きに施され、各々のセラミックの表側電極と対向する圧電ユニモルフの内側のメタライズ面とは互いに結線され、内側の対向するメタライズ面からなる2極と外側のメタライズ面からなる2極は全波整流回路で結線されていることを特徴とする請求項1の圧電発電ユニットThe polarization directions of the piezoelectric ceramics for the two piezoelectric unimorphs are opposite to each other with respect to the elastic plate, and the inner metallized surfaces of the piezoelectric unimorphs facing the ceramic front electrodes are connected to each other and face the inner sides. 2. The piezoelectric power generation unit according to claim 1, wherein the two poles made of the metallized surface and the two poles made of the outer metallized surface are connected by a full-wave rectifier circuit. 二つの圧電ユニモルフが対向する間隙にシリコンゴムやエラストマーなどの有機材料が充填されていることを特徴とする請求項1、請求項2の圧電発電ユニット3. The piezoelectric power generation unit according to claim 1, wherein an organic material such as silicon rubber or elastomer is filled in a gap between the two piezoelectric unimorphs facing each other. 請求項3よりなる発電ユニットの長さ方向の中央部の下のみが硬く、他の部分はゴムのような弾性変形が容易な物質で構成されたベースの上に前記発電ユニットが敷き詰められたことを特徴とする圧電マットThe power generation unit according to claim 3 is laid only on a base made of a material that is hard only at the center in the length direction and the other part is easily elastically deformed, such as rubber. Piezoelectric mat characterized by 請求項3よりなる発電ユニットの長さ方向に半分の長さだけずらして厚み方向に複数段積み重ねて電気的に結線したことを特徴とする請求項4の圧電発電マット5. The piezoelectric power generation mat according to claim 4, wherein a plurality of stages are stacked in the thickness direction while being shifted by a half length in the length direction of the power generation unit according to claim 3 and electrically connected.
JP2010113657A 2010-04-23 2010-04-23 Piezoelectric power generating unit and piezoelectric power generation mat applying it Pending JP2011233851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113657A JP2011233851A (en) 2010-04-23 2010-04-23 Piezoelectric power generating unit and piezoelectric power generation mat applying it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113657A JP2011233851A (en) 2010-04-23 2010-04-23 Piezoelectric power generating unit and piezoelectric power generation mat applying it

Publications (1)

Publication Number Publication Date
JP2011233851A true JP2011233851A (en) 2011-11-17

Family

ID=45322838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113657A Pending JP2011233851A (en) 2010-04-23 2010-04-23 Piezoelectric power generating unit and piezoelectric power generation mat applying it

Country Status (1)

Country Link
JP (1) JP2011233851A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417846B1 (en) * 2012-11-14 2014-07-09 한국세라믹기술원 Piezoelectric generator module and generator system using the same
CN106499239A (en) * 2016-09-20 2017-03-15 北京工业大学 A kind of piezoelectricity electromagnetism combined type collection energy vibration absorber
KR101731927B1 (en) * 2016-01-06 2017-05-02 금오공과대학교 산학협력단 Apparatus for load marking using piezoelectric element
WO2020137265A1 (en) * 2018-12-25 2020-07-02 株式会社村田製作所 Vibrating structure
US10855209B2 (en) 2017-10-06 2020-12-01 United Arab Emirates University Electrical power generating carpet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417846B1 (en) * 2012-11-14 2014-07-09 한국세라믹기술원 Piezoelectric generator module and generator system using the same
KR101731927B1 (en) * 2016-01-06 2017-05-02 금오공과대학교 산학협력단 Apparatus for load marking using piezoelectric element
CN106499239A (en) * 2016-09-20 2017-03-15 北京工业大学 A kind of piezoelectricity electromagnetism combined type collection energy vibration absorber
US10855209B2 (en) 2017-10-06 2020-12-01 United Arab Emirates University Electrical power generating carpet
WO2020137265A1 (en) * 2018-12-25 2020-07-02 株式会社村田製作所 Vibrating structure
US11600764B2 (en) 2018-12-25 2023-03-07 Murata Manufacturing Co., Ltd. Vibration structure

Similar Documents

Publication Publication Date Title
JP2010246360A (en) Piezoelectric power-generating unit
US8269401B1 (en) Graphene power-mill system
JP2011233851A (en) Piezoelectric power generating unit and piezoelectric power generation mat applying it
KR101220247B1 (en) Piezo power generator for emergency power feeding
WO2012153593A1 (en) Piezoelectric power generating apparatus
TW201810744A (en) Electricity generator comprising a magnetoelectric converter and method for manufacturing same
KR101467933B1 (en) Piezo fiber composite structure and device using thereof
EP1394868A1 (en) Piezoelectric generator
Quintero et al. Design optimization of vibration energy harvesters fabricated by lamination of thinned bulk-PZT on polymeric substrates
KR100911886B1 (en) Road energy harvester using vibrating piezoelectric film
KR20110014461A (en) Foot mat type unit for piezoelectric generator and generator system including the same
US8736147B1 (en) Sound and vibration harnessing energy generator
KR101338392B1 (en) Hybrid generator having piezoelectric element
US10381957B2 (en) Power generation device
CN109889095A (en) A kind of action of traffic loading lower cantalever formula piezoelectric transducer device
JP4892079B2 (en) Multistage power generation unit
KR20110065241A (en) Power generator
KR20150134677A (en) Power generation apparatus using piezoelectric element stacked by multilayer structure
KR20170049830A (en) Piezoelectric energy harvester
JP2011250521A (en) Power generation panel and power generating system using power generation panel
CN107408622B (en) Piezoelectric generator, button, radio module and the method for manufacturing piezoelectric generator
JP2003243738A (en) Stacked piezoelectric element
JP6882096B2 (en) Piezoelectric power generator
KR101051436B1 (en) Piezo power generator using shear deformation mode piezoelectric body
KR101135402B1 (en) Piezo power generator using shear deformation mode piezoelectric body